

Physics 1B Part II: Magnetism

We start with the macroscopic

- What did historical people observe?
	- How do magnets behave?
	- Is electricity related to magnetism?
		-

- Then we proceed to the microscopic
	- How do particles behave?
	- Lorentz magnetic force

The nature of research

D

- "But Mr. Faraday, of what use is all this?" - unknown woman
- "Madam, of what use is a newborn baby?" - Michael Faraday
- "With electromagnetism, as with babies, it's all a matter of potential."
	- Bill Nye, the Science Guy

Compass

- Two thousand years ago:
	- Hang lodestone from string: it point north
	- Magic!
	- But useful

c. 4 th century BCE

Magnets reinforce each other

- Magnets align to create a *stronger* field
	- Magnets move to *increase* B-field
- This is opposite of electric dipoles
	- Charges move to *reduce* E-field

B-field points

out of North end

S B-field points *in* to South end $6/5/2012$ $\left| \begin{array}{ccc} \hline \end{array} \right|$ \sim 5

Where is the Earth's magnet?

6/5/2012 6

The north face

- Bulk materials are neither "north" or "south"
- Only faces are

- **faces** have magnetic lines of force piercing them
- north faces attract south ends of compasses (B-field comes out)
- south faces attract north ends of compasses (B-field goes in)

6/5/2012 7 Before I break it, the face looking left is already south; the face looking right is already north

Dipolar disorder

- Break an electric dipole in two ...
	- You get one \bigoplus and one \bigoplus
	- Two monopoles
		- Only possible because lines *terminate*
- Break a magnet in two ...
	- You get two *dipole* magnets
	- Magnetic lines *never* terminate
	- There are no magnetic "charges"

Electric charge doesn't interact with magnets

- But electric current does!
- There is a connection between electricity and magnetism

Electrical connection

- A connection between electricity and magnetism
- Compass points perpendicular to radius

• Tangent to circle around wire

A current carrying wire lies in the plane of the compass. How does the needle respond?

- A nothing
- B N points left
- C N points down
- N points right
- E the compass explodes

Force on a length of current

• *I* and *l* must have consistent signs

Units of **B**

- $\mathbf{F}_m = I\ell \times \mathbf{B}$ => $N = A-m[B] \Rightarrow [B] = N/(A-m)$ or tesla, T
	- Fundamentally, $[B] = \text{kg-m/s}^2 / (C / s m) = \text{kg} / (C s)$
		- But we don't care about fundamental units here

What is the net effect of the B-field on the current loop?

- A net force up
- B net force down
- C net torque clockwise \bigcap
- net torque counter-clockwise
- E nothing

What is the net effect of the B-field on the current loop?

- A net force up
- B net force down
- C net torque clockwise \curvearrowright
- net torque counter-clockwise \curvearrowleft
- E nothing

Magnets from electricity: Biot-Savart

- *Current* generates B-field
	- Voltage has no effect
	- Biot-Savart is the "Coulomb's Law" of electromagnets

$$
d\mathbf{B}(\text{at } P) = k_m \frac{I \, d\mathbf{s} \times \hat{\mathbf{r}}}{r^2}, \qquad \Rightarrow \qquad |d\mathbf{B}| = k_m \frac{I |d\mathbf{s}||\hat{\mathbf{r}}_{\perp}|}{r^2} = k_m \frac{I |d\mathbf{s}| \sin \theta}{r^2}
$$

$$
k_m \equiv 10^{-7} \text{ T-m/A}
$$

What is the B-field from the given current element at *P*?

- A zero
- B into the page
- C out of the page
- up
- E down

Creating a magnetic dipole: a current loop

- Current flows in loops: creates a magnetic field
- Magnetic flux always forms closed loops
- **B**-field *inside* the loop follows the right-hand rule
	- Outside, in the equatorial plane, **B** points opposite to inside

Current loop in a B-field: redux

- How are the given B-field and that produced by the loop related?
	- Magnetic forces pull & twist to *increase* the magnetic field top

Our 2.5 right-hand rules (RHRs)

Particles

- Force of B-field on a conductor depends on *current* only, independent of the conductor
	- But different conductors have different mobile charge densities and average speeds: this tells us something
	- Consider 1-second's worth of mobile charge in a conductor
		- It's v_d m long
	- Total mobile charge in the volume is Q $q\eta(v) = d\lambda(1 - c)$
	- Current through conductor of area *A* is
	- Magnetic force on any current is:

$$
F_m = I \ell B = qn v_d A \ell B
$$

$$
\frac{Q}{I} = \frac{Q}{t} = \frac{Q}{1 \text{ s}} = qnv_dA
$$

Particles (2)

• Magnetic force on a wire is due to magnetic force on mobile charges (individual particles) in it:

 $F_m = I \ell B = qn v_d A \ell B \implies F_m = qv_d (nA \ell) B = qv_d NB$

• Lorentz magnetic force on a single particle:

 $F_m = qvB \implies \mathbf{F}_m = q\mathbf{v} \times \mathbf{B}$

- The *macroscopic* magnetic force tells us about the *microscopic* magnetic force
- Total electromagnetic (EM) force
	- Force is a vector: vectors add: $\mathbf{F}_{total} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

Newton's 3rd law?

