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Chapter 7

Mean Field Theory of Phase Transitions
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2 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

7.2 The van der Waals system

7.2.1 Equation of state

Recall the van der Waals equation of state,(
p+

a

v2

)
(v − b) = RT , (7.1)

where v = NAV/N is the molar volume. Solving for p(v, T ), we have

p =
RT

v − b
− a

v2
. (7.2)

Let us fix the temperature T and examine the function p(v). Clearly p(v) is a decreasing function of
volume for v just above the minimum allowed value v = b, as well as for v →∞. But is p(v) a monotonic
function for all v ∈ [b,∞]?

We can answer this by computing the derivative,(
∂p

∂v

)
T

=
2a

v3
− RT

(v − b)2
. (7.3)

Setting this expression to zero for finite v, we obtain the equation1

2a

bRT
=

u3

(u− 1)2
, (7.4)

where u ≡ v/b is dimensionless. It is easy to see that the function f(u) = u3/(u − 1)2 has a unique
minimum for u > 1. Setting f ′(u∗) = 0 yields u∗ = 3, and so fmin = f(3) = 27

4 . Thus, for T > Tc =
8a/27bR, the LHS of eqn. 7.4 lies below the minimum value of the RHS, and there is no solution. This
means that p(v, T > Tc) is a monotonically decreasing function of v.

At T = Tc there is a saddle-node bifurcation. Setting vc = bu∗ = 3b and evaluating pc = p(vc, Tc), we
have that the location of the critical point for the van der Waals system is

pc =
a

27 b2
, vc = 3b , Tc =

8a

27 bR
. (7.5)

For T < Tc, there are two solutions to eqn. 7.4, corresponding to a local minimum and a local maximum
of the function p(v). The locus of points in the (v, p) plane for which (∂p/∂v)T = 0 is obtained by setting
eqn. 7.3 to zero and solving for T , then substituting this into eqn. 7.2. The result is

p∗(v) =
a

v2
− 2ab

v3
. (7.6)

Expressed in terms of dimensionless quantities p̄ = p/pc and v̄ = v/vc, this equation becomes

p̄∗(v̄) =
3

v̄2
− 2

v̄3
. (7.7)
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Figure 7.1: Pressure versus molar volume for the van der Waals gas at temperatures in equal intervals
from T = 1.10Tc (red) to T = 0.85Tc (blue). The purple curve is p̄∗(v̄).

Along the curve p = p∗(v), the isothermal compressibility, κT = − 1
v

(
∂v
∂p

)
T

diverges, heralding a thermo-
dynamic instability. To understand better, let us compute the free energy of the van der Waals system,
F = E − TS. Regarding the energy E, we showed back in chapter 2 that(

∂ε

∂v

)
T

= T

(
∂p

∂T

)
V

− p =
a

v2
, (7.8)

which entails
ε(T, v) = 1

2fRT −
a

v
, (7.9)

where ε = E/ν is the molar internal energy. The first term is the molar energy of an ideal gas, where f is
the number of molecular freedoms, which is the appropriate low density limit. The molar specific heat
is then cV =

(
∂ε
∂T

)
v

= f
2R, which means that the molar entropy is

s(T, v) =

∫ T

dT ′
cV
T ′

= f
2R ln(T/Tc) + s1(v) . (7.10)

We then write f = ε − Ts, and we fix the function s1(v) by demanding that p = −
(∂f
∂v

)
T

. This yields
s1(v) = R ln(v − b) + s0, where s0 is a constant. Thus2,

f(T, v) = f
2RT

(
1− ln

(
T/Tc

))
− a

v
−RT ln(v − b)− Ts0 . (7.11)

1There is always a solution to (∂p/∂v)T = 0 at v =∞.
2Don’t confuse the molar free energy (f ) with the number of molecular degrees of freedom (f )!
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gas a
(

L2·bar
mol2

)
b
(

L
mol

)
pc (bar) Tc (K) vc (L/mol)

Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 48.72 150.9 0.0966

Carbon dioxide 3.640 0.04267 7404 304.0 0.1280
Ethanol 12.18 0.08407 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994

Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 34.06 128.2 0.1174
Oxygen 1.378 0.03183 50.37 154.3 0.0955
Water 5.536 0.03049 220.6 647.0 0.0915

Table 7.1: van der Waals parameters for some common gases. (Source: Wikipedia)

We know that under equilibrium conditions, f is driven to a minimum by spontaneous processes. Now
suppose that ∂2f

∂v2

∣∣
T
< 0 over some range of v at a given temperature T . This would mean that one mole

of the system at volume v and temperature T could lower its energy by rearranging into two half-moles,
with respective molar volumes v ± δv, each at temperature T . The total volume and temperature thus
remain fixed, but the free energy changes by an amount ∆f = 1

2
∂2f
∂v2

∣∣
T

(δv)2 < 0. This means that the
system is unstable – it can lower its energy by dividing up into two subsystems each with different
densities (i.e. molar volumes). Note that the onset of stability occurs when

∂2f

∂v2

∣∣∣∣
T

= −∂p
∂v

∣∣∣∣
T

=
1

vκp
= 0 , (7.12)

which is to say when κp =∞. As we saw, this occurs at p = p∗(v), given in eqn. 7.6.

However, this condition, ∂2f
∂v2

∣∣
T
< 0, is in fact too strong. That is, the system can be unstable even at

molar volumes where ∂2f
∂v2

∣∣
T
> 0. The reason is shown graphically in fig. 7.2. At the fixed temperature

T , for any molar volume v between vliquid ≡ v1 and vgas ≡ v2 , the system can lower its free energy by
phase separating into regions of different molar volumes. In general we can write

v = (1− x) v1 + x v2 , (7.13)

so v = v1 when x = 0 and v = v2 when x = 1. The free energy upon phase separation is simply

f = (1− x) f1 + x f2 , (7.14)

where fj = f(vj , T ). This function is given by the straight black line connecting the points at volumes
v1 and v2 in fig. 7.2.

The two equations which give us v1 and v2 are

∂f

∂v

∣∣∣∣
v1,T

=
∂f

∂v

∣∣∣∣
v2,T

(7.15)
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Figure 7.2: Molar free energy f(T, v) of the van der Waals system T = 0.85Tc, with dot-dashed black
line showing Maxwell construction connecting molar volumes v1,2 on opposite sides of the coexistence
curve.

and

f(T, v1)− f(T, v2) = (v2 − v1)
∂f

∂v

∣∣∣∣
v1,T

. (7.16)

In terms of the pressure, p = −∂f
∂v

∣∣
T

, these equations are equivalent to

p(T, v1) = p(T, v2) (7.17)
v2∫
v1

dv p(T, v) =
(
v2 − v1

)
p(T, v1) . (7.18)

This procedure is known as the Maxwell construction, and is depicted graphically in Fig. 7.3. When
the Maxwell construction is enforced, the isotherms resemble the curves in Fig. 7.4. In this figure, all
points within the purple shaded region have ∂2f

∂v2 < 0, hence this region is unstable to infinitesimal
fluctuations. The boundary of this region is called the spinodal, and the spontaneous phase separation
into two phases is a process known as spinodal decomposition. The dot-dashed orange curve, called the
coexistence curve, marks the instability boundary for nucleation. In a nucleation process, an energy barrier
must be overcome in order to achieve the lower free energy state. There is no energy barrier for spinodal
decomposition – it is a spontaneous process.

7.2.2 Analytic form of the coexistence curve near the critical point

We write vL = vc + wL and vG = vc + wG. One of our equations is p(vc + wL, T ) = p(vc + wG, T ). Taylor
expanding in powers of wL and wG , we have

0 = pv(vc, T ) (wG − wL) + 1
2 pvv(vc, T )

(
w2
G − w2

L

)
+ 1

6 pvvv(vc, T )
(
w3
G − w3

L

)
+ . . . , (7.19)
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where

pv ≡
∂p

∂v
, pvv ≡

∂2p

∂v2
, pvvv ≡

∂3p

∂v3
, pvT ≡

∂2p

∂v ∂T
, etc. (7.20)

The second equation we write as

wG∫
wL

dw p(vc + w, T ) = 1
2(wG − wL)

(
p(vc + wL, T ) + p(vc + wG, T )

)
. (7.21)

Expanding in powers of wL and wG, this becomes

p(vc, T ) (wG − wL) + 1
2 pv(vc, T )

(
w2
G − w2

L

)
+ 1

6 pvv(vc, T )
(
w3
G − w3

L

)
+ 1

24 pvvv(vc, T )
(
w4
G − w4

L

)
+ 1

120 pvvvv(vc, T )
(
w5
G − w5

L

)
+ . . .

= 1
2(wG − wL)

{
2 p(vc, T ) + pv(vc, T ) (wG + wL) + 1

2 pvv(vc, T )
(
w2
G + w2

L

)
+ 1

6 pvvv(vc, T )
(
w3
G + w3

L

)
+ 1

24 pvvvv(vc, T )
(
w4
G + w4

L

)
+ . . .

} (7.22)

Subtracting the LHS from the RHS, we find that we can then divide by 1
6

(
w2
G − w2

L

)
, resulting in

0 = pvv(vc, T ) + 1
2 pvvv(vc, T ) (wG + wL) + 1

20 pvvvv(vc, T )
(
3w2

G + 4wGwL + 3w2
L

)
+O

(
w3
G,L

)
. (7.23)

We now define w± ≡ wG ± wL. In terms of these variables, eqns. 7.19 and 7.23 become

0 = pv(vc, T ) + 1
2 pvv(vc, T )w+ + 1

8 pvvv(vc, T )
(
w2

+ + 1
3 w

2
−
)

+O
(
w3
±
)

0 = pvv(vc, T ) + 1
2 pvvv(vc, T )w+ + 1

8 pvvvv(vc, T )
(
w2

+ + 1
5 w

2
−
)

+O
(
w3
±
)
.

(7.24)

We now evaluate w± to order T . Note that pv(vc, Tc) = pvv(vc, Tc) = 0, since the critical point is an
inflection point in the (v, p) plane. Thus, we have pv(vc, T ) = pvT Θ + O(Θ2), where T = Tc + Θ and
pvT = pvT (vc, Tc). We can then see that w− is of leading order

√
−Θ , while w+ is of leading order Θ.

This allows us to write

0 = pvT Θ + 1
24 pvvv w

2
− +O(Θ2)

0 = pvvT Θ + 1
2 pvvv w+ + 1

40 pvvvv w
2
− +O(Θ2) .

(7.25)

Thus,

w− =

(
24 pvT
pvvv

)1/2√
−Θ + . . .

w+ =

(
6 pvT pvvvv − 10 pvvv pvvT

5 p2
vvv

)
Θ + . . . .

(7.26)

We then have

wL = −
(

6 pvT
pvvv

)1/2√
−Θ +

(
3 pvT pvvvv − 5 pvvv pvvT

5 p2
vvv

)
Θ +O

(
Θ3/2

)
wG =

(
6 pvT
pvvv

)1/2√
−Θ +

(
3 pvT pvvvv − 5 pvvv pvvT

5 p2
vvv

)
Θ +O

(
Θ3/2

)
.

(7.27)
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Figure 7.3: Maxwell construction in the (v, p) plane. The system is absolutely unstable between volumes
vd and ve. For v ∈ [va, vd] of v ∈ [ve, vc], the solution is unstable with respect to phase separation. Source:
Wikipedia.

Suppose we follow along an isotherm starting from the high molar volume (gas) phase. If T > Tc,
the volume v decreases continuously as the pressure p increases. If T < Tc, then at the instant the
isotherm first intersects the orange boundary curve in Fig. 7.4, there is a discontinuous change in the
molar volume from high (gas) to low (liquid). This discontinuous change is the hallmark of a first order
phase transition. Note that the volume discontinuity, ∆v = w− ∝ (Tc − T )1/2. This is an example of
a critical behavior in which the order parameter φ, which in this case may be taken to be the difference
φ = vG − vL, behaves as a power law in

∣∣T − Tc

∣∣, where Tc is the critical temperature. In this case, we have
φ(T ) ∝ (Tc − T )β+, where β = 1

2 is the exponent, and where (Tc − T )+ is defined to be Tc − T if T < Tc
and 0 otherwise. The isothermal compressibility is κT = −v/pv(v, T ). This is finite along the coexistence
curve – it diverges only along the spinodal. It therefore diverges at the critical point, which lies at the
intersection of the spinodal and the coexistence curve.

It is convenient to express the equation of state and the coexistence curve in terms of dimensionless
variables. Write

p̄ =
p

pc

, v̄ =
v

vc

, T̄ =
T

Tc

. (7.28)

The van der Waals equation of state then becomes

p̄ =
8T̄

3v̄ − 1
− 3

v̄2
. (7.29)

Further expressing these dimensionless quantities in terms of distance from the critical point, we write

p̄ = 1 + π , v̄ = 1 + ε , T̄ = 1 + t . (7.30)
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Figure 7.4: Pressure-volume isotherms for the van der Waals system, as in Fig. 7.1, but corrected to ac-
count for the Maxwell construction. The boundary of the purple shaded region is the spinodal line p̄∗(v̄).
The boundary of the orange shaded region is the stability boundary with respect to phase separation.

Thus,

π(ε, t) =
8(1 + t)

2 + 3ε
− 3

(1 + ε)2
− 1 . (7.31)

Note that the LHS and the RHS of this equation vanish identically for (π, ε, t) = (0, 0, 0). We can then
write

εL,G = ∓
(

6πεt
πεεε

)1/2

(−t)1/2 +

(
3πεt πεεεε − 5πεεε πεεt

5π2
εεε

)
t+O

(
(−t)3/2

)
. (7.32)

7.2.3 History of the van der Waals equation

The van der Waals equation of state first appears in van der Waals’ 1873 PhD thesis3, “Over de Continuı̈teit
van den Gas - en Vloeistoftoestand” (“On the continuity of the gas and liquid state”). In his Nobel lecture4,
van der Waals writes of how he was inspired by Rudolf Clausius’ 1857 treatise on the nature of heat,
where it is posited that a gas in fact consists of microscopic particles whizzing around at high velocities.
van der Waals reasoned that liquids, which result when gases are compressed, also consist of ’small

3Johannes Diderik van der Waals, the eldest of ten children, was the son of a carpenter. As a child he received only a
primary school education. He worked for a living until age 25, and was able to enroll in a three-year industrial evening school
for working class youth. Afterward he continued his studies independently, in his spare time, working as a teacher. By the
time he obtained his PhD, he was 36 years old. He received the Nobel Prize for Physics in 1910.

4See http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf

http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf
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Figure 7.5: ‘Universality’ of the liquid-gas transition for eight different atomic and molecular fluids,
from E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945). Dimensionless temperature T/Tc versus dimen-
sionless density ρ/ρc = vc/v is shown. The van der Waals / mean field theory gives ∆v = vgas−vliquid ∝
(−t)1/2, while experiments show a result closer to ∆v ∝ (−t)1/3. Here t ≡ T̄ − 1 = (T − Tc)/Tc is the
dimensionless temperature deviation with respect to the critical point.

moving particles’: ”Thus I conceived the idea that there is no essential difference between the gaseous and the
liquid state of matter. . . ”

Clausius’ treatise showed how his kinetic theory of heat was consistent with Boyle’s law for gases (pV =
constant at fixed temperature). van der Waals pondered why this might fail for the non-dilute liquid
phase, and he reasoned that there were two principal differences: inter-particle attraction and excluded
volume. These considerations prompted him to posit his famous equation,

p =
RT

v − b
− a

v2
. (7.33)

The first term on the RHS accounts for excluded volume effects, and the second for mutual attractions.

In the limiting case of p → ∞, the molar volume approaches v = b. On physical grounds, one might
expect b = v0/ζ, where v0 = NA ω0 isNA times the volume ω0 of a single molecule, and the packing fraction
is ζ = Nω0/V = v0/v, which is the ratio of the total molecular volume to the total system volume. In
three dimensions, the maximum possible packing fraction is for fcc and hcp lattices, each of which have
coordination number 12, with ζmax = π

3
√

2
= 0.74078. Dense random packing results in ζdrp = 0.634.
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Expanding the vdW equation of state in inverse powers of v yields

p =
RT

v
+

(
b− a

RT

)
· RT
v2

+O
(
v−3
)
, (7.34)

and we read of the second virial coefficient B2 =
(
b − a

RT

)
/NA. For hard spheres, a = 0, and the result

B2 = 4ω0 from the Mayer cluster expansion corresponds to bMayer = 4v0 , which is larger than the result
from even the loosest regular sphere packing, i.e. that for a cubic lattice, with ζcub = π

6 .

Another of van der Waals’ great achievements was his articulation of the law of corresponding states. Recall
that the van der Waals equation of state, when written in terms of dimensionless quantities p̄ = p/pc ,
v̄ = v/vc , and T̄ = T/Tc, takes the form of eqn. 7.29. Thus, while the a and b parameters are specific to
each fluid – see Tab. 7.1 – when written in terms of these scaled dimensionless variables, the equation
of state and all its consequent properties (i.e. the liquid-gas phase transition) are universal.

