
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #1

(1) Consider a system with K possible states | i 〉, with i ∈ {1, . . . ,K}, where the transition
rate Wij between any two states is the same, with Wij = γ > 0.

(a) Find the matrix Γij governing the master equation Ṗi = −Γij Pj .

(b) Find all the eigenvalues and eigenvectors of Γ . What is the equilibrium distribution?

(c) Now suppose there are 2K possible states | i 〉, with i ∈ {1, . . . , 2K}, and the transi-
tion rate matrix is

Wij =

{

α if (−1)ij = +1

β if (−1)ij = −1 ,

with α, β > 0. Repeat parts (a) and (b) for this system.

Solution :

(a) We have, from Eq. 3.3 of the Lecture Notes,

Γij =

{

−Wij = −γ if i 6= j
∑′

kWkj = (K − 1)γ if i = j .

I.e. Γ is a symmetric K×K matrix with all off-diagonal entries −γ and all diagonal entries
(K − 1)γ.

(b) It is convenient to define the unit vector ~ψ = K−1/2
(
1, 1, . . . , 1

)
. Then

Γ = Kγ
(

I − |ψ 〉〈ψ |
)

.

We now see that |ψ 〉 is an eigenvector of Γ with eigenvalue λ = 0, and furthermore that
any vector orthogonal to |ψ 〉 is an eigenvector of Γ with eigenvalue Kγ. This means that
there is a degenerate (K − 1)-dimensional subspace associated with the eigenvalue Kγ.
The equilibrium distribution is given by |P eq 〉 = K−1/2|ψ 〉, i.e. P eq

i = 1
K .

(c) Define the unit vectors

~ψE = 1√
K

(
0, 1, 0, . . . , 1

)

~ψO = 1√
K

(
1, 0, 1, . . . , 0

)
.

Note that 〈ψ
E
|ψ

O
〉 = 0. Furthermore, we may write Γ as

Γ = 1
2
K(3α+β) I+ 1

2
K(α−β) J−Kα

(

|ψE 〉〈ψE |+|ψO 〉〈ψE |+|ψE 〉〈ψO |
)

−Kβ |ψO 〉〈ψO |
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where I is the identity matrix and Jnn′ = (−1)n δnn′ is a diagonal matrix with alternating
−1 and +1 entries. Note that J |ψ

O
〉 = −|ψ

O
〉 and J |ψ

E
〉 = +|ψ

E
〉. The key to deriving

the above relation is to notice that

M = Kα
(

|ψE 〉〈ψE | + |ψO 〉〈ψE | + |ψE 〉〈ψO |
)

+Kβ |ψO 〉〈ψO |

=














β α β α · · · β α
α α α α · · · α α
β α β α · · · β α
α α α α · · · α α
...

...
...

...
. . .

...
...

β α β α · · · β α
α α α α · · · α α














.

Now J hasK eigenvalues +1 andK eigenvalues −1. There is therefore a (K−1)-dimensional
degenerate eigenspace of Γ with eigenvalue 2Kα and a (K − 1)-dimensional degenerate
subspace with eigenvalue K(α + β). These subspaces are mutually orthogonal as well as
being orthogonal to the vectors |ψ

E
〉 and |ψ

O
〉. The remaining two-dimensional subspace

spanned by these vectors yields the reduced matrix

Γred =

(
〈ψ

E
|Γ |ψ

E
〉 〈ψ

E
|Γ |ψ

O
〉

〈ψ
O
|Γ |ψ

E
〉 〈ψ

O
|Γ |ψ

O
〉

)

=

(
Kα −Kα
−Kα Kα

)

.

The eigenvalues in this subspace are therefore 0 and 2Kα. Thus, Γ has the following
eigenvalues:

λ = 0 (nondegenerate)

λ = K(α+ β) (degeneracy K − 1)

λ = 2Kα (degeneracy K) .

