PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #4 SOLUTIONS

(1) A strange material obeys the equation of state E(S,V,N) = a S”/VAN?, where a is a

dimensionful constant.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, 7', and n = N/V.

(c) Find the coefficient of thermal expansion o, = v (g—g )p and the isothermal compress-
ibility K = — % (%—‘;)T. Express your answers in terms of p and 7.

(d) v moles of this material execute a Carnot cycle between reservoirs at temperatures
T, and T5. Find the heat () and work W for each leg of the cycle, and find the cycle
efficiency 7.

Solution :
(a) Clearly [a] = K" m'2/J? where K are Kelvins, m are meters, and J are Joules.

(b) We have
oF 7a.56
e <%>V,N - v
- 8_E B 4aS7
P=7\ov gy ~ N2VE

We must eliminate S. Dividing the second of these equations by the first, we find S =
7pV /AT, and substituting this into either equation, we obtain the equation of state,

N 1/3
— .2 T7/6
p=c () T

with ¢ = %a_l/G.

(c) Taking the logarithm and then the differential of the above equation of state, we have

dp  dV  7dT dN

P + 3V 61 3N
Thus,
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Figure 1: The Carnot cycle.

(d) From the results of part (b), we have that dS = 0 means d(N?V4T) = 0, so with N
constant the equation for adiabats is d(TV*) = 0. Thus, for the Carnot cycle of Fig. 1, we
have

LVA=T\V5 , TVi=TV¢.

We shall use this relation in due time. Another relation we shall use is obtained by dividing
out the S” factor common in the expressions for £ and for p, then substituting for p using
the equation of state:

E=1ipV = 1c N3V TS

AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the

isotherm to find
V.

B
Wag = [V p= 3NV V2.
VA

Since E depends on volume, unlike the case of the ideal gas, there is a change in energy
along this leg:
(AE)ag = Bg — Ep = Je N'VA 0 (Vg = v2%) .

Finally, the heat absorbed by the engine material during this leg is

706 1 ,2/3  <2/3
Qpag = (AE)pg + Wag = %CN1/3T2/ (VB/ _VA/ ) -



BC: Next, consider the BC leg. Clearly ()5 = 0 since BC is an adiabat. Thus,
Wac = —(AE)ge = Eg — Ec = ke NY3(Ty/P V3PP — {0 Vg% .
But the fact that BC is an adiabat guarantees VC2 /3 = (T, /T,)"/6 VE? /3 hence

2/3 111/6
Wec = 2e NVBVER TS, — 1)

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,
Wep = 5eN'/? 7127/6(‘432/3 - Vc2/3) :

We now use the adiabat conditions Vg/g = (T,,/T})"/6 V|32/3 and VDz/3 = (T,,/T})"/6 VA2/3 to
write W as
Wep = 3e N1 1/° (Vi — V).
We therefore have
Qcp = Te NYB T TS (VIR — 2%y
Note that both W and Q- are negative.

DA: We apply the results from the BC leg, mutatis mutandis, and invoke the adiabat condi-
tions. We find Qp, = 0 and

2/3 ;n1/6
Wpa = %CNl/g VA/ T2/ (T, =T7) -

For the cycle, we therefore have
1/6 2/3 2/3
chc:WAB+WBC+WCD+WDA — %CN1/3T2/ (T2_T1)(VB/ _VA/ ) .

and thus
WCyC _ Tl

Qas T,
This is the same result as for an ideal gas, as must be the case as per the Second Law of
Thermodynamics.

Ui

(2) The entropy of a thermodynamic system S(E, V, N) is given by
S(E,V,N)=rE*VPN7,

where r is a dimensionful constant.

(a) Extensivity of S imposes a condition on («, 3, 7). Find this constraint.



(b) Even with the extensivity condition satisfied, the system may violate one or more sta-
bility criteria. Find the general conditions on («, 3, ) which are thermodynamically
permissible.

Solution :
(a) Clearly we must have a + 3 + v = 1 in order for S to be extensive.

