
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is
ε(p) = pc.

(a) Find T , p, and µ within the microcanonical ensemble (variables S, V , N ).

(b) Find F , S, p, and µ within the ordinary canonical ensemble (variables T , V , N ).

(c) Find Ω, S, p, and N within the grand canonical ensemble (variables T , V , µ).

(d) Find G, S, V , and µ within the Gibbs ensemble (variables T , p, N ).

(e) Find H, T , V , and µ within the S-p-N ensemble. Here H = E + pV is the enthalpy.

Solution :

(a) The density of states D(E,V,N) is the inverse Laplace transform of the ordinary canon-
ical partition function Z(β, V,N). We have

Z(β, V,N) =
V N

N !

(

∫

d3p

h3
e−βpc

)N

=
V N

N !

β−3N

π2N (~c)3N
.

Thus,

D(E,V,N) =

c+i∞
∫

c−i∞

dβ

2πi
Z(β, V,N) eβE =

V N

N !

(

π2/3
~c
)

−3N E3N−1

(3N − 1)!
.

Taking the logarithm, and using ln(K!) = K ln K − K + O(ln K) for large K ,

S(E,V,N) = k
B

ln D(E,V,N) = Nk
B

ln

(

V

N

)

+ 3Nk
B

ln

(

E

N

)

− 3Nk
B

ln a ,

where a = 3π2/3e−4/3
~c is a constant. Inverting to find E(S, V,N), we have

E(S, V,N) =
aN4/3

V 1/3
exp

(

S

3Nk
B

)

.

From the differential relation

dE = T dS − p dV + µ dN

we then derive

T (S, V,N) = +

(

∂E

∂S

)

V,N

=
a

3k
B

(

N

V

)1/3

exp

(

S

3Nk
B

)

p(S, V,N) = −

(

∂E

∂V

)

S,N

=
a

3

(

N

V

)4/3

exp

(

S

3Nk
B

)

µ(S, V,N) = +

(

∂E

∂N

)

S,V

=
a

3

(

N

V

)1/3(

4 −
S

Nk
B

)

exp

(

S

3Nk
B

)

.
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Note that pV = Nk
B
T .

(b) The Helmholtz free energy is

F (T, V,N) = −k
B
T ln Z

= 3Nk
B
T − Nk

B
T ln

(

V

N

)

− 3Nk
B
T ln(3k

B
T ) + 3Nk

B
T ln a ,

and from
dF = −S dT − p dV + µ dN

we read off

S(T, V,N) = −

(

∂F

∂T

)

V,N

= Nk
B

ln

(

V

N

)

+ 3Nk
B

ln(3k
B
T ) + 3Nk

B
ln a

p(T, V,N) = −

(

∂F

∂V

)

T,N

=
Nk

B
T

V

µ(T, V,N) = +

(

∂F

∂N

)

T,V

= −k
B
T ln

(

V

N

)

− 3k
B
T ln(3k

B
T ) + (4 + 3 ln a) k

B
T .

(c) The grand potential is Ω = F − µN = −k
B
T ln Ξ, where

Ξ =

∞
∑

N=0

eβµNZ(β, V,N) = exp

{

V eµ/k
B

T

(

k
B
T

π2/3~c

)3
}

.

Thus,

Ω(T, V,N) = −
V

π2
·
(k

B
T )4

(~c)3
· eµ/k

B
T .

The differential is
dΩ = −S dT − p dV − N dµ ,

and therefore

S(T, V, µ) = −

(

∂Ω

∂T

)

V,µ

=
V

π2
·
(k

B
T )3

(~c)3
· eµ/k

B
T ·

(

4k
B
−

µ

T

)

p(T, V, µ) = −

(

∂Ω

∂V

)

T,µ

=
(k

B
T )4

π2(~c)3
· eµ/k

B
T

N(T, V, µ) = −

(

∂Ω

∂µ

)

T,V

=
V

π2
·

(

k
B
T

~c

)3

· eµ/k
B

T .

Note that p = −Ω/V .

(d) The Gibbs free energy is

G(T, p,N) = F + pV

= Nk
B
T ln p − 4Nk

B
T ln(k

B
T ) + Nk

B
T
(

4 + 3 ln(1
3a)
)

2



The differential of G is
dG = −S dT + V dP + µ dN ,

and therefore

S(T, p,N) = −

(

∂G

∂T

)

p,N

= −Nk
B

ln p + 4Nk
B

ln(k
B
T ) − Nk

B
ln(1

3a)

V (T, p,N) = +

(

∂G

∂p

)

T,N

=
Nk

B
T

p

µ(T, p,N) = +

(

∂G

∂N

)

T,p

= k
B
T ln p − 4k

B
T ln(k

B
T ) + k

B
T
(

4 + 3 ln(1
3a)
)

.

Note that µ = G/N .

(e) The enthalpy is

H(S, p,N) = E + pV

= 4N
(

1
3a
)3/4

p1/4 exp

(

S

4Nk
B

)

.