(2) A six-sided die is loaded so that the probability to throw a six is twice that of throwing
a one. Find the distribution {pn} consistent with maximum entropy, given this constraint.

Solution :

The constraint may be written as 2p1 − p6 = 0. Thus, X1
n = 2δn,1 − δn,6, and

pn =







C e−2λ if n = 1

C if n ∈ {2, 3, 4, 5}

C eλ if n = 6 .

We solve for the unknowns C and λ by enforcing the constraints:

C e−2λ + 4C + C eλ = 1

2C e−2λ − C eλ = 0 .
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The second equation gives e3λ = 2, or λ = 1
3
ln 2. Plugging this in the normalization

condition, we have

C =
1

4 + 21/3 + 2−2/3
= 0.16798 . . . .

We then have

p1 = C e−2λ = 0.10695 . . .

p2 = p3 = p4 = p5 = C = 0.16798 . . .

p6 = C eλ = 0.21391 . . . .

(3) Consider a three-state system with the following transition rates:

W12 = 0 , W21 = γ , W23 = 0 , W32 = 3γ , W13 = γ , W31 = γ .

(a) Find the matrix Γ such that Ṗi = −ΓijPj .

(b) Find the equilibrium distribution P eq
i .

(c) Does this system satisfy detailed balance? Why or why not?

Solution :

(a) Following the prescription in Eq. 3.3 of the Lecture Notes, we have

Γ = γ





2 0 −1
−1 3 0
−1 −3 1



 .

(b) Note that summing on the row index yields
∑

i Γij = 0 for any j, hence (1, 1, 1) is a left
eigenvector of Γ with eigenvalue zero. It is quite simple to find the corresponding right

eigenvector. Writing ~ψ t = (a, b, c), we obtain the equations c = 2a, a = 3b, and a+ 3b = c,
the solution of which, with a + b + c = 1 for normalization, is a = 3

10
, b = 1

10
, and c = 6

10
.

Thus,

P eq =





0.3
0.1
0.6



 .

(c) The equilibrium distribution does not satisfy detailed balance. Consider for example
the ratio P eq

1 /P eq
2 = 3. According to detailed balance, this should be the same as W12/W21,

which is zero for the given set of transition rates.
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(4) The cumulative grade distributions of six ’old school’ (no + or - distinctions) professors
from various fields are given in the table below. For each case, compute the entropy of the
grade distribution.

Solution :

We compute the probabilities pn for n ∈ {A,B,C,D,F} and then the statistical entropy of

the distribution, S = −
∑

n pn log2 pn in units of bits. The results are shown in the amended

table below. The maximum possible entropy is S = log2 5 ≈ 2.3219.

Professor A B C D F N
pA pB pC pD pF S

Landau 1149 2192 1545 718 121 5725
0.2007 0.3829 0.2699 0.1254 0.0211 1.999

Vermeer 8310 1141 231 56 7 9745
0.8527 0.1171 0.0237 0.0057 0.0007 0.7365

Keynes 3310 4141 3446 1032 642 12571
0.2633 0.3294 0.2741 0.0821 0.0511 2.062

Noether 1263 1874 988 355 290 4770
0.2648 0.3929 0.2071 0.0744 0.0608 2.032

Borges 4002 2121 745 109 57 7034
0.5690 0.3015 0.1059 0.0155 0.0081 1.477

Salk 3318 3875 2921 1011 404 11529
0.2878 0.3361 0.2534 0.0877 0.0350 2.025

Turing 2800 3199 2977 1209 562 10747
0.2605 0.2977 0.2770 0.1125 0.0523 2.116

(5) A generalized two-dimensional cat map can be defined by

(
x′

y′

)

=

M
︷ ︸︸ ︷
(

1 p
q pq + 1

) (
x
y

)

mod Z
2 ,

where p and q are integers. Here x, y ∈ [0, 1] are two real numbers on the unit interval, so
(x, y) ∈ T2 lives on a two-dimensional torus. The inverse map is

M−1 =

(
pq + 1 −p
−q q

)

.