The van der Waals equation is best viewed as semi-phenomenological. Interaction and excluded volume
effects surely are present, but the van der Waals equation itself only captures them in a very approximate
way. It is applicable to gases, where it successfully predicts features that are not present in ideal systems
(e.g. throttling). It is of only qualitative and pedagogical use in the study of fluids, the essential physics
of which lies in the behavior of quantities like the pair distribution function g(r). As we saw in chapter
6, any adequate first principles derivation of g(r) - a function which can be measured in scattering
experiments - involves rather complicated approximation schemes to close the BBGKY hierarchy. Else
one must resort to numerical simulations such as the Monte Carlo method. Nevertheless, the lessons
learned from the van der Waals system are invaluable and they provide us with a first glimpse of what is
going on in the vicinity of a phase transition, and how nonanalytic behavior, such as vG−vL ∝ (Tc−T )β

with noninteger exponent β may result due to singularities in the free energy at the critical point.

7.3 Fluids, Magnets, and the Ising Model

7.3.1 Lattice gas description of a fluid

The usual description of a fluid follows from a continuum Hamiltonian of the form

Ĥ(p,x) =

N∑
i=1

p2
i

2m
+
∑
i<j

u(xi − xj) . (7.35)

The potential u(r) is typically central, depending only on the magnitude |r|, and short-ranged. Now
consider a discretized version of the fluid, in which we divide up space into cells (cubes, say), each of
which can accommodate at most one fluid particle (due to excluded volume effects). That is, each cube
has a volume on the order of a3, where a is the diameter of the fluid particles. In a given cube i we set
the occupancy ni = 1 if a fluid particle is present and ni = 0 if there is no fluid particle present. We then
have that the potential energy is

U =
∑
i<j

u(xi − xj) = 1
2

∑
R 6=R′

VRR′ nR nR′ , (7.36)
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Figure 7.6: The lattice gas model. An occupied cell corresponds to n = 1 (σ = +1), and a vacant cell to
n = 0 (σ = −1).

where VRR′ ≈ v(R−R′), where Rk is the position at the center of cube k. The grand partition function
is then approximated as

Ξ(T, V, µ) ≈
∑
{nR}

(∏
R

ξnR

)
exp

(
− 1

2β
∑
R 6=R′

VRR′ nR nR′

)
, (7.37)

where
ξ = eβµ λ−dT ad , (7.38)

where a is the side length of each cube (chosen to be on the order of the hard sphere diameter). The
λ−dT factor arises from the integration over the momenta. Note

∑
R nR = N is the total number of fluid

particles, so ∏
R

ξ nR = ξN = eβµN λ−NdT aNd . (7.39)

Thus, we can write a lattice Hamiltonian,

Ĥ = 1
2

∑
R 6=R′

VRR′ nR nR′ − kBT ln ξ
∑
R

nR

= −1
2

∑
R 6=R′

JRR′ σR σR′ −H
∑
R

σR + E0 ,
(7.40)

where σR ≡ 2nR − 1 is a spin variable taking the possible values {−1,+1}, and

JRR′ = −1
4VRR′

H = 1
2kBT ln ξ − 1

4

∑
R′

′
VRR′ ,

(7.41)

where the prime on the sum indicates that R′ = R is to be excluded. For the Lennard-Jones system,
VRR′ = v(R −R′) < 0 is due to the attractive tail of the potential, hence JRR′ is positive, which prefers
alignment of the spins σR and σR′ . This interaction is therefore ferromagnetic. The spin Hamiltonian in
eqn. 7.40 is known as the Ising model.
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7.3.2 Phase diagrams and critical exponents

The physics of the liquid-gas transition in fact has a great deal in common with that of the transition
between a magnetized and unmagnetized state of a magnetic system. The correspondences are5

p←→ H , v ←→ m ,

where m is the magnetization density, defined here to be the total magnetization M divided by the
number of lattice sites NS:6

m =
M

NS

=
1

NS

∑
R

〈σR〉 . (7.42)

Sketches of the phase diagrams are reproduced in fig. 7.7. Of particular interest is the critical point, which
occurs at (Tc, pc) in the fluid system and (Tc, Hc) in the magnetic system, with Hc = 0 by symmetry.

In the fluid, the coexistence curve in the (p, T ) plane separates high density (liquid) and low density
(vapor) phases. The specific volume v (or the density n = v−1) jumps discontinuously across the coex-
istence curve. In the magnet, the coexistence curve in the (H,T ) plane separates positive magnetization
and negative magnetization phases. The magnetization density m jumps discontinuously across the
coexistence curve. For T > Tc, the latter system is a paramagnet, in which the magnetization varies
smoothly as a function of H . This behavior is most apparent in the bottom panel of the figure, where
v(p) and m(H) curves are shown.

For T < Tc, the fluid exists in a two phase region, which is spatially inhomogeneous, supporting local re-
gions of high and low density. There is no stable homogeneous thermodynamic phase for (T, v) within
the two phase region shown in the middle left panel. Similarly, for the magnet, there is no stable ho-
mogeneous thermodynamic phase at fixed temperature T and magnetization m if (T,m) lies within the
coexistence region. Rather, the system consists of blobs where the spin is predominantly up, and blobs
where the spin is predominantly down.

Note also the analogy between the isothermal compressibility κT and the isothermal susceptibility χT :

κT = −1

v

(
∂v

∂p

)
T

, κT (Tc, pc) =∞

χ
T =

(
∂m

∂H

)
T

, χ
T (Tc, Hc) =∞

The ‘order parameter’ for a second order phase transition is a quantity which vanishes in the disordered
phase and is finite in the ordered phase. For the fluid, the order parameter can be chosen to be Ψ ∝
(vvap − vliq), the difference in the specific volumes of the vapor and liquid phases. In the vicinity of the

5One could equally well identify the second correspondence as n ←→ m between density (rather than specific volume)
and magnetization. One might object that H is more properly analogous to µ. However, since µ = µ(p, T ) it can equally be
regarded as analogous to p. Note also that βp = zλ−dT for the ideal gas, in which case ξ = z(a/λT )d is proportional to p.

6Note the distinction between the number of lattice sites NS and the number of occupied cells N . According to our defini-
tions, N = 1

2
(M +NS).
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Figure 7.7: Comparison of the liquid-gas phase diagram with that of the Ising ferromagnet.

critical point, the system exhibits power law behavior in many physical quantities, viz.

m(T,Hc) ∼
(
Tc − T )β+

χ(T,Hc) ∼ |T − Tc|−γ

CM (T,Hc) ∼ |T − Tc|−α

m(Tc, H) ∼ ±|H|1/δ .

(7.43)
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The quantities α, β, γ, and δ are the critical exponents associated with the transition. These exponents
satisfy certain equalities, such as the Rushbrooke and Griffiths relations and hyperscaling,7

α+ 2β + γ = 2 (Rushbrooke)
β + γ = βδ (Griffiths)
2− α = d ν (hyperscaling) .

(7.44)

Originally such relations were derived as inequalities, and only after the advent of scaling and renor-
malization group theories it was realized that they held as equalities. We shall have much more to say
about critical behavior later on, when we discuss scaling and renormalization.

7.3.3 Gibbs-Duhem relation for magnetic systems

Homogeneity of E(S,M,NS) means E = TS + HM + µNS, and, after invoking the First Law dE =
T dS +H dM + µdNS, we have

S dT +M dH +NSdµ = 0 . (7.45)

Now consider two magnetic phases in coexistence. We must have dµ1 = dµ2, hence

dµ1 = −s1 dT −m1 dH = −s2 dT −m2 dH = dµ2 , (7.46)

where m = M/NS is the magnetization per site and s = S/NS is the specific entropy. Thus, we obtain
the Clapeyron equation for magnetic systems,(

dH

dT

)
coex

= − s1 − s2

m1 −m2

. (7.47)

Thus, if m1 6= m2 and
(
dH
dT

)
coex

= 0, then we must have s1 = s2, which says that there is no latent
heat associated with the transition. This absence of latent heat is a consequence of the symmetry which
guarantees that F (T,H,NS) = F (T,−H,NS).

7.3.4 Order-disorder transitions

Another application of the Ising model lies in the theory of order-disorder transitions in alloys. Exam-
ples include Cu3Au, CuZn, and other compounds. In CuZn, the Cu and Zn atoms occupy sites of a
body centered cubic (BCC) lattice, forming an alloy known as β-brass. Below Tc ' 740 K, the atoms
are ordered, with the Cu preferentially occupying one simple cubic sublattice and the Zn preferentially
occupying the other.

The energy is a sum of pairwise interactions, with a given link contributing εAA, εBB, or εAB, depending
on whether it is an A-A, B-B, or A-B/B-A link. Here A and B represent Cu and Zn, respectively. Thus,
we can write the energy of the link 〈ij〉 as

Eij = εAA P
A
i P

A
j + εBB P

B
i P

B
j + εAB

(
PA
i P

B
j + PB

i P
A
j

)
, (7.48)

7In the third of the following exponent equalities, d is the dimension of space and ν is the correlation length exponent.
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Figure 7.8: Order-disorder transition on the square lattice. Below T = Tc, order develops spontaneously
on the two

√
2×
√

2 sublattices. There is perfect sublattice order at T = 0 (left panel).

where

PA
i = 1

2(1 + σi) =

{
1 if site i contains Cu
0 if site i contains Zn

PB
i = 1

2(1− σi) =

{
1 if site i contains Zn
0 if site i contains Cu .

The Hamiltonian is then

Ĥ =
∑
〈ij〉

Eij

=
∑
〈ij〉

{
1
4

(
εAA + εBB − 2εAB

)
σi σj + 1

4

(
εAA − εBB

)
(σi + σj) + 1

4

(
εAA + εBB + 2εAB

)}
= −J

∑
〈ij〉

σi σj −H
∑
i

σi + E0 , (7.49)

where the exchange constant J and the magnetic field H are given by

J = 1
4

(
2εAB − εAA − εBB

)
H = 1

4

(
εBB − εAA

)
,

(7.50)

and E0 = 1
8Nz

(
εAA + εBB + 2εAB

)
, where N is the total number of lattice sites and z = 8 is the lattice

coordination number, which is the number of nearest neighbors of any given site.

Note that

2εAB > εAA + εBB =⇒ J > 0 (ferromagnetic)
2εAB < εAA + εBB =⇒ J < 0 (antiferromagnetic) .

(7.51)

The antiferromagnetic case is depicted in fig. 7.8.
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7.4 Mean Field Theory

Consider the Ising model Hamiltonian,

Ĥ = −J
∑
〈ij〉

σi σj −H
∑
i

σi , (7.52)

where the first sum on the RHS is over all links of the lattice. Each spin can be either ‘up’ (σ = +1) or
‘down’ (σ = −1). We further assume that the spins are located on a Bravais lattice8 and that the coupling
Jij = J

(
|Ri −Rj |

)
, whereRi is the position of the ith spin.

On each site i we decompose σi into a contribution from its thermodynamic average and a fluctuation
term, i.e.

σi = 〈σi〉+ δσi . (7.53)

We will write 〈σi〉 ≡ m, the local magnetization (dimensionless), and assume that m is independent of
position i. Then

σi σj = (m+ δσi) (m+ δσj)

= m2 +m (δσi + δσj) + δσi δσj

= −m2 +m (σi + σj) + δσi δσj .

(7.54)

The last term on the RHS of the second equation above is quadratic in the fluctuations, and we assume
this to be negligibly small. Thus, we obtain the mean field Hamiltonian

ĤMF = 1
2NzJ m

2 −
(
H + zJm

)∑
i

σi , (7.55)

where N is the total number of lattice sites. The first term is a constant, although the value of m is yet
to be determined. The Boltzmann weights are then completely determined by the second term, which
is just what we would write down for a Hamiltonian of noninteracting spins in an effective ‘mean field’

Heff = H + zJm . (7.56)

In other words, Heff = Hext + Hint, where the external field is applied field Hext = H , and the ‘internal
field’ is Hint = zJm. The internal field accounts for the interaction with the average values of all other
spins coupled to a spin at a given site, hence it is often called the ‘mean field’. Since the spins are
noninteracting, we have

m =
eβHeff − e−βHeff

eβHeff + e−βHeff
= tanh

(
H + zJm

kBT

)
. (7.57)

It is a simple matter to solve for the free energy, given the noninteracting Hamiltonian ĤMF. The partition
function is

Z = Tr e−βĤMF = e−
1
2βNzJ m

2

(∑
σ

eβ(H+zJm)σ

)N
= e−βF . (7.58)

8A Bravais lattice is one in which any site is equivalent to any other site through an appropriate discrete translation. Ex-
amples of Bravais lattices include the linear chain, square, triangular, simple cubic, face-centered cubic, etc. lattices. The
honeycomb lattice is not a Bravais lattice, because there are two sets of inequivalent sites – those in the center of a Y and those
in the center of an upside down Y.
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We now define dimensionless variables:

f ≡ F

NzJ
, θ ≡ kBT

zJ
, h ≡ H

zJ
, (7.59)

and obtain the dimensionless free energy

f(m,h, θ) = 1
2m

2 − θ ln

(
e(m+h)/θ + e−(m+h)/θ

)
. (7.60)

Differentiating with respect to m gives the mean field equation,

m = tanh
(m+ h

θ

)
, (7.61)

which is equivalent to the self-consistency requirement, m = 〈σi〉.

7.4.1 h = 0

When h = 0 the mean field equation becomes

m = tanh
(m
θ

)
. (7.62)

This nonlinear equation can be solved graphically, as in the top panel of fig. 7.9. The RHS in a tanh
function which gets steeper with decreasing t. If, at m = 0, the slope of tanh(m/θ) is smaller than unity,
then the curve y = tanh(m/h) will intersect y = m only at m = 0. However, if the slope is larger than
unity, there will be three such intersections. Since the slope is 1/θ, we identify θc = 1 as the mean field
transition temperature.

In the low temperature phase θ < 1, there are three solutions to the mean field equations. One solution
is always at m = 0. The other two solutions must be related by the m ↔ −m symmetry of the free
energy (when h = 0). The exact free energies are plotted in the bottom panel of fig. 7.9, but it is possible
to make analytical progress by assuming m is small and Taylor expanding the free energy f(m, θ) in
powers of m:

f(m, θ) = 1
2m

2 − θ ln 2− θ ln cosh
(m
θ

)
= −θ ln 2 + 1

2 (1− θ−1)m2 +
m4

12 θ3
− m6

45 θ5
+ . . . .

(7.63)

Note that the sign of the quadratic term is positive for θ > 1 and negative for θ < 1. Thus, the shape
of the free energy f(m, θ) as a function of m qualitatively changes at this point, θc = 1, the mean field
transition temperature, also known as the critical temperature.

For θ > θc, the free energy f(m, θ) has a single minimum at m = 0. Below θc, the curvature at m = 0
reverses, and m = 0 becomes a local maximum. There are then two equivalent minima symmetrically
displaced on either side of m = 0. Differentiating with respect to m, we find these local minima. For
θ < θc, the local minima are found at

m2 = 3θ2(1− θ) = 3(1− θ) +O
(
(1− θ)2

)
. (7.64)
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Figure 7.9: .
Results for h = 0. Upper panels: graphical solution to self-consistency equation m = tanh(m/θ) at

temperatures θ = 0.65 (blue) and θ = 1.5 (dark red). Lower panel: mean field free energy, with energy
shifted by θ ln 2 so that f(m = 0, θ) = 0.

Thus, we find for |θ − 1| � 1,

m(θ, h = 0) = ±
√

3
(
1− θ

)1/2
+

, (7.65)

where the + subscript indicates that this solution is only for 1 − θ > 0. For θ > 1 the only solution is
m = 0. The exponent with which m(θ) vanishes as θ → θ−c is denoted β. I.e. m(θ, h = 0) ∝ (θc − θ)

β
+.

7.4.2 Specific heat

We can now expand the free energy f(θ, h = 0). We find

f(θ, h = 0) =

{
−θ ln 2 if θ > θc

−θ ln 2− 3
4(1− θ)2 +O

(
(1− θ)4

)
if θ < θc .

(7.66)

Thus, if we compute the heat capacity, we find in the vicinity of θ = θc

cV = −θ ∂
2f

∂θ2
=

{
0 if θ > θc
3
2 if θ < θc .

(7.67)
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Figure 7.10: .
Results for h = 0.1. Upper panels: graphical solution to self-consistency equation m = tanh

(
(m+ h)/θ

)
at temperatures θ = 0.65 (blue), θ = 0.9 (dark green), and θ = 1.5 (dark red). Lower panel: mean field

free energy, with energy shifted by θ ln 2 so that f(m = 0, θ) = 0.

Thus, the specific heat is discontinuous at θ = θc. We emphasize that this is only valid near θ = θc = 1.
The general result valid for all θ is9

cV (θ) =
1

θ
· m

2(θ)−m4(θ)

θ − 1 +m2(θ)
, (7.68)

With this expression one can check both limits θ → 0 and θ → θc. As θ → 0 the magnetization saturates
and one has m2(θ) ' 1− 4 e−2/θ. The numerator then vanishes as e−2/θ, which overwhelms the denomi-
nator that itself vanishes as θ2. As a result, cV (θ → 0) = 0, as expected. As θ → 1, invokingm2 ' 3(1−θ)
we recover cV (θ−c ) = 3

2 .

In the theory of critical phenomena, cV (θ) ∝ |θ − θc|−α as θ → θc. We see that mean field theory yields
α = 0.