From
dH = T dS + V dp + µ dN ,

we have

T (S, p,N) = +

(

∂H

∂S

)

p,N

=

(

1
3a
)3/4

p1/4

k
B

exp

(

S

4Nk
B

)

V (S, p,N) = +

(

∂H

∂p

)

S,N

= N

(

a

3p

)3/4

exp

(

S

4Nk
B

)

µ(S, p,N) =

(

∂H

∂N

)

S,p

=
(

1
3a
)3/4

p1/4

(

4 −
S

Nk
B

)

exp

(

S

4Nk
B

)

.

(2) Consider a surface containing Ns adsorption sites which is in equilibrium with a two-
component nonrelativistic ideal gas containing atoms of types A and B . (Their respective
masses are m

A
and m

B
). Each adsorption site can be in one of three possible states: (i)

vacant, (ii) occupied by an A atom, with energy −∆
A

, and (ii) occupied with a B atom,
with energy −∆

B
.

(a) Find the grand partition function for the surface, Ξsurf(T, µ
A
, µ

B
, Ns).

(b) Suppose the number densities of the gas atoms are n
A

and n
B

. Find the fraction
f
A
(n

A
, n

B
, T ) of adsorption sites with A atoms, and the fraction f0(nA

, n
B
, T ) of ad-

sorption sites which are vacant.
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Solution :

(a) The surface grand partition function is

Ξsurf(T, µA, µB, Ns) =
(

1 + e(∆
A
+µ

A
)/k

B
T + e(∆

B
+µ

B
)/k

B
T
)Ns

.

(b) From the grand partition function of the gas, we have

nA = λ−3
T,A eµ

A
/k

B
T , nB = λ−3

T,B eµ
B
/k

B
T ,

with

λT,A =

√

2π~2

m
A
k

B
T

, λT,B =

√

2π~2

m
B
k

B
T

.

Thus,

f0 =
1

1 + n
A

λ3
T,A e∆

A
/k

B
T + n

B
λ3

T,B e∆
B
/k

B
T

fA =
n

A
λ3

T,A e∆
A
/k

B
T

1 + n
A

λ3
T,A e∆

A
/k

B
T + n

B
λ3

T,B e∆
B
/k

B
T

fB =
n

B
λ3

T,B e∆
B
/k

B
T

1 + n
A

λ3
T,A e∆

A
/k

B
T + n

B
λ3

T,B e∆
B
/k

B
T

.

Note that f0 + f
A

+ f
B

= 1.

(3) Consider a system composed of spin tetramers, each of which is described by the
Hamiltonian

Ĥ = −J(σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4) − µ0H(σ1 + σ2 + σ3 + σ4) .

The individual tetramers are otherwise noninteracting.

(a) Find the single tetramer partition function ζ .

(b) Find the magnetization per tetramer m = µ0

〈

σ1 + σ2 + σ3 + σ4

〉

.

(c) Suppose the tetramer number density is nt. The magnetization density is M = ntm.
Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.

Solution :

(a) Note that we can write

Ĥ = 2J − 1
2J(σ1 + σ2 + σ3 + σ4)

2 − µ0H (σ1 + σ2 + σ3 + σ4) .
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σ1 + σ2 + σ3 + σ4 degeneracy g energy E

+4 1 −6J − 4µ0H

+2 4 −2µ0H

0 6 −2J

−2 4 +2µ0H

−4 1 −6J + 4µ0H

Thus, for each of the 24 = 16 configurations of the spins of any given tetramer, only the
sum

∑4
i=1 σi is necessary in computing the energy. We list the degeneracies of these states

in the table below. Thus, according to the table, we have

ζ = 6 e−2J/k
B

T + 8 cosh

(

2µ0H

k
B
T

)

+ 2 e6J/k
B

T cosh

(

4µ0H

k
B
T

)

.

(b) The magnetization per tetramer is

m = −
∂f

∂H
= k

B
T

∂ ln ζ

∂H
= 4µ0 ·

2 sinh(2βµ0H) + e6βJ sinh(4βµ0H)

3 e−2βJ + 4 cosh(2βµ0H) + e6βJ cosh(4βµ0H)
.

(c) The zero field susceptibility is

χ(T ) =
16nt µ2

0

k
B
T

·
1 + e6βJ

3 e−2βJ + 4 + e6βJ

Note that for βJ → ∞ we have χ(T ) = (4µ0)
2nt/kB

T , which is the Curie value for a single
Ising spin with moment 4µ0. In this limit, all the individual spins are locked together, and
there are only two allowed configurations for each tetramer: |↑↑↑↑ 〉 and |↓↓↓↓ 〉. When
J = 0, we have χ = 4µ2

0nt/kB
T , which is to say four times the single spin susceptibility.

I.e. all the spins in each tetramer are independent when J = 0. When βJ → −∞, the only
allowed configurations are the six ones with

∑4
i=1 σi = 0. In order to exhibit a moment,

an energy gap of 2|J | must be overcome, hence χ ∝ exp(−2β|J |), which is exponentially
suppressed.
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