(b) The Hessian is

QZWZ aﬂS/EV 5(5—1)5/‘/2 5VS/VN

925 afa —1)S/E? aB S/EV oy S/EN
( oy S/EN By S/VN vy —1) S/N2)

As shown in the notes, for any 2 x 2 submatrix of @), obtained by eliminating a single

. . . a
row and its corresponding column, and written < b

ac > b%. For example, if we take the upper left 2 x 2 submatrix, obtained by eliminating
the third row and third column of @, we have a = a(a — 1)S/E?, b = a3S/EV, and
c = B(B — 1)S/V2. The condition a < 0 requires a € (0,1). Similarly, 8 < 0 requires
B € (0,1). Finally, ac > b? requires a + 8 < 1. Since a + 3 + v = 1, this last condition
requires v > 0. Obviously we must have 7 < 1 as well, else either o or 3 would have
to be negative. An examination of either of the other two submatrices yields the same
conclusions. Thus,

b
c>, we must have a < 0, ¢ < 0, and

a € (0,1) , g€ (0,1) , v €(0,1).

(3) For an ideal gas, find the difference C,, — C\, for the following functions ¢. You are to
assume N is fixed in each case.

@) o(p,V) =p’V?
) o(p,T) =pe"/T

© ¢(T,V)=VT"!

Solution :

In general,
oS
o,-r(2).

dQ = dE + pdV .

Note that



We will also appeal to the ideal gas law, pV' = Nk T Below, we shall abbreviate ¢y, = g—v,
— 9%

)
op = %,andgop— o0

(a) We have
dQ = 2 fNky,dT +pdV ,

and therefore

Now for a general function ¢(p, V'), we have
do = @, dp + ¢ dV
_ N‘f’B opdT + (py - %cpp) v |
after writing dp = d(Nk,T/V) in terms of dT" and dV'. Setting dp = 0, we then have

oV Nkgpep
C —Cy=p|l—) =—2-TP
v v b <8T><p p(pp— V‘Pv

This is the general result. For p(p, V) = p*V?, we find

C, —Cy = 3Nk, .

(b) We have
dQ = (3f + 1)NkydT — Vdp,

and therefore

Op
Ccp_CV:NkB_V(a_T)SD .

For a general function ¢(p,T), we have

0
de =p,dp+@pdl' — <—p> =T

oT - ©p '
Therefore,
P
C,—Cy =Nk, +V L.

Pp

This is the general result. For p(p,T) = p el/To, we find

0

(c) We have

2%
Ccp_CV _p<8—T>¢ )



as in part (a). For a general function ¢(7', V'), we have

A% o7
a prd pvd <8T>¢ oy

and therefore

Py ‘
This is the general result. For (T, V') = V/T, we find
CSD - CV - Nka .

(4) Find an expression for the energy density ¢ = E/V for a system obeying the Dieterici
equation of state,

p(V = Nb) = Nk T e Ne/VksT
where a and b are constants. Your expression for (v, T) should involve an integral which
can be expressed in terms of the exponential integral,

Tt
x) = /dte—
t

Solution :

We have

OE\ . (9S (o)
<W>T,N‘T<W>T,N p—T<a—T>V,N P

where we have invoked a Maxwell relation. For the Dieterici equation of state, then,

<6_E> NkyT' Na o~ Na/VkT
T,N

OV )y  V—-Nb Vk,T

Letn = N/V be the density and € = E/N be the energy per particle. Then the above result
is equivalent to

de a —na/kgT

o 1-bn* .
We integrate this between n = 0 and n, with bn < 1. Define the dimensionless quantity
A =a/bk,T and t = A(1 — bn). Then

e(n,T) — £(0,T) e / dt v ((1—bn)A) — Ei(A)}“eb_A

(1 bn)A

In the zero density limit, the gas must be ideal, in which case £(0,7") = % fk;T. Thus,

1 ) (A =bnja) _ [ a ‘ ae~/ksT
e(n,T) =5 fkgT {EI<7kaT > E|<kaT>} —

In terms of the volume per particle, write v = V/N = 1/n.