9To obtain this result, one writes f = f
(
θ,m(θ)

)
and then differentiates twice with respect to θ, using the chain rule. Along

the way, any naked (i.e. undifferentiated) term proportional to ∂f
∂m

may be dropped, since this vanishes at any θ by the mean
field equation.
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7.4.3 h 6= 0

Consider without loss of generality the case h > 0. The minimum of the free energy f(m,h, θ) now lies
at m > 0 for any θ. At low temperatures, the double well structure we found in the h = 0 case is tilted so
that the right well lies lower in energy than the left well. This is depicted in fig. 7.10. As the temperature
is raised, the local minimum at m < 0 vanishes, annihilating with the local maximum in a saddle-node
bifurcation. To find where this happens, one sets ∂f

∂m = 0 and ∂2f
∂m2 = 0 simultaneously, resulting in

h∗(θ) =
√

1− θ − θ

2
ln

(
1 +
√

1− θ
1−
√

1− θ

)
. (7.69)

The solutions lie at h = ±h∗(θ). For θ < θc = 1 and h ∈
[
−h∗(θ) , +h∗(θ)

]
, there are three solutions to the

mean field equation. Equivalently we could in principle invert the above expression to obtain θ∗(h). For
θ > θ∗(h), there is only a single global minimum in the free energy f(m) and there is no local minimum.
Note θ∗(h = 0) = 1.

Assuming h � |θ − 1| � 1, the mean field solution for m(θ, h) will also be small, and we expand the
free energy in m, and to linear order in h:

f(m,h, θ) = −θ ln 2 + 1
2(1− θ−1)m2 +

m4

12 θ3
− hm

θ

= f0 + 1
2 (θ − 1)m2 + 1

12m
4 − hm+ . . . .

(7.70)

Setting ∂f
∂m = 0, we obtain

1
3m

3 + (θ − 1) ·m− h = 0 . (7.71)

If θ > 1 then we have a solution m = h/(θ − 1). The m3 term can be ignored because it is higher order
in h, and we have assumed h � |θ − 1| � 1. This is known as the Curie-Weiss law10. The magnetic
susceptibility behaves as

χ(θ) =
∂m

∂h
=

1

θ − 1
∝ |θ − 1|−γ , (7.72)

where the magnetization critical exponent γ is γ = 1. If θ < 1 then while there is still a solution at
m = h/(θ − 1), it lies at a local maximum of the free energy, as shown in fig. 7.10. The minimum of the
free energy occurs close to the h = 0 solution m = m0(θ) ≡

√
3 (1 − θ), and writing m = m0 + δm we

find δm to linear order in h as δm(θ, h) = h/2(1− θ). Thus,

m(θ, h) =
√

3 (1− θ) +
h

2(1− θ)
. (7.73)

10Pierre Curie was a pioneer in the fields of crystallography, magnetism, and radiation physics. In 1880, Pierre and his older
brother Jacques discovered piezoelectricity. He was 21 years old at the time. It was in 1895 that Pierre made the first systematic
studies of the effects of temperature on magnetic materials, and he formulated what is known as Curie’s Law, χ = C/T , where
C is a constant. Curie married Marie Sklodowska in the same year. Their research turned toward radiation, recently discovered
by Becquerel and Röntgen. In 1898, Pierre and Marie Curie discovered radium. They shared the 1903 Nobel Prize in Physics
with Becquerel. Marie went on to win the 1911 Nobel Prize in Chemistry and was the first person ever awarded two Nobel
Prizes. Their daughter Irène Joliot Curie shared the 1935 Prize in Chemistry (with her husband), also for work on radioactivity.
Pierre Curie met an untimely and unfortunate end in the Spring of 1906. Walking across the Place Dauphine, he slipped and
fell under a heavy horse-drawn wagon carrying military uniforms. His skull was crushed by one of the wagon wheels, killing
him instantly. Later on that year, Pierre-Ernest Weiss proposed a modification of Curie’s Law to account for ferromagnetism.
This became known as the Curie-Weiss law, χ = C/(T − Tc).
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2D Ising 3D Ising CO2

Exponent MFT (exact) (numerical) (expt.)
α 0 0 0.125 <∼ 0.1

β 1/2 1/8 0.313 0.35

γ 1 7/4 1.25 1.26

δ 3 15 5 4.2

Table 7.2: Critical exponents from mean field theory as compared with exact results for the two-
dimensional Ising model, numerical results for the three-dimensional Ising model, and experiments
on the liquid-gas transition in CO2. Source: H. E. Stanley, Phase Transitions and Critical Phenomena.

Once again, we find that χ(θ) diverges as |θ − 1|−γ with γ = 1. The exponent γ on either side of the
transition is the same.

Finally, we can set θ = θc and examine m(h). We find, from eqn. 7.72,

m(θ = θc, h) = (3h)1/3 ∝ h1/δ , (7.74)

where δ is a new critical exponent. Mean field theory gives δ = 3. Note that at θ = θc = 1 we have
m = tanh(m+ h), and inverting we find

h(m, θ = θc) = 1
2 ln

(
1 +m

1−m

)
−m =

m3

3
+
m5

5
+ . . . , (7.75)

which is consistent with what we just found for m(h, θ = θc).

How well does mean field theory do in describing the phase transition of the Ising model? In table
7.2 we compare our mean field results for the exponents α, β, γ, and δ with exact values for the two-
dimensional Ising model, numerical work on the three-dimensional Ising model, and experiments on
the liquid-gas transition in CO2. The first thing to note is that the exponents are dependent on the
dimension of space, and this is something that mean field theory completely misses. In fact, it turns
out that the mean field exponents are exact provided d > du, where du is the upper critical dimension of
the theory. For the Ising model, du = 4, and above four dimensions (which is of course unphysical) the
mean field exponents are in fact exact. We see that all in all the MFT results compare better with the
three dimensional exponent values than with the two-dimensional ones – this makes sense since MFT
does better in higher dimensions. The reason for this is that higher dimensions means more nearest
neighbors, which has the effect of reducing the relative importance of the fluctuations we neglected to
include.

7.4.4 Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the
dissipative dynamics of a magnet by writing the phenomenological equation

dm

ds
= − ∂f

∂m
, (7.76)
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Figure 7.11: Dissipative magnetization dynamics ṁ = −f ′(m). Bottom panel shows h∗(θ) from eqn.
7.69. For (θ, h) within the blue shaded region, the free energy f(m) has a global minimum plus a local
minimum and a local maximum. Otherwise f(m) has only a single global minimum. Top panels show
an imperfect bifurcation in the magnetization dynamics at h = 0.0215 , for which θ∗ = 0.90. Tempera-
tures shown: θ = 0.65 (blue), θ = θ∗(h) = 0.90 (green), and θ = 1.2. The rightmost stable fixed point
corresponds to the global minimum of the free energy. The bottom of the middle two upper panels
shows h = 0, where both of the attractive fixed points and the repulsive fixed point coalesce into a
single attractive fixed point (supercritical pitchfork bifurcation).

where s is a dimensionless time variable. Under these dynamics, the free energy is never increasing:

df

ds
=

∂f

∂m

∂m

∂s
= −

(
∂f

∂m

)2

≤ 0 . (7.77)

Clearly the fixed point of these dynamics, where ṁ = 0, is a solution to the mean field equation ∂f
∂m = 0.

The phase flow for the equation ṁ = −f ′(m) is shown in fig. 7.11. As we have seen, for any value
of h there is a temperature θ∗ below which the free energy f(m) has two local minima and one local
maximum. When h = 0 the minima are degenerate, but at finite h one of the minima is a global min-
imum. Thus, for θ < θ∗(h) there are three solutions to the mean field equations. In the language of
dynamical systems, under the dynamics of eqn. 7.76, minima of f(m) correspond to attractive fixed
points and maxima to repulsive fixed points. If h > 0, the rightmost of these fixed points corresponds to
the global minimum of the free energy. As θ is increased, this fixed point evolves smoothly. At θ = θ∗,
the (metastable) local minimum and the local maximum coalesce and annihilate in a saddle-note bifur-
cation. However at h = 0 all three fixed points coalesce at θ = θc and the bifurcation is a supercritical
pitchfork. As a function of t at finite h, the dynamics are said to exhibit an imperfect bifurcation, which is
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Figure 7.12: Top panel : hysteresis as a function of ramping the dimensionless magnetic field h at
θ = 0.40. Dark red arrows below the curve follow evolution of the magnetization on slow increase of h.
Dark grey arrows above the curve follow evolution of the magnetization on slow decrease of h. Bottom
panel : solution set for m(θ, h) as a function of h at temperatures θ = 0.40 (blue), θ = θc = 1.0 (dark
green), and t = 1.25 (red).

a deformed supercritical pitchfork.

The solution set for the mean field equation is simply expressed by inverting the tanh function to obtain
h(θ,m). One readily finds

h(θ,m) =
θ

2
ln

(
1 +m

1−m

)
−m . (7.78)

As we see in the bottom panel of fig. 7.12, m(h) becomes multivalued for h ∈
[
− h∗(θ) , +h∗(θ)

]
, where

h∗(θ) is given in eqn. 7.69. Now imagine that θ < θc and we slowly ramp the field h from a large
negative value to a large positive value, and then slowly back down to its original value. On the time
scale of the magnetization dynamics, we can regard h(s) as a constant. (Remember the time variable is
s here.) Thus, m(s) will flow to the nearest stable fixed point. Initially the system starts with m = −1
and h large and negative, and there is only one fixed point, at m∗ ≈ −1. As h slowly increases, the fixed
point value m∗ also slowly increases. As h exceeds −h∗(θ), a saddle-node bifurcation occurs, and two
new fixed points are created at positive m, one stable and one unstable. The global minimum of the free
energy still lies at the fixed point with m∗ < 0. However, when h crosses h = 0, the global minimum
of the free energy lies at the most positive fixed point m∗. The dynamics, however, keep the system
stuck in what is a metastable phase. This persists until h = +h∗(θ), at which point another saddle-note
bifurcation occurs, and the attractive fixed point at m∗ < 0 annihilates with the repulsive fixed point.
The dynamics then act quickly to drive m to the only remaining fixed point. This process is depicted
in the top panel of fig. 7.12. As one can see from the figure, the the system follows a stable fixed point



24 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

until the fixed point disappears, even though that fixed point may not always correspond to a global
minimum of the free energy. The resulting m(h) curve is then not reversible as a function of time, and
it possesses a characteristic shape known as a hysteresis loop. Etymologically, the word hysteresis derives
from the Greek υστερησις , which means ‘lagging behind’. Systems which are hysteretic exhibit a history-
dependence to their status, which is not uniquely determined by external conditions. Hysteresis may be
exhibited with respect to changes in applied magnetic field, changes in temperature, or changes in other
externally determined parameters.

7.4.5 Beyond nearest neighbors

Suppose we had started with the more general model,

Ĥ = −
∑
i<j

Jij σi σj −H
∑
i

σi

= −1
2

∑
i 6=j

Jij σi σj −H
∑
i

σi ,
(7.79)

where Jij is the coupling between spins on sites i and j. In the top equation above, each pair (ij) is
counted once in the interaction term; this may be replaced by a sum over all i and j if we include a
factor of 1

2 .11 The resulting mean field Hamiltonian is then

ĤMF = 1
2NĴ(0)m2 −

(
H + Ĵ(0)m

)∑
i

σi . (7.80)

Here, Ĵ(q) is the Fourier transform of the interaction matrix Jij :
12

Ĵ(q) =
∑
R

J(R) e−iq·R . (7.81)

For nearest neighbor interactions only, one has Ĵ(0) = zJ , where z is the lattice coordination number,
i.e. the number of nearest neighbors of any given site. The scaled free energy is as in eqn. 7.60, with
f = F/NĴ(0), θ = kBT/Ĵ(0), and h = H/Ĵ(0). The analysis proceeds precisely as before, and we
conclude θc = 1, i.e. kBT

MF
c = Ĵ(0).

7.4.6 Ising model with long-ranged forces

Consider an Ising model where Jij = J/N for all i and j, so that there is a very weak interaction between
every pair of spins. The Hamiltonian is then

Ĥ = − J

2N

(∑
i

σi

)2

−H
∑
k

σk . (7.82)

11The self-interaction terms with i = j contribute a constant to Ĥ and may be either included or excluded. However, this
property only pertains to the σi = ±1 model. For higher spin versions of the Ising model, say where Si ∈ {−1, 0,+1}, then S2

i

is not constant and we should explicitly exclude the self-interaction terms.
12The sum in the discrete Fourier transform is over all ‘direct Bravais lattice vectors’ and the wavevector q may be restricted

to the ‘first Brillouin zone’. These terms are familiar from elementary solid state physics.
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The partition function is

Z = Tr {σi} exp

[
βJ

2N

(∑
i

σi

)2

+ βH
∑
i

σi

]
. (7.83)

We now invoke the Gaussian integral,
∞∫
−∞

dx e−αx
2−βx =

√
π

α
eβ

2/4α . (7.84)

Thus,

exp

[
βJ

2N

(∑
i

σi

)2
]

=

(
NβJ

2π

)1/2
∞∫
−∞

dm e−
1
2
NβJm2+βJm

∑
i σi , (7.85)

and we can write the partition function as

Z =

(
NβJ

2π

)1/2
∞∫
−∞

dm e−
1
2
NβJm2

(∑
σ

eβ(H+Jm)σ

)N

=

(
N

2πθ

)1/2
∞∫
−∞

dm e−NA(m)/θ ,

(7.86)

where θ = kBT/J , h = H/J , and

A(m) = 1
2m

2 − θ ln

[
2 cosh

(
h+m

θ

)]
. (7.87)

Since N →∞, we can perform the integral using the method of steepest descents. Thus, we must set

dA

dm

∣∣∣∣
m∗

= 0 =⇒ m∗ = tanh

(
m∗ + h

θ

)
. (7.88)

Expanding about m = m∗, we write

A(m) = A(m∗) + 1
2A
′′(m∗) (m−m∗)2 + 1

6 A
′′′(m∗) (m−m∗)3 + . . . . (7.89)

Performing the integrations, we obtain

Z =

(
N

2πθ

)1/2

e−NA(m∗)/θ

∞∫
−∞

dν exp

[
− NA′′(m∗)

2θ
m2 − NA′′′(m∗)

6θ
m3 + . . .

]

=
1√

A′′(m∗)
e−NA(m∗)/θ ·

{
1 +O(N−1)

}
.

(7.90)

The corresponding free energy per site

f =
F

NJ
= A(m∗) +

θ

2N
lnA′′(m∗) +O(N−2) , (7.91)

where m∗ is the solution to the mean field equation which minimizes A(m). Mean field theory is exact
for this model!
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7.5 Variational Density Matrix Method

7.5.1 The variational principle

Suppose we are given a Hamiltonian Ĥ . From this we construct the free energy, F :

F = E − TS
= Tr (% Ĥ) + kBT Tr (% ln %) .

(7.92)

Here, % is the density matrix13. A physical density matrix must be (i) normalized (i.e. Tr % = 1), (ii)
Hermitian, and (iii) non-negative definite (i.e. all the eigenvalues of % must be non-negative).

Our goal is to extremize the free energy subject to the various constraints on %. Let us assume that % is
diagonal in the basis of eigenstates of Ĥ , i.e.

% =
∑
γ

Pγ
∣∣ γ 〉〈 γ ∣∣ , (7.93)

where Pγ is the probability that the system is in state
∣∣ γ 〉. Then

F =
∑
γ

Eγ Pγ + kBT
∑
γ

Pγ lnPγ . (7.94)

Thus, the free energy is a function of the set {Pγ}. We now extremize F subject to the normalization
constraint. This means we form the extended function

F ∗
(
{Pγ}, λ

)
= F

(
{Pγ}

)
+ λ

(∑
γ

Pγ − 1
)
, (7.95)

and then freely extremize over both the probabilities {Pγ} as well as the Lagrange multiplier λ. This
yields the Boltzmann distribution,

P eq
γ =

1

Z
exp(−Eγ/kBT ) , (7.96)

where Z =
∑

γ e
−Eγ/kBT = Tr e−Ĥ/kBT is the canonical partition function, which is related to λ through

λ = kBT (lnZ − 1) . (7.97)

Note that the Boltzmann weights are, appropriately, all positive.

If the spectrum of Ĥ is bounded from below, our extremum should in fact yield a minimum for the free
energy F . Furthermore, since we have freely minimized over all the probabilities, subject to the single
normalization constraint, any distribution {Pγ} other than the equilibrium one must yield a greater value of F .

Alas, the Boltzmann distribution, while exact, is often intractable to evaluate. For one-dimensional
systems, there are general methods such as the transfer matrix approach which do permit an exact

13How do we take the logarithm of a matrix? The rule is this: A = lnB if B = exp(A). The exponential of a matrix may be
evaluated via its Taylor expansion.
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evaluation of the free energy. However, beyond one dimension the situation is in general hopeless. A
family of solvable (“integrable”) models exists in two dimensions, but their solutions require specialized
techniques and are extremely difficult. The idea behind the variational density matrix approximation
is to construct a tractable trial density matrix % which depends on a set of variational parameters {xα},
and to minimize with respect to this (finite) set.

7.5.2 Variational density matrix for the Ising model

Consider once again the Ising model Hamiltonian,

Ĥ = −
∑
i<j

Jij σi σj −H
∑
i

σi . (7.98)

The states of the system
∣∣ γ 〉 may be labeled by the values of the spin variables:

∣∣ γ 〉 ←→ ∣∣ σ1, σ2, . . .
〉
.

We assume the density matrix is diagonal in this basis, i.e.