- "And thirdly, the code is more what you'd call 'guidelines' than actual rules."
	- Magnetic forces do *not* obey Newton's 3rd guideline
- But golly, professor, what of conservation of momentum?
	- Electromagnetic waves carry off the remaining momentum, and total momentum *is* conserved
	- Between isolated particles, Coulomb forces dominate
	- Magnetic forces are only significant at relativistic speeds

© Walt Disney Pictures. Used without permission. So sue me. http://www.youtube.com/watch?v=bplEuBjppTw

$$
\mathbf{B}_{2}(\text{a} q_{1}) \bigoplus_{\mathbf{F}_{12}}^{q_{1}}
$$

$$
\mathbf{P}_2 \mathbf{B}_1(\omega q_2) = \mathbf{0}
$$

=> $\mathbf{F}_{21} = \mathbf{0}$

Ampere's Law

- Symmetry simplifies the B-field from a current
	- For any 2D surface: $\oint_{around} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{through}$ $\oint_{around} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I$
	- Follows from Biot-Savart law
		- Similar to Gauss' Law for any volume: $\oint_{surface}$ **E**·dA = $\frac{q_{in}}{\varepsilon}$ *surface q d* $\mathcal E$ $\oiint_{surface}$ **E·***d***A** =

Example: **B** from a wire

$$
\oint \mathbf{B} \cdot d\mathbf{s} = B_t 2\pi r = \mu_0 I_{through}
$$
\n
$$
B_t = \frac{\mu_0 I}{2\pi r}
$$

6/5/2012 **In Ampere's Law, ds is displacement in space.** 24 Confusion over *d***s** (should use *d***r** in Ampere's): In Biot-Savart, *d***s** is length of current element.

Solenoid: A better electromagnet

- Multiple turns increase B-field
- Permeable (e.g. iron) core increases B-field
- Ampere's Law in action
	- Make 3 contributions zero
	- Solves for the core B-field

N

soft magnetic

core

The magnetic facts of life: where do magnets come from?

- They come from currents
- But where do *permanent* magnets come from?
	- The stork brings them?
	- From microscopic currents in the magnet?
		- A teeny bit
	- From the intrinsic magnetic dipole moment of unpaired electrons

Induced magnetic fields *are not necessarily* induced to reinforce

- The induced field *opposes the change* in the primary field
- *Then*, the resulting magnetic fields push and pull to reinforce as best they can
	- Or at least, to minimize cancellation

6/5/2012 27 turned on (*increasing*) B-field from induced current induced current (primary *I*

Snapshot when the primary current is first

Induced motional voltage (EMF) and current

- We quantify the induced voltage from our existing knowledge
	- The conducting bar moves to the right with velocity, **v**
	- We will return to B-fields and work later

$$
\mathbf{F}_B = q\mathbf{v} \times \mathbf{B}, \quad q < 0
$$
\n
$$
|\Delta U_e| = |q| v B \ell
$$
\n
$$
|\Delta V| = \left| \frac{\Delta U_e}{\Delta V} \right| = v B \ell
$$

$$
\Delta V = \left| \frac{\Delta V_e}{q} \right| = vB\ell
$$

The book calls this "electro-motive force", or emf: **E**

Before equilibrium, which way is the current?

- A up
- B down
- all around
- zero

 $\mathbf{F}_B = q\mathbf{v} \times \mathbf{B}, \quad q < 0$ $\Delta U_e = |q| v B \ell$ *e U* $|V| = \left| \frac{\Delta v}{\rho} \right| = vB$ *q* Δ $\Delta V = \left| \frac{\Delta V e}{\rho} \right| = vB\ell$

If the mobile charges were positive, then before equilibrium, which way would the current be?

- A up
- down
- C all around
- zero

 $\mathbf{F}_B = q\mathbf{v} \times \mathbf{B}, \quad q > 0$ ΔU_e = $qvB\ell$ *e U* $|V| = \left| \frac{\Delta v}{\rho} \right| = vB$ *q* Δ $\Delta V = \left| \frac{\Delta V e}{\rho} \right| = vB\ell$

Faraday's Law, part 1

- Complete the circuit
- Write the voltage in terms of flux

I −

Lenz' Law: Induced current, *I*, creates secondary B-field which opposes the *change* in primary flux, Φ_B

 $\frac{d}{d}$ **B**, $\Lambda = -\frac{d\Phi_B}{dt}$

dt dt

q dt

 Φ

e

R

primary

B-field

Faraday's Law, the sequel

• If multiple edges move, voltages add *B i segments d* $V = \sum_i \Delta V_i$ *dt* $\Delta V = \sum \Delta V_i = -\frac{d\Phi}{dt}$

• An arbitrary shape is a sum of short segments:

, Faraday's Law: $V_{loop,RHR} = -\frac{C \Psi_B}{\partial t}$ $\Delta V_{loop RHR} = \frac{\partial \Phi}{\partial \Phi}$ ∂ Lenz' Law: current opposes change in flux, Φ_B

Faraday's Law, part trois

- It still holds for stationary wires and changing B-field: Faraday's Law: ΔV_{loop} , $V_{loop,RHR} = -\frac{\partial \Psi_B}{\partial t}$ $\Delta V_{loop RHR} = -\frac{\partial \Phi}{\partial \phi}$ ∂
	- Cannot be derived from moving wires

Work and magnetic fields

- There's a subtlety:
	- Strictly speaking, magnetic fields do no work
		- Because the force is always perpendicular to the motion
- But motors are magnetic, and they certainly do work
	- Strictly speaking, magnetic fields create electric fields, which do work
- The net effect is that magnetic fields *indirectly* do work
	- I have ignored this indirection, and taken the results as work "done" by the magnetic field

