PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #2 SOLUTIONS

(1) Compute the density of states D(E, V, N) for a three-dimensional gas of particles with
Hamiltonian H = Zf\i 1 A|p;|*, where A is a constant. Find the entropy S(E,V, N), the
Helmbholtz free energy F(7',V, N), and the chemical potential x(T, p).

Solution :

Let’s solve the problem for a general dispersion e(p) = A|p|®. The density of states is
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Now we inverse transform, recalling
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where g is a constant, and we take the thermodynamic limit N — oo with V/N and E/N
tixed. From this we obtain the differential relation
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where s, is a constant. From the coefficients of dV' and dF, we conclude
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Note that we have replaced £ = % Nk,T in order to express F' in terms of its ‘natural
variables” T, V,and N.

The Helmholtz free energy is
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Suppose we wanted the heat capacities Cy, and C,,. Setting dN = 0, we have
dQ = dE +pdV
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(2) Consider a gas of classical spin-2 particles, with Hamiltonian

L L p?

where 57 € { — %, —%, +%, +%} and H is the external magnetic field. Find the Helmholtz
free energy F(T,V, H, N), the entropy S(T, V, H, N), and the magnetic susceptibility X (T, H,n),
where n = N/V is the number density.

Thus,
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Solution :

The partition function is
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where A\ = \/27h?/mk,T is the thermal wavelength. The entropy is
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The magnetization is
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The magnetic susceptibility is
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In the limit H — 0, we have f(0) = 5, so X = 4nu3/4k,T at high temperatures. This is a
version of Curie’s law.

(3) Compute the RMS volume fluctuations in the ' — p — N ensemble.

Solution :
Averages within the ' — p — N ensemble are computed by
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For the case of a nonrelativistic ideal gas, we have
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Thus V.

s/ (V) = N™1/2 < 1. This is, once again, the Central Limit Theorem in action.

(4) For the system described in problem (1), compute the distribution of speeds f(v). Find
the most probable speed, the mean speed, and the RMS speed.

Solution :
Again, we solve for the general case ¢(p) = Ap®. The momentum distribution is
g(p) = Ce P47,

where C is a normalization constant, defined so that [d% g(p) = 1. Changing variables to
t = BAp®, we find

The velocity v is given by

Thus, the speed distribution is given by
flv) = C’/ddp e BAP® 5(1} - ozApO‘_l) .
Now

6(p— (v/ozA)l/(O‘_l))
ala—1)Apa—2

5(1) — aApo‘_l) =



We therefore have
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To find the most probable speed, we extremize f(v). We obtain
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