%N
(
γ
∣∣γ′) ≡ %(γ) δγ,γ′ , (7.99)

where
δγ,γ′ =

∏
i

δσi,σ′i . (7.100)

Indeed, this is the case for the exact density matrix, which is to say the Boltzmann weight,

%N (σ1, σ2, . . .) =
1

Z
e−βĤ(σ1,...,σN ) . (7.101)

We now write a trial density matrix which is a product over contributions from independent single sites:

%N (σ1, σ2, . . .) =
∏
i

%(σi) , (7.102)

where
%(σ) =

(1 +m

2

)
δσ,1 +

(1−m
2

)
δσ,−1 . (7.103)

Note that we’ve changed our notation slightly. We are denoting by %(σ) the corresponding diagonal
element of the matrix

% =

(
1+m

2 0
0 1−m

2

)
, (7.104)

and the full density matrix is a tensor product over the single site matrices:

%N = %⊗ %⊗ · · · ⊗ % . (7.105)

Note that % and hence %N are appropriately normalized. The variational parameter here is m, which, if ρ
is to be non-negative definite, must satisfy −1 ≤ m ≤ 1. The quantity m has the physical interpretation
of the average spin on any given site, since

〈σi〉 =
∑
σ

%(σ)σ = m. (7.106)
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We may now evaluate the average energy:

E = Tr (%NĤ) = −
∑
i<j

Jijm
2 −H

∑
i

m

= −1
2NĴ(0)m2 −NHm ,

(7.107)

where once again Ĵ(0) is the discrete Fourier transform of J(R) at wavevector q = 0. The entropy is
given by

S = −kB Tr (%N ln %N ) = −NkB Tr (% ln %)

= −NkB

{(1 +m

2

)
ln
(1 +m

2

)
+
(1−m

2

)
ln
(1−m

2

)}
.

(7.108)

We now define the dimensionless free energy per site: f ≡ F/NĴ(0). We have

f(m,h, θ) = −1
2 m

2 − hm+ θ

{(1 +m

2

)
ln
(1 +m

2

)
+
(1−m

2

)
ln
(1−m

2

)}
, (7.109)

where θ ≡ kBT/Ĵ(0) is the dimensionless temperature, and h ≡ H/Ĵ(0) the dimensionless magnetic
field, as before. We extremize f(m) by setting

∂f

∂m
= 0 = −m− h+

θ

2
ln
(1 +m

1−m

)
. (7.110)

Solving for m, we obtain

m = tanh

(
m+ h

θ

)
, (7.111)

which is precisely what we found in eqn. 7.61.

Note that the optimal value of m indeed satisfies the requirement |m| ≤ 1 of non-negative probability.
This nonlinear equation may be solved graphically. For h = 0, the unmagnetized solution m = 0

always applies. However, for θ < 1 there are two additional solutions at m = ±mA(θ), with mA(θ) =√
3(1− θ) + O

(
(1 − θ)3/2

)
for t close to (but less than) one. These solutions, which are related by the

Z2 symmetry of the h = 0 model, are in fact the low energy solutions. This is shown clearly in figure
7.13, where the variational free energy f(m, t) is plotted as a function of m for a range of temperatures
interpolating between ‘high’ and ‘low’ values. At the critical temperature θc = 1, the lowest energy state
changes from being unmagnetized (high temperature) to magnetized (low temperature).

For h > 0, there is no longer a Z2 symmetry (i.e. σi → −σi ∀ i). The high temperature solution now
has m > 0 (or m < 0 if h < 0), and this smoothly varies as t is lowered, approaching the completely
polarized limit m = 1 as θ → 0. At very high temperatures, the argument of the tanh function is small,
and we may approximate tanh(x) ' x, in which case

m(h, θ) =
h

θ − θc
. (7.112)
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Figure 7.13: Variational field free energy ∆f = f(m,h, θ) + θ ln 2 versus magnetization m at six equally
spaced temperatures interpolating between ‘high’ (θ = 1.25, red) and ‘low’ (θ = 0.75, blue) values. Top
panel: h = 0. Bottom panel: h = 0.06.

This is called the Curie-Weiss law. One can infer θc from the high temperature susceptibility χ(θ) =

(∂m/∂h)h=0 by plotting χ−1 versus θ and extrapolating to obtain the θ-intercept. In our case, χ(θ) =
(θ − θc)

−1. For low θ and weak h, there are two inequivalent minima in the free energy.

When m is small, it is appropriate to expand f(m,h, θ), obtaining

f(m,h, θ) = −θ ln 2− hm+ 1
2 (θ − 1)m2 + θ

12 m
4 + θ

30 m
6 + θ

56 m
8 + . . . . (7.113)

This is known as the Landau expansion of the free energy in terms of the order parameter m. An order
parameter is a thermodynamic variable φwhich distinguishes ordered and disordered phases. Typically
φ = 0 in the disordered (high temperature) phase, and φ 6= 0 in the ordered (low temperature) phase.
When the order sets in continuously, i.e. when φ is continuous across θc, the phase transition is said to
be second order. When φ changes abruptly, the transition is first order. It is also quite commonplace to
observe phase transitions between two ordered states. For example, a crystal, which is an ordered state,
may change its lattice structure, say from a high temperature tetragonal phase to a low temperature
orthorhombic phase. When the high T phase possesses the same symmetries as the low T phase, as in
the tetragonal-to-orthorhombic example, the transition may be second order. When the two symmetries
are completely unrelated, for example in a hexagonal-to-tetragonal transition, or in a transition between
a ferromagnet and an antiferromagnet, the transition is in general first order.

Throughout this discussion, we have assumed that the interactions Jij are predominantly ferromagnetic,
i.e. Jij > 0, so that all the spins prefer to align. When Jij < 0, the interaction is said to be antiferro-



30 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

magnetic and prefers anti-alignment of the spins (i.e. σi σj = −1). Clearly not every pair of spins can be
anti-aligned – there are two possible spin states and a thermodynamically extensive number of spins.
But on the square lattice, for example, if the only interactions Jij are between nearest neighbors and
the interactions are antiferromagnetic, then the lowest energy configuration (T = 0 ground state) will
be one in which spins on opposite sublattices are anti-aligned. The square lattice is bipartite – it breaks
up into two interpenetrating sublattices A and B (which are themselves square lattices, rotated by 45◦

with respect to the original, and with a larger lattice constant by a factor of
√

2), such that any site in
A has nearest neighbors in B, and vice versa. The honeycomb lattice is another example of a bipartite
lattice. So is the simple cubic lattice. The triangular lattice, however, is not bipartite (it is tripartite).
Consequently, with nearest neighbor antiferromagnetic interactions, the triangular lattice Ising model is
highly frustrated. The moral of the story is this: antiferromagnetic interactions can give rise to compli-
cated magnetic ordering, and, when frustrated by the lattice geometry, may have finite specific entropy
even at T = 0.

7.5.3 Mean Field Theory of the Potts Model

The Hamiltonian for the Potts model is

Ĥ = −
∑
i<j

Jij δσi,σj −H
∑
i

δσi,1 . (7.114)

Here, σi ∈ {1, . . . , q}, with integer q. This is the so-called ‘q-state Potts model’. The quantity H is
analogous to an external magnetic field, and preferentially aligns (for H > 0) the local spins in the σ = 1
direction. We will assume H ≥ 0.

The q-component set is conveniently taken to be the integers from 1 to q, but it could be anything, such
as

σi ∈ {tomato, penny, ostrich, Grateful Dead ticket from 1987, . . .} . (7.115)

The interaction energy is −Jij if sites i and j contain the same object (q possibilities), and 0 if i and j
contain different objects (q2 − q possibilities).

The two-state Potts model is equivalent to the Ising model. Let the allowed values of σ be ±1. Then the
quantity

δσ,σ′ = 1
2 + 1

2 σσ
′ (7.116)

equals 1 if σ = σ′, and is zero otherwise. The three-state Potts model cannot be written as a simple
three-state Ising model, i.e. one with a bilinear interaction σ σ′ where σ ∈ {−1, 0,+1}. However, it is
straightforward to verify the identity

δσ,σ′ = 1 + 1
2 σσ

′ + 3
2 σ

2σ′2 − (σ2 + σ′2) . (7.117)

Thus, the q = 3-state Potts model is equivalent to a S = 1 (three-state) Ising model which includes
both bilinear (σσ′) and biquadratic (σ2σ′2) interactions, as well as a local field term which couples to the
square of the spin, σ2. In general one can find such correspondences for higher q Potts models, but, as
should be expected, the interactions become increasingly complex, with bi-cubic, bi-quartic, bi-quintic,
etc. terms. Such a formulation, however, obscures the beautiful Sq symmetry inherent in the model,
where Sq is the permutation group on q symbols, which has q! elements.
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Getting back to the mean field theory, we write the single site variational density matrix % as a diagonal
matrix with entries

%(σ) = x δσ,1 +

(
1− x
q − 1

)(
1− δσ,1

)
, (7.118)

with %N (σ1, . . . , σN ) = %(σ1) · · · %(σN ). Note that Tr (%) = 1. The variational parameter is x. When
x = q−1, all states are equally probable. But for x > q−1, the state σ = 1 is preferred, and the other (q−1)
states have identical but smaller probabilities. It is a simple matter to compute the energy and entropy:

E = Tr (%NĤ) = −1
2NĴ(0)

{
x2 +

(1− x)2

q − 1

}
−NHx

S = −kB Tr (%N ln %N ) = −NkB

{
x lnx+ (1− x) ln

(
1− x
q − 1

)}
.

(7.119)

The dimensionless free energy per site is then

f(x, θ, h) = −1
2

{
x2 +

(1− x)2

q − 1

}
+ θ

{
x lnx+ (1− x) ln

(
1− x
q − 1

)}
− hx , (7.120)

where h = H/Ĵ(0). We now extremize with respect to x to obtain the mean field equation,

∂f

∂x
= 0 = −x+

1− x
q − 1

+ θ lnx− θ ln

(
1− x
q − 1

)
− h . (7.121)

Note that for h = 0, x = q−1 is a solution, corresponding to a disordered state in which all states are
equally probable. At high temperatures, for small h, we expect x− q−1 ∝ h. Indeed, using Mathematica

one can set
x ≡ q−1 + s , (7.122)

and expand the mean field equation in powers of s. One obtains

h =
q (qθ − 1)

q − 1
s+

q3 (q − 2) θ

2 (q − 1)2
s2 +O(s3) . (7.123)

For weak fields, |h| � 1, and we have

s(θ) =
(q − 1)h

q (qθ − 1)
+O(h2) , (7.124)

which again is of the Curie-Weiss form. The difference s = x − q−1 is the order parameter for the
transition.

Finally, one can expand the free energy in powers of s, obtaining the Landau expansion,

f(s, θ, h) = −2h+ 1

2q
− θ ln q − hs+

q (qθ − 1)

2 (q − 1)
s2 − (q − 2) q3 θ

6 (q − 1)2
s3

+
q3θ

12

[
1 + (q − 1)−3

]
s4 − q4θ

20

[
1− (q − 1)−4

]
s5

+
q5θ

30

[
1 + (q − 1)−5

]
s6 + . . . .

(7.125)
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Note that, for q = 2, the coefficients of s3, s5, and higher order odd powers of s vanish in the Landau
expansion. This is consistent with what we found for the Ising model, and is related to the Z2 symmetry
of that model. For q > 3, there is a cubic term in the mean field free energy, and thus we generically
expect a first order transition, as we shall see below when we discuss Landau theory.

7.5.4 Mean Field Theory of the XY Model

Consider the so-called XY model, in which each site contains a continuous planar spin, represented by
an angular variable φi ∈ [−π, π] :

Ĥ = −1

2

∑
i 6=j

Jij cos
(
φi − φj

)
−H

∑
i

cosφi . (7.126)

We write the (diagonal elements of the) full density matrix once again as a product:

%N (φ1, φ2, . . .) =
∏
i

%(φi) . (7.127)

Our goal will be to extremize the free energy with respect to the function %(φ). To this end, we compute

E = Tr (%N Ĥ) = −1
2NĴ(0)

∣∣∣Tr (% eiφ)∣∣∣2 −NH Tr
(
% cosφ

)
. (7.128)

The entropy is
S = −NkB Tr (% ln %) . (7.129)

Note that for any function A(φ), we have14

Tr
(
%A) ≡

π∫
−π

dφ

2π
%(φ)A(φ) . (7.130)

We now extremize the functional F
[
%(φ)

]
= E − TS with respect to %(φ), under the condition that

Tr % = 1. We therefore use Lagrange’s method of undetermined multipliers, writing

F ∗ = F −NkBT λ
(
Tr %− 1

)
. (7.131)

Note that F ∗ is a function of the Lagrange multiplier λ and a functional of the density matrix %(φ). The
prefactor NkBT which multiplies λ is of no mathematical consequence – we could always redefine the
multiplier to be λ′ ≡ NkBTλ. It is present only to maintain homogeneity and proper dimensionality of
F ∗ with λ itself dimensionless and of order N0. We now have

δF ∗

δ%(φ)
=

δ

δ%(φ)

{
− 1

2NĴ(0)
∣∣∣Tr(% eiφ)∣∣∣2 −NH Tr

(
% cosφ

)
+NkBT Tr

(
% ln %

)
−NkBT λ

(
Tr %− 1

)}
.

(7.132)

14The denominator of 2π in the measure is not necessary, and in fact it is even slightly cumbersome. It divides out whenever
we take a ratio to compute a thermodynamic average. I introduce this factor to preserve the relation Tr 1 = 1. I personally
find unnormalized traces to be profoundly unsettling on purely aesthetic grounds.
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To this end, we note that

δ

δ%(φ)
Tr (%A) =

δ

δ%(φ)

π∫
−π

dφ

2π
%(φ)A(φ) =

1

2π
A(φ) . (7.133)

Thus, we have

δF̃

δ%(φ)
= −1

2NĴ(0) · 1

2π

[
Tr
φ′

(
% eiφ

′)
e−iφ + Tr

φ′

(
% e−iφ

′)
eiφ

]
−NH · cosφ

2π

+NkBT ·
1

2π

[
ln %(φ) + 1

]
−NkBT ·

λ

2π
.

(7.134)

Now let us define

Tr
φ

(
% eiφ

)
=

π∫
−π

dφ

2π
%(φ) eiφ ≡ meiφ0 . (7.135)

We then have

ln %(φ) =
Ĵ(0)

kBT
m cos(φ− φ0) +

H

kBT
cosφ+ λ− 1. (7.136)

Clearly the free energy will be reduced if φ0 = 0 so that the mean field is maximal and aligns with the
external field, which prefers φ = 0. Thus, we conclude

%(φ) = C exp

(
Heff

kBT
cosφ

)
, (7.137)

where
Heff = Ĵ(0)m+H (7.138)

and C = eλ−1. The value of λ is then determined by invoking the constraint,

Tr % = 1 = C
π∫
−π

dφ

2π
exp

(
Heff

kBT
cosφ

)
= C I0(Heff/kBT ) , (7.139)

where I0(z) is the Bessel function. We are free to define ε ≡ Heff/kBT , and treat ε as our single variational
parameter. We then have the normalized single site density matrix

%(φ) =
exp(ε cosφ)

π∫
−π

dφ′

2π exp(ε cosφ′)

=
exp(ε cosφ)

I0(ε)
. (7.140)

We next compute the following averages:

〈
e±iφ

〉
=

π∫
−π

dφ

2π
%(φ) e±iφ =

I1(ε)

I0(ε)
(7.141)

〈
cos(φ− φ′)

〉
= Re

〈
eiφ e−iφ

′〉
=

(
I1(ε)

I0(ε)

)2

, (7.142)
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as well as

Tr (% ln %) =

π∫
−π

dφ

2π

eε cosφ

I0(ε)

{
ε cosφ− ln I0(ε)

}
= ε

I1(ε)

I0(ε)
− ln I0(ε) . (7.143)

The dimensionless free energy per site is therefore

f(ε, h, θ) = −1

2

(
I1(ε)

I0(ε)

)2

+ (θε− h)
I1(ε)

I0(ε)
− θ ln I0(ε) , (7.144)

with θ = kBT/Ĵ(0) and h = H/Ĵ(0) and f = F/NĴ(0) as before. Note that the mean field equation is
m = θε− h =

〈
eiφ
〉

, i.e.

θε− h =
I1(ε)

I0(ε)
. (7.145)

For small ε, we may expand the Bessel functions, using

Iν(z) = (1
2z)

ν
∞∑
k=0

(1
4z

2)k

k! Γ(k + ν + 1)
, (7.146)

to obtain
f(ε, h, θ) = 1

4

(
θ − 1

2

)
ε2 + 1

64

(
2− 3θ

)
ε4 − 1

2 hε+ 1
16 hε

3 + . . . . (7.147)

This predicts a second order phase transition at θc = 1
2 .15 Note also the Curie-Weiss form of the suscep-

tibility at high θ:
∂f

∂ε
= 0 =⇒ ε =

h

θ − θc
+ . . . . (7.148)

7.5.5 XY model via neglect of fluctuations method

Consider again the Hamiltonian of eqn. 7.126. Define zi ≡ exp(iφi) and write

zi = w + δzi , (7.149)

where w ≡ 〈zi〉 and δzi ≡ zi − w. Of course we also have the complex conjugate relations z∗i = w∗ + δz∗i
and w∗ = 〈z∗i 〉. Writing cos(φi−φj) = Re (z∗i zj) , by neglecting the terms proportional to δz∗i δzj in Ĥ we
arrive at the mean field Hamiltonian,

ĤMF = 1
2NĴ(0) |w|2 − 1

2 Ĵ(0) |w|
∑
i

(
w∗zi + wz∗i

)
− 1

2H
∑
i

(
z∗i + zi

)
(7.150)

It is clear that the free energy will be minimized if the mean field w breaks the O(2) symmetry in the
same direction as the external field H , which means w ∈ R and

ĤMF = 1
2NĴ(0) |w|2 −

(
H + Ĵ(0) |w|

)∑
i

cosφi . (7.151)

15Note that the coefficient of the quartic term in ε is negative for θ > 2
3

. At θ = θc = 1
2

, the coefficient is positive, but for
larger θ one must include higher order terms in the Landau expansion.
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The dimensionless free energy per site is then

f = 1
2 |w|

2 − θ ln I0

(
h+ |w|
θ

)
. (7.152)

Differentiating with respect to |w| , one obtains

|w| ≡ m =
I1

(
h+m
θ

)
I0

(
h+m
θ

) , (7.153)

which is the same equation as eqn. 7.145. The two mean field theories yield the same results in every
detail (see §7.10).

