PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #5 SOLUTIONS

(1) For a noninteracting quantum system with single particle density of states g(¢) = Ae”
(with € > 0), find the first three virial coefficients for bosons and for fermions.

Solution :

We have
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where
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Thus, we have
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has dimensions of volume. Thus, we let x = +z, and interrogate Mathematica:

In[1]= y = InverseSeries[x + x72/27(r+1) + x°3/3"(r+1) + x"4/4~(r+1) + O[x]"5]

In[2]= w

y + y°2/2°(r+2) + y~3/3°(x+2) + y~4/4~(x+2) + O[yl"5.

The result is
p= nk‘BT[l + By(T) n + By(T) n? + ] ,
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(2) How would you formulate the Lindemann melting criterion for Einstein phonons?
Solution :

For a one-dimensional harmonic oscillator, we have

h
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where wj, is the oscillation frequency and m is the mass. For a d-dimensional Einstein solid,
then, the Lindemann criterion should take the form
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where f ~ L, with a the lattice spacing. The Lindemann temperature is then

hw
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where
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Plugging in typical numbers, one finds n < 1 for most solids, assuming 7w, /k; ~ 100 K.
This procedure would then predict a melting temperature much higher than that observed
for most solids.

(3) Derive the analogue of Stefan’s Law for a two-dimensional blackbody. What happens
if the photon dispersion is replaced by ¢(k) = C|k|*?

Solution :

The power emitted per unit length of the boundary of such a two-dimensional blackbody
is
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Thus, for a = 1, we have P/L = oT3.