Note that detM = 1.

(a) Consider the action of this map on a pixelated image of size (lK) × (lK), where
l ∼ 4 − 10 and K ∼ 20 − 100. Starting with an initial state in which all the pixels in
the left half of the array are ”on” and the others are all ”off”, iterate the image with
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the generalized cat map, and compute at each state the entropy S = −
∑

r
p

r
ln p

r
,

where the sum is over the K2 different l × l subblocks, and p
r

is the probability to
find an ”on” pixel in subblock r. (Take p = q = 1 for convenience, though you might
want to explore other values).

Now consider a three-dimensional generalization (Chen et al., Chaos, Solitons, and Fractals
21, 749 (2004)), with





x′

y′

z′



 = M





x
y
z



 mod Z
3 ,

which is a discrete automorphism of T3, the three-dimensional torus. Again, we require
that both M and M−1 have integer coefficients. This can be guaranteed by writing

Mx =





1 0 0
0 1 px

0 qx pxqx + 1



 , My =





1 0 py

0 1 0
qy 0 pyqy + 1



 , Mz =





1 pz 0
qz pzqz + 1 0
0 0 1





and taking M = MxMyMz , reminiscent of how we build a general O(3) rotation from a
product of three O(2) rotations about different axes.

(b) Find M and M−1 when px = qx = py = qy = pz = qz = 1.

(c) Repeat part (a) for this three-dimensional generalized cat map, computing the en-
tropy by summing over the K3 different l × l × l subblocks.

(d) 100 quatloos extra credit if you find a way to show how a three dimensional object (a
ball, say) evolves under this map. Is it Poincaré recurrent?

Solution :

(a) See Figs. 2 and 3.

(b) We have

Mx =





1 0 0
0 1 1
0 1 2



 , M−1
x =





1 0 0
0 2 −1
0 −1 1



 .

My =





1 0 1
0 1 0
1 0 2



 , M−1
y =





2 0 −1
0 1 0
−1 0 1





Mz =





1 1 0
1 2 0
0 0 1



 , M−1
z =





2 −1 0
−1 1 0
0 0 1




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Figure 1: Two-dimensional cat map on a 12×12 square array with l = 4 and K = 3 shown.
Left: initial conditions at t = 0. Right: possible conditions at some later time t > 0. Within
each l× l cell r, the occupation probability pr is computed. The entropy −pr log2 pr is then
averaged over the K2 cells.

Thus,

M = MxMyMz =





1 1 1
2 3 2
3 4 4





M−1 = M−1
z M−1

y M−1
x =





4 0 −1
−2 1 0
−1 −1 1



 .

Note that detM = 1.
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Figure 2: Coarse-grained entropy per unit volume for the iterated two-dimensional cat
map (p = q = 1) on a 200 × 200 pixelated torus, with l = 4 and K = 50. Bottom panel:
coarse-grained entropy per unit volume versus iteration number. Top panel: power spec-
trum of entropy versus frequency bin. A total of 214 = 16384 iterations were used.
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Figure 3: Coarse-grained entropy per unit volume for the iterated two-dimensional cat
map (p = q = 1) on a 200 × 200 pixelated torus, with l = 10 and K = 20. Bottom
panel: coarse-grained entropy per unit volume versus iteration number. Top panel: power
spectrum of entropy versus frequency bin. A total of 214 = 16384 iterations were used.
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Figure 4: Coarse-grained entropy per unit volume for the iterated three-dimensional cat
map (px = qx = py = qy = pz = qz = 1) on a 40 × 40 × 40 pixelated three-dimensional
torus, with l = 4 and K = 10. Bottom panel: coarse-grained entropy per unit volume
versus iteration number. Top panel: power spectrum of entropy versus frequency bin. A
total of 214 = 16384 iterations were used.
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