7.6 Landau Theory of Phase Transitions

Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic
system in terms of an order parameter, which is nonzero in an ordered phase and zero in a disordered
phase. For example, the magnetizationM of a ferromagnet in zero external field but at finite temperature
typically vanishes for temperatures T > Tc, where Tc is the critical temperature, also called the Curie
temperature in a ferromagnet. A low order expansion in powers of the order parameter is appropriate
sufficiently close to the phase transition, i.e. at temperatures such that the order parameter, if nonzero,
is still small.

The simplest example is the quartic free energy,

f(m,h = 0, θ) = f0 + 1
2am

2 + 1
4bm

4 , (7.154)

where f0 = f0(θ), a = a(θ), and b = b(θ). Here, θ is a dimensionless measure of the temperature. If for
example the local exchange energy in the ferromagnet is J , then we might define θ = kBT/zJ , as before.
Let us assume b > 0, which is necessary if the free energy is to be bounded from below16. The equation
of state ,

∂f

∂m
= 0 = am+ bm3 , (7.155)

has three solutions in the complex m plane: (i) m = 0, (ii) m =
√
−a/b , and (iii) m = −

√
−a/b . The

latter two solutions lie along the (physical) real axis if a < 0. We assume that there exists a unique
temperature θc where a(θc) = 0. Minimizing f , we find

θ < θc : f(θ) = f0 −
a2

4b
θ > θc : f(θ) = f0 .

(7.156)

The free energy is continuous at θc since a(θc) = 0. The specific heat, however, is discontinuous across
the transition, with

c
(
θ+

c

)
− c
(
θ−c
)

= −θc
∂2

∂θ2

∣∣∣∣
θ=θc

(
a2

4b

)
= −

θc

[
a′(θc)

]2
2b(θc)

. (7.157)

16It is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to consider higher
order terms in the Landau expansion.
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Figure 7.14: Phase diagram for the quartic Landau free energy f = f0 + 1
2am

2 + 1
4bm

4− hm, with b > 0.
There is a first order line at h = 0 extending from a = −∞ and terminating in a critical point at a = 0.
For |h| < h∗(a) (dashed red line) there are three solutions to the mean field equation, corresponding to
one global minimum, one local minimum, and one local maximum. Insets show behavior of the free
energy f(m).

The presence of a magnetic field h breaks the Z2 symmetry of m→ −m. The free energy becomes

f(m,h, θ) = f0 + 1
2am

2 + 1
4bm

4 − hm , (7.158)

and the mean field equation is
bm3 + am− h = 0 . (7.159)

This is a cubic equation for m with real coefficients, and as such it can either have three real solutions
or one real solution and two complex solutions related by complex conjugation. Clearly we must have
a < 0 in order to have three real roots, since bm3 + am is monotonically increasing otherwise. The
boundary between these two classes of solution sets occurs when two roots coincide, which means
f ′′(m) = 0 as well as f ′(m) = 0. Simultaneously solving these two equations, we find

h∗(a) = ± 2

33/2

(−a)3/2

b1/2
, (7.160)

or, equivalently,

a∗(h) = − 3

22/3
b1/3 |h|2/3. (7.161)

If, for fixed h, we have a < a∗(h), then there will be three real solutions to the mean field equation
f ′(m) = 0, one of which is a global minimum (the one for which m · h > 0). For a > a∗(h) there is only
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a single global minimum, at which m also has the same sign as h. If we solve the mean field equation
perturbatively in h/a, we find

m(a, h) =
h

a
− b

a4
h3 +O(h5) (a > 0)

= ±|a|
1/2

b1/2
+

h

2 |a|
± 3 b1/2

8 |a|5/2
h2 +O(h3) (a < 0) .

(7.162)

7.6.1 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,

f = f0 + 1
2am

2 − 1
3ym

3 + 1
4bm

4 , (7.163)

with b > 0 for stability. Without loss of generality, we may assume y > 0 (else send m→ −m). Note that
we no longer have m → −m (i.e. Z2) symmetry. The cubic term favors positive m. What is the phase
diagram in the (a, y) plane?

Extremizing the free energy with respect to m, we obtain

∂f

∂m
= 0 = am− ym2 + bm3 . (7.164)

This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The
three solutions are m = 0 and

m = m± ≡
y

2b
±
√( y

2b

)2
− a

b
. (7.165)

We now see that for y2 < 4ab there is only one real solution, at m = 0, while for y2 > 4ab there are three
real solutions. Which solution has lowest free energy? To find out, we compare the energy f(0) with
f(m+)17. Thus, we set

f(m) = f(0) =⇒ 1
2am

2 − 1
3ym

3 + 1
4bm

4 = 0 , (7.166)

and we now have two quadratic equations to solve simultaneously:

0 = a− ym+ bm2

0 = 1
2a−

1
3ym+ 1

4bm
2 = 0 .

(7.167)

Eliminating the quadratic term givesm = 3a/y. Finally, substitutingm = m+ gives us a relation between
a, b, and y:

y2 = 9
2 ab . (7.168)

17We needn’t waste our time considering the m = m− solution, since the cubic term prefers positive m.
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Figure 7.15: Behavior of the quartic free energy f(m) = 1
2am

2 − 1
3ym

3 + 1
4bm

4. A: y2 < 4ab ; B:
4ab < y2 < 9

2ab ; C and D: y2 > 9
2ab. The thick black line denotes a line of first order transitions, where

the order parameter is discontinuous across the transition.

Thus, we have the following:

a >
y2

4b
: 1 real root m = 0

y2

4b
> a >

2y2

9b
: 3 real roots; minimum at m = 0

2y2

9b
> a : 3 real roots; minimum at m =

y

2b
+

√( y
2b

)2
− a

b

(7.169)

The solutionm = 0 lies at a local minimum of the free energy for a > 0 and at a local maximum for a < 0.
Over the range y2

4b > a > 2y2

9b , then, there is a global minimum at m = 0, a local minimum at m = m+,
and a local maximum at m = m−, with m+ > m− > 0. For 2y2

9b > a > 0, there is a local minimum at
a = 0, a global minimum at m = m+, and a local maximum at m = m−, again with m+ > m− > 0.
For a < 0, there is a local maximum at m = 0, a local minimum at m = m−, and a global minimum at
m = m+, with m+ > 0 > m−. See fig. 7.15.

With y = 0, we have a second order transition at a = 0. With y 6= 0, there is a discontinuous (first
order) transition at a = 2y2/9b > 0. This occurs before a reaches the value a = 0 where the curvature at
m = 0 turns negative. If we write a = α(T − T0), then the expected second order transition at T = T0 is
preempted by a first order transition at Tc = T0 + 2y2/9αb.



7.6. LANDAU THEORY OF PHASE TRANSITIONS 39

7.6.2 Magnetization dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

∂m

∂t
= −Γ ∂f

∂m
, (7.170)

where Γ is a phenomenological kinetic coefficient. Assuming y > 0 and b > 0, it is convenient to
adimensionalize by writing

m ≡ y

b
· u , a ≡ y2

b
· r , t ≡ b

Γy2
· s . (7.171)

Then we obtain
∂u

∂s
= −∂ϕ

∂u
, (7.172)

where the dimensionless free energy function is

ϕ(u) = 1
2ru

2 − 1
3u

3 + 1
4u

4 . (7.173)

We see that there is a single control parameter, r. The fixed points of the dynamics are then the stationary
points of ϕ(u), where ϕ′(u) = 0, with

ϕ′(u) = u (r − u+ u2) . (7.174)

The solutions to ϕ′(u) = 0 are then given by

u∗ = 0 , u∗ = 1
2 ±

√
1
4 − r . (7.175)

For r > 1
4 there is one fixed point at u = 0, which is attractive under the dynamics u̇ = −ϕ′(u) since

ϕ′′(0) = r. At r = 1
4 there occurs a saddle-node bifurcation and a pair of fixed points is generated, one

stable and one unstable. As we see from fig. 7.14, the interior fixed point is always unstable and the
two exterior fixed points are always stable. At r = 0 there is a transcritical bifurcation where two fixed
points of opposite stability collide and bounce off one another (metaphorically speaking).

At the saddle-node bifurcation, r = 1
4 and u = 1

2 , and we find ϕ(u = 1
2 ; r = 1

4) = 1
192 , which is positive.

Thus, the thermodynamic state of the system remains at u = 0 until the value of ϕ(u+) crosses zero. This
occurs when ϕ(u) = 0 and ϕ′(u) = 0, the simultaneous solution of which yields r = 2

9 and u = 2
3 .

Suppose we slowly ramp the control parameter r up and down as a function of the dimensionless time s.
Under the dynamics of eqn. 7.172, u(s) flows to the first stable fixed point encountered – this is always
the case for a dynamical system with a one-dimensional phase space. Then as r is further varied, u
follows the position of whatever locally stable fixed point it initially encountered. Thus, u

(
r(s)

)
evolves

smoothly until a bifurcation is encountered. The situation is depicted by the arrows in fig. 7.16. The
equilibrium thermodynamic value for u(r) is discontinuous; there is a first order phase transition at
r = 2

9 , as we’ve already seen. As r is increased, u(r) follows a trajectory indicated by the magenta
arrows. For an negative initial value of u, the evolution as a function of r will be reversible. However,
if u(0) is initially positive, then the system exhibits hysteresis, as shown. Starting with a large positive
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Figure 7.16: Fixed points for ϕ(u) = 1
2ru

2 − 1
3u

3 + 1
4u

4 and flow under the dynamics u̇ = −ϕ′(u).
Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta arrows
show behavior under slowly increasing control parameter r and dark blue arrows show behavior under
slowly decreasing r. For u > 0 there is a hysteresis loop. The thick black curve shows the equilibrium
thermodynamic value of u(r), i.e. that value which minimizes the free energy ϕ(u). There is a first order
phase transition at r = 2

9 , where the thermodynamic value of u jumps from u = 0 to u = 2
3 .

value of r, u(s) quickly evolves to u = 0+, which means a positive infinitesimal value. Then as r is
decreased, the system remains at u = 0+ even through the first order transition, because u = 0 is an
attractive fixed point. However, once r begins to go negative, the u = 0 fixed point becomes repulsive,

and u(s) quickly flows to the stable fixed point u+ = 1
2 +

√
1
4 − r. Further decreasing r, the system

remains on this branch. If r is later increased, then u(s) remains on the upper branch past r = 0, until

the u+ fixed point annihilates with the unstable fixed point at u− = 1
2 −

√
1
4 − r, at which time u(s)

quickly flows down to u = 0+ again.

7.6.3 Sixth order Landau theory : tricritical point

Finally, consider a model with Z2 symmetry, with the Landau free energy

f = f0 + 1
2am

2 + 1
4bm

4 + 1
6cm

6 , (7.176)

with c > 0 for stability. We seek the phase diagram in the (a, b) plane. Extremizing f with respect to m,
we obtain

∂f

∂m
= 0 = m (a+ bm2 + cm4) , (7.177)
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Figure 7.17: Behavior of the sextic free energy f(m) = 1
2am

2 + 1
4bm

4 + 1
6cm

6. A: a > 0 and b > 0 ; B:
a < 0 and b > 0 ; C: a < 0 and b < 0 ; D: a > 0 and b < − 4√

3

√
ac ; E: a > 0 and − 4√

3

√
ac < b < −2

√
ac ;

F: a > 0 and −2
√
ac < b < 0. The thick dashed line is a line of second order transitions, which meets the

thick solid line of first order transitions at the tricritical point, (a, b) = (0, 0).

which is a quintic with five solutions over the complex m plane. One solution is obviously m = 0. The
other four are

m = ±

√√√√− b

2c
±

√(
b

2c

)2

− a

c
. (7.178)

For each ± symbol in the above equation, there are two options, hence four roots in all.

If a > 0 and b > 0, then four of the roots are imaginary and there is a unique minimum at m = 0.

For a < 0, there are only three solutions to f ′(m) = 0 for real m, since the − choice for the ± sign under
the radical leads to imaginary roots. One of the solutions is m = 0. The other two are

m = ±

√
− b

2c
+

√( b
2c

)2
− a

c
. (7.179)



42 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

Figure 7.18: Free energy ϕ(u) = 1
2ru

2 − 1
4u

4 + 1
6u

6 for several different values of the control parameter
r.

The most interesting situation is a > 0 and b < 0. If a > 0 and b < −2
√
ac, all five roots are real. There

must be three minima, separated by two local maxima. Clearly if m∗ is a solution, then so is −m∗. Thus,
the only question is whether the outer minima are of lower energy than the minimum at m = 0. We
assess this by demanding f(m∗) = f(0), where m∗ is the position of the largest root (i.e. the rightmost
minimum). This gives a second quadratic equation,

0 = 1
2a+ 1

4bm
2 + 1

6cm
4 , (7.180)

which together with equation 7.177 gives

b = − 4√
3

√
ac . (7.181)

Thus, we have the following, for fixed a > 0:

b > −2
√
ac : 1 real root m = 0

−2
√
ac > b > − 4√

3

√
ac : 5 real roots; minimum at m = 0 (7.182)

− 4√
3

√
ac > b : 5 real roots; minima at m = ±

√
− b

2c
+

√( b
2c

)2
− a

c

The point (a, b) = (0, 0), which lies at the confluence of a first order line and a second order line, is
known as a tricritical point.
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7.6.4 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics ṁ = −Γ f ′(m). We adimensionalize by writing

m ≡
√
|b|
c
· u , a ≡ b2

c
· r , t ≡ c

Γ b2
· s . (7.183)

Then we obtain once again the dimensionless equation

∂u

∂s
= −∂ϕ

∂u
, (7.184)

where
ϕ(u) = 1

2ru
2 ± 1

4u
4 + 1

6u
6 . (7.185)

In the above equation, the coefficient of the quartic term is positive if b > 0 and negative if b < 0. That
is, the coefficient is sgn(b). When b > 0 we can ignore the sextic term for sufficiently small u, and we
recover the quartic free energy studied earlier. There is then a second order transition at r = 0. .

New and interesting behavior occurs for b > 0. The fixed points of the dynamics are obtained by setting
ϕ′(u) = 0. We have

ϕ(u) = 1
2ru

2 − 1
4u

4 + 1
6u

6

ϕ′(u) = u (r − u2 + u4) .
(7.186)

Thus, the equation ϕ′(u) = 0 factorizes into a linear factor u and a quartic factor u4 − u2 + r which is
quadratic in u2. Thus, we can easily obtain the roots:

r < 0 : u∗ = 0 , u∗ = ±
√

1
2 +

√
1
4 − r

0 < r < 1
4 : u∗ = 0 , u∗ = ±

√
1
2 +

√
1
4 − r , u∗ = ±

√
1
2 −

√
1
4 − r

r > 1
4 : u∗ = 0 .

(7.187)

In fig. 7.19, we plot the fixed points and the hysteresis loops for this system. At r = 1
4 , there are two

symmetrically located saddle-node bifurcations at u = ± 1√
2
. We find ϕ(u = ± 1√

2
, r = 1

4) = 1
48 , which is

positive, indicating that the stable fixed point u∗ = 0 remains the thermodynamic minimum for the free
energy ϕ(u) as r is decreased through r = 1

4 . Setting ϕ(u) = 0 and ϕ′(u) = 0 simultaneously, we obtain
r = 3

16 and u = ±
√

3
2 . The thermodynamic value for u therefore jumps discontinuously from u = 0 to

u = ±
√

3
2 (either branch) at r = 3

16 ; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the fig-
ure, where the arrows show the evolution of u(s) for very slowly varying r(s). When the control param-
eter r is large and positive, the flow is toward the sole fixed point at u∗ = 0. At r = 1

4 , two simultaneous
saddle-node bifurcations take place at u∗ = ± 1√

2
; the outer branch is stable and the inner branch un-

stable in both cases. At r = 0 there is a subcritical pitchfork bifurcation, and the fixed point at u∗ = 0
becomes unstable.
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Figure 7.19: Fixed points ϕ′(u∗) = 0 for the sextic potential ϕ(u) = 1
2ru

2− 1
4u

4 + 1
6u

6, and corresponding
dynamical flow (arrows) under u̇ = −ϕ′(u). Solid curves show stable fixed points and dashed curves
show unstable fixed points. The thick solid black and solid grey curves indicate the equilibrium thermo-
dynamic values for u; note the overall u → −u symmetry. Within the region r ∈ [0, 1

4 ] the dynamics are
irreversible and the system exhibits the phenomenon of hysteresis. There is a first order phase transition
at r = 3

16 .

Suppose one starts off with r � 1
4 with some value u > 0. The flow u̇ = −ϕ′(u) then rapidly results

in u → 0+. This is the ‘high temperature phase’ in which there is no magnetization. Now let r increase
slowly, using s as the dimensionless time variable. The scaled magnetization u(s) = u∗

(
r(s)

)
will remain

pinned at the fixed point u∗ = 0+. As r passes through r = 1
4 , two new stable values of u∗ appear, but

our system remains at u = 0+, since u∗ = 0 is a stable fixed point. But after the subcritical pitchfork,
u∗ = 0 becomes unstable. The magnetization u(s) then flows rapidly to the stable fixed point at u∗ = 1√

2
,

and follows the curve u∗(r) =
(

1
2 + (1

4 − r)
1/2
)1/2 for all r < 0.

Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the stable
fixed point u∗(r) =

(
1
2 + (1

4 − r)
1/2
)1/2 past r = 0, beyond the first order phase transition point at r = 3

16 ,
and all the way up to r = 1

4 , at which point this fixed point is annihilated at a saddle-node bifurcation.
The flow then rapidly takes u→ u∗ = 0+, where it remains as r continues to be increased further.

Within the region r ∈
[
0, 1

4

]
of control parameter space, the dynamics are said to be irreversible and the

behavior of u(s) is said to be hysteretic.
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7.7 Mean Field Theory of Fluctuations

7.7.1 Correlation and response in mean field theory

Consider the Ising model,
Ĥ = −1

2

∑
i,j

Jij σi σj −
∑
k

Hk σk , (7.188)

where the local magnetic field on site k is now Hk. We assume without loss of generality that the
diagonal terms vanish: Jii = 0. Now consider the partition function Z = Tr e−βĤ as a function of the
temperature T and the local field values {Hi}. We have

∂Z

∂Hi

= β Tr
[
σi e
−βĤ

]
= βZ · 〈σi〉

∂2Z

∂Hi ∂Hj

= β2 Tr
[
σi σj e

−βĤ
]

= β2Z · 〈σi σj〉 .
(7.189)

Thus,

mi = − ∂F

∂Hi

= 〈σi〉

χ
ij =

∂mi

∂Hj

= − ∂2F

∂Hi∂Hj

=
1

kBT
·
{
〈σi σj〉 − 〈σi〉 〈σj〉

}
.

(7.190)

Expressions such as 〈σi〉, 〈σi σj〉, etc. are in general called correlation functions. For example, we define
the spin-spin correlation function Cij as

Cij ≡ 〈σi σj〉 − 〈σi〉 〈σj〉 . (7.191)

Expressions such as ∂F
∂Hi

and ∂2F
∂Hi ∂Hj

are called response functions. The above relation between correlation
functions and response functions, Cij = kBT χij , is valid only for the equilibrium distribution. In particular,
this relationship is invalid if one uses an approximate distribution, such as the variational density matrix
formalism of mean field theory.

The question then arises: within mean field theory, which is more accurate: correlation functions or
response functions? A simple argument suggests that the response functions are more accurate represen-
tations of the real physics. To see this, let’s write the variational density matrix %var as the sum of the
exact equilibrium (Boltzmann) distribution %eq = Z−1 exp(−βĤ) plus a deviation δ%:

%var = %eq + δ% . (7.192)

Then if we calculate a correlator using the variational distribution, we have

〈σi σj〉var = Tr
[
%var σi σj

]
= Tr

[
%eq σi σj

]
+ Tr

[
δ% σi σj

]
.

(7.193)
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Thus, the variational density matrix gets the correlator right to first order in δ%. On the other hand, the
free energy is given by

F var = F eq +
∑
σ

∂F

∂%σ

∣∣∣∣
%eq

δ%σ +
1

2

∑
σ,σ′

∂2F

∂%
σ
∂%σ′

∣∣∣∣
%eq

δ%σ δ%σ′ + . . . . (7.194)

Here σ denotes a state of the system, i.e. |σ 〉 = |σ1, . . . , σN 〉, where every spin polarization is specified.
Since the free energy is an extremum (and in fact an absolute minimum) with respect to the distribution,
the second term on the RHS vanishes. This means that the free energy is accurate to second order in the
deviation δ%.

7.7.2 Calculation of the response functions

Consider the variational density matrix

%(σ) =
∏
i

%i(σi) , (7.195)

where

%i(σi) =

(
1 +mi

2

)
δσi,1 +

(
1−mi

2

)
δσi,−1 . (7.196)

The variational energy E = Tr (% Ĥ) is

E = −1
2

∑
ij

Ji,jmimj −
∑
i

Himi (7.197)

and the entropy S = −kBT Tr (% ln %) is

S = −kB

∑
i

{(
1 +mi

2

)
ln

(
1 +mi

2

)
+

(
1−mi

2

)
ln

(
1−mi

2

)}
. (7.198)

Setting the variation ∂F
∂mi

= 0, with F = E − TS, we obtain the mean field equations,

mi = tanh
(
βJijmj + βHi

)
, (7.199)

where we use the summation convention: Jijmj ≡
∑

j Jijmj . Suppose T > Tc and mi is small. Then
we can expand the RHS of the above mean field equations, obtaining(

δij − βJij
)
mj = βHi . (7.200)

Thus, the susceptibility tensor χ is the inverse of the matrix (kBT · I− J) :

χ
ij =

∂mi

∂Hj

=
(
kBT · I− J

)−1

ij
, (7.201)
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where I is the identity. Note also that so-called connected averages of the kind in eqn. 7.191 vanish
identically if we compute them using our variational density matrix, since all the sites are independent,
hence

〈σi σj〉 = Tr
(
%var σi σj

)
= Tr

(
%i σi

)
· Tr

(
%j σj

)
= 〈σi〉 · 〈σj〉 , (7.202)

and therefore χij = 0 if we compute the correlation functions themselves from the variational density
matrix, rather than from the free energy F . As we have argued above, the latter approximation is more
accurate.

Assuming Jij = J(Ri − Rj), where Ri is a Bravais lattice site, we can Fourier transform the above
equation, resulting in

m̂(q) =
Ĥ(q)

kBT − Ĵ(q)
≡ χ̂(q) Ĥ(q) . (7.203)

Once again, our definition of lattice Fourier transform of a function φ(R) is

φ̂(q) ≡
∑
R

φ(R) e−iq·R

φ(R) = Ω

∫
Ω̂

ddq

(2π)d
φ̂(q) eiq·R ,

(7.204)

where Ω is the unit cell in real space, called the Wigner-Seitz cell, and Ω̂ is the first Brillouin zone, which
is the unit cell in reciprocal space. Similarly, we have

Ĵ(q) =
∑
R

J(R)
(

1− iq ·R− 1
2(q ·R)2 + . . .

)
= Ĵ(0) ·

{
1− q2R2

∗ +O(q4)
}
,

(7.205)

where

R2
∗ =

∑
RR

2J(R)

2d
∑
R J(R)

. (7.206)

Here we have assumed inversion symmetry for the lattice, in which case∑
R

RµRνJ(R) =
1

d
· δµν

∑
R

R2J(R) . (7.207)

On cubic lattices with nearest neighbor interactions only, one has R∗ = a/
√

2d, where a is the lattice
constant and d is the dimension of space.

Thus, with the identification kBTc = Ĵ(0), we have

χ̂(q) =
1

kB(T − Tc) + kBTcR
2
∗ q

2 +O(q4)

=
1

kBTcR
2
∗
· 1

ξ−2 + q2 +O(q4)
,

(7.208)
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where

ξ = R∗ ·
(
T − Tc

Tc

)−1/2

(7.209)

is the correlation length. With the definition

ξ(T ) ∝ |T − Tc|−ν (7.210)

as T → Tc, we obtain the mean field correlation length exponent ν = 1
2 . The exact result for the two-

dimensional Ising model is ν = 1, whereas ν ≈ 0.6 for the d = 3 Ising model. Note that χ̂(q = 0, T )
diverges as (T − Tc)

−1 for T > Tc.

In real space, we have

mi =
∑
j

χ
ij Hj , (7.211)

where

χ
ij = Ω

∫
ddq

(2π)d
χ̂(q) eiq·(Ri−Rj) . (7.212)

Note that χ̂(q) is properly periodic under q → q + G, where G is a reciprocal lattice vector, which
satisfies eiG·R = 1 for any direct Bravais lattice vectorR. Indeed, we have

χ̂−1
(q) = kBT − Ĵ(q)

= kBT − J
∑
δ

eiq·δ ,
(7.213)

where δ is a nearest neighbor separation vector, and where in the second line we have assumed nearest
neighbor interactions only. On cubic lattices in d dimensions, there are 2d nearest neighbor separation
vectors, δ = ±a êµ, where µ ∈ {1, . . . , d}. The real space susceptibility is then

χ(R) =

π∫
−π

dθ1

2π
· · ·

π∫
−π

dθd
2π

ein1θ1 · · · eindθd
kBT − (2J cos θ1 + . . .+ 2J cos θd)

, (7.214)

where R = a
∑d

µ=1 nµ êµ is a general direct lattice vector for the cubic Bravais lattice in d dimensions,
and the {nµ} are integers.

The long distance behavior was discussed in chapter 6 (see §6.5.9 on Ornstein-Zernike theory18). For
convenience we reiterate those results:

• In d = 1,

χ
d=1(x) =

(
ξ

2kBTcR
2
∗

)
e−|x|/ξ . (7.215)

18There is a sign difference between the particle susceptibility defined in chapter 6 and the spin susceptibility defined here.
The origin of the difference is that the single particle potential v as defined was repulsive for v > 0, meaning the local density
response δn should be negative, while in the current discussion a positive magnetic field H prefers m > 0.
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• In d > 1, with r →∞ and ξ fixed,

χOZ
d (r) ' Cd ·

ξ(3−d)/2

kBT R
2
∗
· e−r/ξ

r(d−1)/2
·
{

1 +O
(
d− 3

r/ξ

)}
, (7.216)

where the Cd are dimensionless constants.

• In d > 2, with ξ →∞ and r fixed (i.e. T → Tc at fixed separation r),

χ
d(r) '

C ′d
kBTR

2
∗
· e
−r/ξ

rd−2
·
{

1 +O
(
d− 3

r/ξ

)}
. (7.217)

In d = 2 dimensions we obtain

χ
d=2(r) ' C ′2

kBTR
2
∗
· ln
(
r

ξ

)
e−r/ξ ·

{
1 +O

(
1

ln(r/ξ)

)}
, (7.218)

where the C ′d are dimensionless constants.

7.7.3 Beyond the Ising model

Consider a general spin model, and a variational density matrix %var which is a product of single site
density matrices:

%var

[
{Si}

]
=
∏
i

%
(i)
1 (Si) , (7.219)

where Tr
(
%var S

)
= mi is the local magnetization and Si , which may be a scalar (e.g., σi in the Ising

model previously discussed), is the local spin operator. Note that %(i)
1 (Si) depends parametrically on the

variational parameter(s)mi. Let the Hamiltonian be

Ĥ = −1
2

∑
i,j

Jµνij S
µ
i S

ν
j +

∑
i

h(Si)−
∑
i

Hi · Si . (7.220)

The variational free energy is then

Fvar = −1
2

∑
i,j

Jµνij m
µ
i m

ν
j +

∑
i

ϕ(mi, T )−
∑
i

Hµ
i m

µ
i , (7.221)

where the single site free energy ϕ(mi, T ) in the absence of an external field is given by

ϕ(mi, T ) = Tr
[
%

(i)
1 (S)h(S)

]
+ kBT Tr

[
%

(i)
1 (S) ln %

(i)
1 (S)

]
(7.222)

We then have
∂Fvar

∂mµ
i

= −
∑
j

Jµνij m
ν
j −H

µ
i +

∂ϕ(mi, T )

∂mµ
i

. (7.223)

For the noninteracting system, we have Jµνij = 0 , and the weak field response must be linear. In this
limit we may write mµ

i = χ0
µν(T )Hν

i +O(H3
i ), and we conclude

∂ϕ(mi, T )

∂mµ
i

=
[
χ0(T )

]−1

µν
mν
i +O

(
m3
i

)
. (7.224)
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Note that this entails the following expansion for the single site free energy in zero field:

ϕ(mi, T ) = 1
2

[
χ0(T )

]−1

µν
mν
i m

ν
i +O(m4) . (7.225)

Finally, we restore the interaction term and extremize Fvar by setting ∂Fvar/∂m
µ
i = 0. To linear order,

then,
mµ
i = χ0

µν(T )
(
Hν
i +

∑
j

Jνλij m
λ
j

)
. (7.226)

Typically the local susceptibility is a scalar in the internal spin space, i.e. χ0
µν(T ) = χ0(T ) δµν , in which

case we obtain (
δµν δij − χ0(T ) Jµνij

)
mν
i = χ0(T )Hµ

i . (7.227)

In Fourier space, then,

χ̂µν(q, T ) = χ0(T )
(

1− χ0(T ) Ĵ(q)
)−1

µν
, (7.228)

where Ĵ(q) is the matrix whose elements are Ĵµν(q). If Ĵµν(q) = Ĵ(q) δµν , then the susceptibility is
isotropic in spin space, with

χ̂(q, T ) =
1[

χ0(T )
]−1 − Ĵ(q)

. (7.229)

Consider now the following illustrative examples:

(i) Quantum spin S with h(S) = 0 : We take the ẑ axis to be that of the local external magnetic
field, i.e. Ĥi . Write %1(S) = z−1 exp(uSz/kBT ), where u = u(m,T ) is obtained implicitly from the
relation m(u, T ) = Tr(%1 S

z). The normalization constant is

z = Tr euS
z/kBT =

S∑
j=−S

eju/kBT =
sinh

[
(S + 1

2)u/kBT ]

sinh
[
u/2kBT

] (7.230)

The relation between m, u, and T is then given by

m = 〈Sz〉 = kBT
∂ ln z

∂u
= (S + 1

2) ctnh
[
(S + 1

2)u/kBT
]
− 1

2 ctnh
[
u/2kBT

]
=
S(S + 1)

3kBT
u+O(u3) .

(7.231)

The free-field single-site free energy is then

ϕ(m, T ) = kBT Tr
(
%1 ln %1

)
= um− kBT ln z , (7.232)

whence
∂ϕ

∂m
= u+m

∂u

∂m
− kBT

∂ ln z

∂u

∂u

∂m
= u ≡ χ−1

0 (T )m+O(m3) , (7.233)

and we thereby obtain the result

χ0(T ) =
S(S + 1)

3kBT
, (7.234)

which is the Curie susceptibility.
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(ii) Classical spin S = S n̂ with h = 0 and n̂ an N -component unit vector : We take the single site
density matrix to be %1(S) = z−1 exp(u ·S/kBT ). The single site field-free partition function is then

z =

∫
dn̂

ΩN
exp(u · S/kBT ) = 1 +

S2 u2

N(kBT )2
+O(u4) (7.235)

and therefore

m = kBT
∂ ln z

∂u
=

S2 u

NkBT
+O(u3) , (7.236)

from which we read off χ0(T ) = S2/NkBT . Note that this agrees in the classical (S →∞) limit, for
N = 3, with our previous result.

(iii) Quantum spin S with h(S) = ∆(Sz)2 : This corresponds to so-called easy plane anisotropy, meaning
that the single site energy h(S) is minimized when the local spin vector S lies in the (x, y) plane.
As in example (i), we write %1(S) = z−1 exp(uSz/kBT ), yielding the same expression for z and the
same relation between z and u. What is different is that we must evaluate the local energy,

e (u, T ) = Tr
(
%1 h(S)

)
= ∆ (kBT )2 ∂

2 ln z

∂u2

=
∆

4

[
1

sinh2
[
u/2kBT ]

− (2S + 1)2

sinh2
[
(2S + 1)u/2kBT

]] =
S(S + 1)∆u2

6(kBT )2
+O(u4) .

(7.237)

We now have ϕ = e + um− kBT ln z, from which we obtain the susceptibility

χ0(T ) =
S(S + 1)

3(kBT + ∆)
. (7.238)

Note that the local susceptibility no longer diverges as T → 0, because there is always a gap in the
spectrum of h(S).
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7.8 Global Symmetries

7.8.1 Symmetries and symmetry groups

Interacting systems can be broadly classified according to their global symmetry group. Consider the
following five examples:

ĤIsing = −
∑
i<j

Jij σi σj σi ∈ {−1,+1}

Ĥp−clock = −
∑
i<j

Jij cos

(
2π(ni − nj)

p

)
ni ∈ {1, 2, . . . , p}

Ĥq−Potts = −
∑
i<j

Jij δσi,σj σi ∈ {1, 2, . . . , q} (7.239)

ĤXY = −
∑
i<j

Jij cos(φi − φj) φi ∈
[
0, 2π

]
ĤO(n) = −

∑
i<j

Jij Ω̂i · Ω̂j Ω̂i ∈ Sn−1 .

The Ising Hamiltonian is left invariant by the global symmetry group Z2, which has two elements, I and
η, with

η σi = −σi . (7.240)

I is the identity, and η2 = I. By simultaneously reversing all the spins σi → −σi, the interactions remain
invariant.

The degrees of freedom of the p-state clock model are integer variables ni each of which ranges from 1
to p. The Hamiltonian is invariant under the discrete group Zp, whose p elements are generated by the
single operation η, where

η ni =

{
ni + 1 if ni ∈ {1, 2, . . . , p− 1}
1 if ni = p .

(7.241)

Think of a clock with one hand and p ‘hour’ markings consecutively spaced by an angle 2π/p. In each
site i, a hand points to one of the p hour marks; this determines ni. The operation η simply advances all
the hours by one tick, with hour p advancing to hour 1, just as 23:00 military time is followed one hour
later by 00:00. The interaction cos

(
2π(ni − nj)/p

)
is invariant under such an operation. The p elements

of the group Zp are then
I , η , η2 , . . . , ηp−1 . (7.242)

We’ve already met up with the q-state Potts model, where each site supports a ‘spin’ σi which can be
in any of q possible states, which we may label by integers {1 , . . . , q}. The energy of two interacting
sites i and j is −Jij if σi = σj and zero otherwise. This energy function is invariant under global op-
erations of the symmetric group on q characters, Sq, which is the group of permutations of the sequence
{1 , 2 , 3 , . . . , q}. The group Sq has q! elements. Note the difference between a Zq symmetry and an Sq
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Figure 7.20: A domain wall in a one-dimensional Ising model.

symmetry. In the former case, the Hamiltonian is invariant only under the q-element cyclic permuta-
tions, e.g.

η ≡
(

1

2

2

3

· · ·
· · ·

q−1

q

q

1

)
and its powers ηl with l = 0, . . . , q − 1.

All these models – the Ising, p-state clock, and q-state Potts models – possess a global symmetry group
which is discrete. That is, each of the symmetry groups Z2, Zp, Sq is a discrete group, with a finite
number of elements. The XY Hamiltonian ĤXY on the other hand is invariant under a continuous
group of transformations φi → φi + α, where φi is the angle variable on site i. More to the point, we
could write the interaction term cos(φi − φj) as 1

2

(
z∗i zj + ziz

∗
j

)
, where zi = eiφi is a phase which lives

on the unit circle, and z∗i is the complex conjugate of zi. The model is then invariant under the global
transformation zi → eiαzi. The phases eiα form a group under multiplication, called U(1), which is the
same as O(2). Equivalently, we could write the interaction as Ω̂i · Ω̂j , where Ω̂i = (cosφi , sinφi), which
explains the O(2), symmetry, since the symmetry operations are global rotations in the plane, which is
to say the two-dimensional orthogonal group. This last representation generalizes nicely to unit vectors
in n dimensions, where

Ω̂ = (Ω1 , Ω2 , . . . , Ωn) (7.243)

with Ω̂2 = 1. The dot product Ω̂i · Ω̂j is then invariant under global rotations in this n-dimensional
space, which is the group O(n).

7.8.2 Lower critical dimension

Depending on whether the global symmetry group of a model is discrete or continuous, there exists a
lower critical dimension d` at or below which no phase transition may take place at finite temperature.
That is, for d ≤ d`, the critical temperature is Tc = 0. Owing to its neglect of fluctuations, mean field
theory generally overestimates the value of Tc because it overestimates the stability of the ordered phase.
Indeed, there are many examples where mean field theory predicts a finite Tc when the actual critical
temperature is Tc = 0. This happens whenever d ≤ d`.

Let’s test the stability of the ordered (ferromagnetic) state of the one-dimensional Ising model at low
temperatures. We consider order-destroying domain wall excitations which interpolate between regions
of degenerate, symmetry-related ordered phase, i.e. ↑↑↑↑↑ and ↓↓↓↓↓. For a system with a discrete sym-
metry at low temperatures, the domain wall is abrupt, on the scale of a single lattice spacing. If the
exchange energy is J , then the energy of a single domain wall is 2J , since a link of energy−J is replaced
with one of energy +J . However, there are N possible locations for the domain wall, hence its entropy
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Figure 7.21: Domain walls in the two-dimensional (left) and three-dimensional (right) Ising model.

is kB lnN . For a system with M domain walls, the free energy is

F = 2MJ − kBT ln

(
N

M

)
= N ·

{
2Jx+ kBT

[
x lnx+ (1− x) ln(1− x)

]}
,

(7.244)

where x = M/N is the density of domain walls, and where we have used Stirling’s approximation for
k! when k is large. Extremizing with respect to x, we find

x

1− x
= e−2J/kBT =⇒ x =

1

e2J/kBT + 1
. (7.245)

The average distance between domain walls is x−1, which is finite for finite T . Thus, the thermodynamic
state of the system is disordered, with no net average magnetization.

Consider next an Ising domain wall in d dimensions. Let the linear dimension of the system be L · a,
where L is a real number and a is the lattice constant. Then the energy of a single domain wall which
partitions the entire system is 2J · Ld−1. The domain wall entropy is difficult to compute, because the
wall can fluctuate significantly, but for a single domain wall we have S >∼ kB lnL. Thus, the free energy
F = 2JLd−1 − kBT lnL is dominated by the energy term if d > 1, suggesting that the system may be
ordered. We can do a slightly better job in d = 2 by writing

Z ≈ exp

(
Ld
∑
P

NP e
−2PJ/kBT

)
, (7.246)

where the sum is over all closd loops of perimeter P , and NP is the number of such loops. An example
of such a loop circumscribing a domain is depicted in the left panel of fig. 7.21. It turns out that

NP ' κPP−θ ·
{

1 +O(P−1)
}
, (7.247)

where κ = z− 1 with z the lattice coordination number, and θ is some exponent. We can understand the
κP factor in the following way. At each step along the perimeter of the loop, there are κ = z−1 possible
directions to go (since one doesn’t backtrack). The fact that the loop must avoid overlapping itself and
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must return to its original position to be closed leads to the power law term P−θ, which is subleading
since κPP−θ = exp(P lnκ− θ lnP ) and P � lnP for P � 1. Thus,

F ≈ − 1

β
Ld
∑
P

P−θ e(lnκ−2βJ)P , (7.248)

which diverges if lnκ > 2βJ , i.e. if T > 2J/kB ln(z − 1). We identify this singularity with the phase
transition. The high temperature phase involves a proliferation of such loops. The excluded volume
effects between the loops, which we have not taken into account, then enter in an essential way so that
the sum converges. Thus, we have the following picture:

lnκ < 2βJ : large loops suppressed ; ordered phase
lnκ > 2βJ : large loops proliferate ; disordered phase .

On the square lattice, we obtain

kBT
approx
c =

2J

ln 3
= 1.82 J

kBT
exact
c =

2J

sinh−1(1)
= 2.27 J .

The agreement is better than we should reasonably expect from such a crude argument.

Nota bene : Beware of arguments which allegedly prove the existence of an ordered phase. Generally
speaking, any approximation will underestimate the entropy, and thus will overestimate the stability of
the putative ordered phase.

7.8.3 Continuous symmetries

When the global symmetry group is continuous, the domain walls interpolate smoothly between or-
dered phases. The energy generally involves a stiffness term,

E = 1
2ρs

∫
ddr (∇θ)2 , (7.249)

where θ(r) is the angle of a local rotation about a single axis and where ρs is the spin stiffness. Of course,
in O(n) models, the rotations can be with respect to several different axes simultaneously.

In the ordered phase, we have θ(r) = θ0, a constant. Now imagine a domain wall in which θ(r) rotates
by 2π across the width of the sample. We write θ(r) = 2πnx/L, where L is the linear size of the sample
(here with dimensions of length) and n is an integer telling us how many complete twists the order
parameter field makes. The domain wall then resembles that in fig. 7.22. The gradient energy is

E = 1
2ρs L

d−1

L∫
0

dx

(
2πn

L

)2

= 2π2n2ρs L
d−2 . (7.250)
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Figure 7.22: A domain wall in an XY ferromagnet.

Recall that in the case of discrete symmetry, the domain wall energy scaled as E ∝ Ld−1. Thus, with
S >∼ kB lnL for a single wall, we see that the entropy term dominates if d ≤ 2, in which case there is no
finite temperature phase transition. Thus, the lower critical dimension d` depends on whether the global
symmetry is discrete or continuous, with

discrete global symmetry =⇒ d` = 1

continuous global symmetry =⇒ d` = 2 .

Note that all along we have assumed local, short-ranged interactions. Long-ranged interactions can en-
hance order and thereby suppress d`.

Thus, we expect that for models with discrete symmetries, d` = 1 and there is no finite temperature
phase transition for d ≤ 1. For models with continuous symmetries, d` = 2, and we expect Tc = 0 for
d ≤ 2. In this context we should emphasize that the two-dimensional XY model does exhibit a phase
transition at finite temperature, called the Kosterlitz-Thouless transition. However, this phase transition
is not associated with the breaking of the continuous global O(2) symmetry and rather has to do with
the unbinding of vortices and antivortices. So there is still no true long-ranged order below the critical
temperature TKT, even though there is a phase transition!

7.8.4 Random systems : Imry-Ma argument

Oftentimes, particularly in condensed matter systems, intrinsic randomness exists due to quenched
impurities, grain boundaries, immobile vacancies, etc. How does this quenched randomness affect a
system’s attempt to order at T = 0? This question was taken up in a beautiful and brief paper by J.
Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975). Imry and Ma considered models in which there are
short-ranged interactions and a random local field coupling to the local order parameter:

ĤRFI = −J
∑
〈ij〉

σi σj −
∑
i

Hi σi (7.251)

ĤRFO(n) = −J
∑
〈ij〉

Ω̂i · Ω̂j −
∑
i

Hα
i Ω

α
i , (7.252)

where
〈〈Hα

i 〉〉 = 0 , 〈〈Hα
i H

β
j 〉〉 = Γ δαβ δij , (7.253)
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Figure 7.23: Left panel : Imry-Ma domains for an O(2) model. The arrows point in the direction of the
local order parameter field 〈Ω̂(r)〉. Right panel : free energy density as a function of domain size Ld.
Keep in mind that the minimum possible value for Ld is the lattice spacing a.

where 〈〈 · 〉〉 denotes a configurational average over the disorder. Imry and Ma reasoned that a system
could try to lower its free energy by forming domains in which the order parameter takes advantage of
local fluctuations in the random field. The size of these domains is assumed to be Ld, a length scale to
be determined. See the sketch in the left panel of fig. 7.23.

There are two contributions to the energy of a given domain: bulk and surface terms. The bulk energy
is

Ebulk = −Hrms (Ld/a)d/2 , (7.254)

where a is the lattice spacing. This is because when we add together (Ld/a)d random fields, the magni-
tude of the result is proportional to the square root of the number of terms, i.e. to (Ld/a)d/2. The quantity
Hrms =

√
Γ is the root-mean-square fluctuation in the random field at a given site. The surface energy is

Esurface ∝

{
J (Ld/a)d−1 (discrete symmetry)
J (Ld/a)d−2 (continuous symmetry) .

(7.255)

We compute the critical dimension dc by balancing the bulk and surface energies,

d− 1 = 1
2d =⇒ dc = 2 (discrete)

d− 2 = 1
2d =⇒ dc = 4 (continuous) .

The total free energy is F = (V/Ldd) ·∆E, where ∆E = Ebulk + Esurf . Thus, the free energy per unit cell
is

f =
F

V/ad
≈ J

(
a

Ld

)1
2dc

−Hrms

(
a

Ld

)1
2d

. (7.256)

If d < dc, the surface term dominates for small Ld and the bulk term dominates for large Ld There is
global minimum at

Ld

a
=

(
dc

d
· J

Hrms

) 2
dc−d

. (7.257)
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For d > dc, the relative dominance of the bulk and surface terms is reversed, and there is a global
maximum at this value of Ld.

Sketches of the free energy f(Ld) in both cases are provided in the right panel of fig. 7.23. We must keep
in mind that the domain size Ld cannot become smaller than the lattice spacing a. Hence we should
draw a vertical line on the graph at Ld = a and discard the portion Ld < a as unphysical. For d < dc, we
see that the state with Ld =∞, i.e. the ordered state, is never the state of lowest free energy. In dimensions
d < dc, the ordered state is always unstable to domain formation in the presence of a random field.

For d > dc, there are two possibilities, depending on the relative size of J and Hrms. We can see this
by evaluating f(Ld = a) = J − Hrms and f(Ld = ∞) = 0. Thus, if J > Hrms, the minimum energy
state occurs for Ld = ∞. In this case, the system has an ordered ground state, and we expect a finite
temperature transition to a disordered state at some critical temperature Tc > 0. If, on the other hand,
J < Hrms, then the fluctuations in H overwhelm the exchange energy at T = 0, and the ground state is
disordered down to the very smallest length scale (i.e. the lattice spacing a).

Please read the essay, “Memories of Shang-Keng Ma,” at http://sip.clarku.edu/skma.html.

7.9 Ginzburg-Landau Theory

7.9.1 Ginzburg-Landau free energy

Including gradient terms in the free energy, we write

F
[
m(x) , h(x)

]
=

∫
ddx

{
f0 + 1

2am
2 + 1

4bm
4 + 1

6cm
6 − hm+ 1

2κ (∇m)2 + . . .

}
. (7.258)

In principle, any term which does not violate the appropriate global symmetry will turn up in such
an expansion of the free energy, with some coefficient. Examples include hm3 (both m and h are odd
under time reversal), m2(∇m)2, etc. We now ask: what function m(x) extremizes the free energy func-
tional F

[
m(x) , h(x)

]
? The answer is that m(x) must satisfy the corresponding Euler-Lagrange equa-

tion, which for the above functional is

am+ bm3 + cm5 − h− κ∇2m = 0 . (7.259)

If a > 0 and h is small (we assume b > 0 and c > 0), we may neglect the m3 and m5 terms and write(
a− κ∇2

)
m = h , (7.260)

whose solution is obtained by Fourier transform as

m̂(q) =
ĥ(q)

a+ κq2
, (7.261)

which, with h(x) appropriately defined, recapitulates the result in eqn. 7.203. Thus, we conclude that

χ̂(q) =
1

a+ κq2
, (7.262)

http://sip.clarku.edu/skma.html
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which should be compared with eqn. 7.208. For continuous functions, we have

m̂(q) =

∫
ddx m(x) e−iq·x

m(x) =

∫
ddq

(2π)d
m̂(q) eiq·x .

(7.263)

We can then derive the result
m(x) =

∫
ddx′ χ(x− x′) h(x′) , (7.264)

where

χ(x− x′) =
1

κ

∫
ddq

(2π)d
eiq·(x−x

′)

q2 + ξ−2
, (7.265)

where the correlation length is ξ =
√
κ/a ∝ (T − Tc)

−1/2, as before.

If a < 0 then there is a spontaneous magnetization and we write m(x) = m0 + δm(x). Assuming h is
weak, we then have two equations

a+ bm2
0 + cm4

0 = 0

(a+ 3bm2
0 + 5cm4

0 − κ∇2) δm = h .
(7.266)

If −a > 0 is small, we have m2
0 = −a/3b and

δm̂(q) =
ĥ(q)

−2a+ κq2
, (7.267)

7.9.2 Domain wall profile

A particularly interesting application of Ginzburg-Landau theory is its application toward modeling the
spatial profile of defects such as vortices and domain walls. Consider, for example, the case of Ising (Z2)
symmetry with h = 0. We expand the free energy density to order m4:

F
[
m(x)

]
=

∫
ddx

{
f0 + 1

2am
2 + 1

4bm
4 + 1

2κ (∇m)2

}
. (7.268)

We assume a < 0, corresponding to T < Tc. Consider now a domain wall, where m(x → −∞) = −m0

and m(x → +∞) = +m0, where m0 is the equilibrium magnetization, which we obtain from the Euler-
Lagrange equation,

am+ bm3 − κ∇2m = 0 , (7.269)

assuming a uniform solution where ∇m = 0. This gives m0 =
√
|a|
/
b . It is useful to scale m(x) by m0,

writing m(x) = m0 φ(x). The scaled order parameter function φ(x) interpolates between φ(−∞) = −1
and φ(+∞) = 1.

It also proves useful to rescale position, writing x =
(
2κ/|a|

)1/2
ζ. Then we obtain

1
2∇

2φ = −φ+ φ3 . (7.270)
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We assume φ(ζ) = φ(ζ) is only a function of one coordinate, ζ ≡ ζ1. Then the Euler-Lagrange equation
becomes

d2φ

dζ2
= −2φ+ 2φ3 ≡ −∂U

∂φ
, (7.271)

where
U(φ) = −1

2

(
φ2 − 1

)2
. (7.272)

The ‘potential’ U(φ) is an inverted double well, with maxima at φ = ±1. The equation φ̈ = −U ′(φ),
where dot denotes differentiation with respect to ζ, is simply Newton’s second law with time replaced
by space. In order to have a stationary solution at ζ → ±∞ where φ = ±1, the total energy must be
E = U(φ = ±1) = 0, where E = 1

2 φ̇
2 + U(φ). This leads to the first order differential equation

dφ

dζ
= 1− φ2 , (7.273)

with solution
φ(ζ) = tanh(ζ) . (7.274)

Restoring the dimensionful constants,

m(x) = m0 tanh

(
x√
2 ξ

)
, (7.275)

where the coherence length ξ ≡
(
κ/|a|

)1/2 diverges at the Ising transition a = 0.

7.9.3 Derivation of Ginzburg-Landau free energy

We can make some progress in systematically deriving the Ginzburg-Landau free energy. Consider the
Ising model,

Ĥ

kBT
= −1

2

∑
i,j

Kij σi σj −
∑
i

hi σi + 1
2

∑
i

Kii , (7.276)

where now Kij = Jij/kBT and hi = Hi/kBT are the interaction energies and local magnetic fields in
units of kBT . The last term on the RHS above cancels out any contribution from diagonal elements of
Kij . Our derivation makes use of a generalization of the Gaussian integral,

∞∫
−∞

dx e−
1
2
ax2−bx =

(
2π

a

)1/2

eb
2/2a . (7.277)

The generalization is
∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN e−
1
2
Aijxixj−bixi =

(2π)N/2√
detA

e
1
2
A−1
ij bibj , (7.278)
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where we use the Einstein convention of summing over repeated indices, and where we assume that the
matrix A is positive definite (else the integral diverges). This allows us to write

Z = e−
1
2
Kii Tr

[
e

1
2
Kijσi σj ehi σi

]

= det−1/2(2πK) e−
1
2
Kii

∞∫
−∞

dφ1 · · ·
∞∫
−∞

dφN e−
1
2
K−1
ij φiφj Tr e(φi+hi)σi

= det−1/2(2πK) e−
1
2
Kii

∞∫
−∞

dφ1 · · ·
∞∫
−∞

dφN e−
1
2
K−1
ij φiφj e

∑
i ln[2 cosh(φi+hi)]

≡
∞∫
−∞

dφ1 · · ·
∞∫
−∞

dφN e−Φ(φ1,...,φN ) ,

(7.279)

where

Φ = 1
2

∑
i,j

K−1
ij φi φj −

∑
i

ln cosh(φi + hi) + 1
2 ln det (2πK) + 1

2 Tr K −N ln 2 . (7.280)

We assume the model is defined on a Bravais lattice, in which case we can write φi = φRi
. We can then

define the Fourier transforms,

φR =
1√
N

∑
q

φ̂q e
iq·R

φ̂q =
1√
N

∑
R

φR e
−iq·R

(7.281)

and
K̂(q) =

∑
R

K(R) e−iq·R . (7.282)

A few remarks about the lattice structure and periodic boundary conditions are in order. For a Bravais
lattice, we can write each direct lattice vector R as a sum over d basis vectors with integer coefficients,
viz.

R =

d∑
µ=1

nµ aµ , (7.283)

where d is the dimension of space. The reciprocal lattice vectors bµ satisfy

aµ · bν = 2π δµν , (7.284)

and any wavevector q may be expressed as

q =
1

2π

d∑
µ=1

θµ bµ . (7.285)
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We can impose periodic boundary conditions on a system of size M1 ×M2 × · · · ×Md by requiring

φ
R+

∑d
µ=1 lµMµaµ

= φR . (7.286)

This leads to the quantization of the wavevectors, which must then satisfy

eiMµ q·aµ = eiMµθµ = 1 , (7.287)

and therefore θµ = 2πmµ/Mµ , where mµ is an integer. There are then M1M2 · · ·Md = N independent
values of q, which can be taken to be those corresponding to mµ ∈ {1, . . . ,Mµ}.

Let’s now expand the function Φ
(
~φ
)

in powers of the φi, and to first order in the external fields hi. We
obtain

Φ = 1
2

∑
q

(
K̂−1(q)− 1

)
|φ̂q|2 + 1

12

∑
R

φ4
R −

∑
R

hR φR +O
(
φ6, h2

)
(7.288)

+ 1
2 Tr K + 1

2 Tr ln(2πK)−N ln 2

On a d-dimensional lattice, for a model with nearest neighbor interactions K1 only, we have K̂(q) =
K1

∑
δ e

iq·δ, where δ is a nearest neighbor separation vector. These are the eigenvalues of the matrix
Kij . We note that Kij is then not positive definite, since there are negative eigenvalues19. To fix this, we
can add a term K0 everywhere along the diagonal. We then have

K̂(q) = K0 +K1

∑
δ

cos(q · δ) . (7.289)

Here we have used the inversion symmetry of the Bravais lattice to eliminate the imaginary term. The
eigenvalues are all positive so long as K0 > zK1, where z is the lattice coordination number. We can
therefore write K̂(q) = K̂(0)− α q2 for small q, with α > 0. Thus, we can write

K̂−1(q)− 1 = a+ κ q2 + . . . . (7.290)

To lowest order in q the RHS is isotropic if the lattice has cubic symmetry, but anisotropy will enter in
higher order terms. We’ll assume isotropy at this level. This is not necessary but it makes the discussion
somewhat less involved. We can now write down our Ginzburg-Landau free energy density:

F = aφ2 + 1
2κ |∇φ|2 + 1

12 φ
4 − hφ , (7.291)

valid to lowest nontrivial order in derivatives, and to sixth order in φ.

One might wonder what we have gained over the inhomogeneous variational density matrix treatment,
where we found

F = −1
2

∑
q

Ĵ(q) |m̂(q)|2 −
∑
q

Ĥ(−q) m̂(q)

+ kBT
∑
i

{(
1 +mi

2

)
ln

(
1 +mi

2

)
+

(
1−mi

2

)
ln

(
1−mi

2

)}
.

(7.292)

19To evoke a negative eigenvalue on a d-dimensional cubic lattice, set qµ = π
a

for all µ. The eigenvalue is then −2dK1.
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Surely we could expand Ĵ(q) = Ĵ(0)− 1
2aq

2 + . . . and obtain a similar expression forF . However, such a
derivation using the variational density matrix is only approximate. The method outlined in this section
is exact.

Let’s return to our complete expression for Φ:

Φ
(
~φ
)

= Φ0

(
~φ
)

+
∑
R

v(φR) , (7.293)

where

Φ0

(
~φ
)

= 1
2

∑
q

G−1(q)
∣∣φ̂(q)

∣∣2 + 1
2 Tr

(
1

1 +G−1

)
+ 1

2 Tr ln

(
2π

1 +G−1

)
−N ln 2 . (7.294)

Here we have defined

v(φ) = 1
2φ

2 − ln coshφ

= 1
12 φ

4 − 1
45 φ

6 + 17
2520 φ

8 + . . .
(7.295)

and

G(q) =
K̂(q)

1− K̂(q)
. (7.296)

We now want to compute

Z =

∫
D~φ e−Φ0(~φ) e−

∑
R v(φR) (7.297)

where
D~φ ≡ dφ1 dφ2 · · · dφN . (7.298)

We expand the second exponential factor in a Taylor series, allowing us to write

Z = Z0

(
1−

∑
R

〈
v(φR)

〉
+ 1

2

∑
R

∑
R′

〈
v(φR) v(φR′)

〉
+ . . .

)
, (7.299)

where

Z0 =

∫
D~φ e−Φ0(~φ)

lnZ0 = 1
2 Tr

[
ln(1 +G)− G

1 +G

]
+N ln 2

(7.300)

and 〈
F
(
~φ
)〉

=

∫
D~φ F e−Φ0∫
D~φ e−Φ0

. (7.301)

To evaluate the various terms in the expansion of eqn. 7.299, we invoke Wick’s theorem, which says

〈
x
i1
x
i2
· · ·x

i2L

〉
=

∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN e−
1
2
G−1
ij xixj x

i1
x
i2
· · ·x

i2L

/ ∞∫
−∞

dx1 · · ·
∞∫
−∞

dxN e−
1
2
G−1
ij xixj

=
∑

all distinct
pairings

G
j1j2
G
j3j4
· · · G

j2L−1j2L
,

(7.302)
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where the sets {j1, . . . , j2L} are all permutations of the set {i1, . . . , i2L}. In particular, we have〈
x4
i

〉
= 3
(
Gii
)2
. (7.303)

In our case, we have 〈
φ4
R

〉
= 3

(
1

N

∑
q

G(q)

)2

. (7.304)

Thus, if we write v(φ) ≈ 1
12 φ

4 and retain only the quartic term in v(φ), we obtain

F

kBT
= − lnZ0 = 1

2 Tr

[
G

1 +G
− ln(1 +G)

]
+

1

4N

(
Tr G

)2 −N ln 2

= −N ln 2 +
1

4N

(
Tr G

)2 − 1

4
Tr
(
G2
)

+O
(
G3
)
.

(7.305)

Note that if we set Kij to be diagonal, then K̂(q) and hence G(q) are constant functions of q. TheO
(
G2
)

term then vanishes, which is required since the free energy cannot depend on the diagonal elements of
Kij .

7.9.4 Ginzburg criterion

Let us define A(T,H, V,N) to be the usual (i.e. thermodynamic) Helmholtz free energy. Then

e−βA =

∫
Dm e−βF [m(x)] , (7.306)

where the functional F [m(x)] is of the Ginzburg-Landau form, given in eqn. 7.268. The integral above is
a functional integral. We can give it a more precise meaning by defining its measure in the case of periodic
functions m(x) confined to a rectangular box. Then we can expand

m(x) =
1√
V

∑
q

m̂q e
iq·x , (7.307)

and we define the measure
Dm ≡ dm0

∏
q

qx>0

dRe m̂q d Im m̂q . (7.308)

Note that the fact that m(x) ∈ R means that m̂−q = m̂∗q. We’ll assume T > Tc and H = 0 and we’ll
explore limit T → T+

c from above to analyze the properties of the critical region close to Tc. In this limit
we can ignore all but the quadratic terms in m, and we have

e−βA =

∫
Dm exp

(
− 1

2β
∑
q

(a+ κ q2) |m̂q|2
)

=
∏
q

(
πkBT

a+ κ q2

)1/2

.

(7.309)
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Thus,

A = 1
2kBT

∑
q

ln

(
a+ κ q2

πkBT

)
. (7.310)

We now assume that a(T ) = αt, where t is the dimensionless quantity

t =
T − Tc

Tc

, (7.311)

known as the reduced temperature.

We now compute the heat capacity CV = −T ∂2A
∂T 2 . We are really only interested in the singular contri-

butions to CV , which means that we’re only interested in differentiating with respect to T as it appears
in a(T ). We divide by NSkB where NS is the number of unit cells of our system, which we presume is a
lattice-based model. Note NS ∼ V/ad where V is the volume and a the lattice constant. The dimension-
less heat capacity per lattice site is then

c ≡
CV
NS

=
α2ad

2κ2

Λ∫
ddq

(2π)d
1

(ξ−2 + q2)2
, (7.312)

where ξ = (κ/αt)1/2 ∝ |t|−1/2 is the correlation length, and where Λ ∼ a−1 is an ultraviolet cutoff. We
define R∗ ≡ (κ/α)1/2, in which case

c = R−4
∗ ad ξ4−d · 1

2

Λξ∫
ddq̄

(2π)d
1

(1 + q̄2)2
, (7.313)

where q̄ ≡ qξ. Thus,

c(t) ∼


const. if d > 4

− ln t if d = 4

t
d
2
−2 if d < 4 .

(7.314)

For d > 4, mean field theory is qualitatively accurate, with finite corrections. In dimensions d ≤ 4, the
mean field result is overwhelmed by fluctuation contributions as t → 0+ (i.e. as T → T+

c ). We see that
MFT is sensible provided the fluctuation contributions are small, i.e. provided

R−4
∗ ad ξ4−d � 1 , (7.315)

which entails t� tG, where

tG =

(
a

R∗

) 2d
4−d

(7.316)

is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely t� tG,
is known as the Ginzburg criterion. The region |t| < tG is known as the critical region.

In a lattice ferromagnet, as we have seen, R∗ ∼ a is on the scale of the lattice spacing itself, hence tG ∼ 1
and the critical regime is very large. Mean field theory then fails quickly as T → Tc. In a (conventional)
three-dimensional superconductor, R∗ is on the order of the Cooper pair size, and R∗/a ∼ 102 − 103,
hence tG = (a/R∗)

6 ∼ 10−18− 10−12 is negligibly narrow. The mean field theory of the superconducting
transition – BCS theory – is then valid essentially all the way to T = Tc.
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7.10 Appendix I : Equivalence of the Mean Field Descriptions

In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising
model, we obtained the same result m = tanh

(
(m + h)/θ

)
. What is perhaps not obvious is whether

these theories are in fact the same, i.e. if their respective free energies agree. Indeed, the two free energy
functions,

fA(m,h, θ) = −1
2 m

2 − hm+ θ

{(
1 +m

2

)
ln

(
1 +m

2

)
+

(
1−m

2

)
ln

(
1−m

2

)}
fB(m,h, θ) = +1

2 m
2 − θ ln

(
e+(m+h)/θ + e−(m+h)/θ

)
,

(7.317)

where fA is the variational density matrix result and fB is the mean field Hamiltonian result, clearly are
different functions of their arguments. However, it turns out that upon minimizing with respect to m
in each cast, the resulting free energies obey fA(h, θ) = fB(h, θ). This agreement may seem surprising.
The first method utilizes an approximate (variational) density matrix applied to the exact Hamiltonian
Ĥ . The second method approximates the Hamiltonian as ĤMF, but otherwise treats it exactly. The two
Landau expansions seem hopelessly different:

fA(m,h, θ) = −θ ln 2− hm+ 1
2 (θ − 1)m2 + θ

12 m
4 + θ

30 m
6 + . . .

fB(m,h, θ) = −θ ln 2 + 1
2m

2 − (m+ h)2

2 θ
+

(m+ h)4

12 θ3
− (m+ h)6

45 θ5
+ . . . .

(7.318)

We shall now prove that these two methods, the variational density matrix and the mean field approach,
are in fact equivalent, and yield the same free energy f(h, θ).

Let us generalize the Ising model and write

Ĥ = −
∑
i<j

Jij ε(σi, σj)−
∑
i

Φ(σi) . (7.319)

Here, each ‘spin’ σi may take on any of K possible values, {s1, . . . , sK}. For the S = 1 Ising model, we
would haveK = 3 possibilities, with s1 = −1, s2 = 0, and s3 = +1. But the set {sα}, with α ∈ {1, . . . ,K},
is completely arbitrary20. The ‘local field’ term Φ(σ) is also a completely arbitrary function. It may be
linear, with Φ(σ) = Hσ, for example, but it could also contain terms quadratic in σ, or whatever one
desires.

The symmetric, dimensionless interaction function ε(σ, σ′) = ε(σ′, σ) is a real symmetric K ×K matrix.
According to the singular value decomposition theorem, any such matrix may be written in the form

ε(σ, σ′) =

Ns∑
p=1

Ap λp(σ)λp(σ
′) , (7.320)

where the {Ap} are coefficients (the singular values), and the
{
λp(σ)

}
are the singular vectors. The

number of terms Ns in this decomposition is such that Ns ≤ K. This treatment can be generalized to
account for continuous σ.

20It needn’t be an equally spaced sequence, for example.
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7.10.1 Variational Density Matrix

The most general single-site variational density matrix is written

%(σ) =
K∑
α=1

xα δσ,sα . (7.321)

Thus, xα is the probability for a given site to be in state α, with σ = sα. The {xα} are the K variational
parameters, subject to the single normalization constraint,

∑
α xα = 1. We now have

f =
1

NĴ(0)

{
Tr (%Ĥ) + kBT Tr (% ln %)

}

= −1
2

∑
p

∑
α,α′

Ap λp(sα)λp(sα′)xα xα′ −
∑
α

ϕ(sα)xα + θ
∑
α

xα lnxα ,

(7.322)

where ϕ(σ) = Φ(σ)/Ĵ(0). We extremize in the usual way, introducing a Lagrange undetermined multi-
plier ζ to enforce the constraint. This means we extend the function f

(
{xα}

)
, writing

f∗(x1, . . . , xK , ζ) = f(x1, . . . , xK) + ζ

( K∑
α=1

xα − 1

)
, (7.323)

and freely extremizing with respect to the (K + 1) parameters {x1, . . . , xK , ζ}. This yields K nonlinear
equations,

0 =
∂f∗

∂xα
= −

∑
p

∑
α′

Ap λp(sα)λp(sα′)xα′ − ϕ(sα) + θ lnxα + ζ + θ , (7.324)

for each α, and one linear equation, which is the normalization condition,

0 =
∂f∗

∂ζ
=
∑
α

xα − 1 . (7.325)

We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them,
as

xα =
1

Z
exp

{
1

θ

[∑
p

∑
α′

Ap λp(sα)λp(sα′)xα′ + ϕ(sα)

]}
, (7.326)

with

Z = e(ζ/θ)+1 =
∑
α

exp

{
1

θ

[∑
p

∑
α′

Ap λp(sα)λp(sα′)xα′ + ϕ(sα)

]}
. (7.327)

From the logarithm of xα, we may compute the entropy, and, finally, the free energy:

f(θ) = 1
2

∑
p

∑
α,α′

Ap λp(sα)λp(sα′)xα xα′ − θ lnZ , (7.328)

which is to be evaluated at the solution of 7.324,
{
x∗α(h, θ)

}
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7.10.2 Mean Field Approximation

We now derive a mean field approximation in the spirit of that used in the Ising model above. We write

λp(σ) =
〈
λp(σ)

〉
+ δλp(σ) , (7.329)

and abbreviate λ̄p =
〈
λp(σ)

〉
, the thermodynamic average of λp(σ) on any given site. We then have

λp(σ)λp(σ
′) = λ̄2

p + λ̄p δλp(σ) + λ̄p δλp(σ
′) + δλp(σ) δλp(σ

′)

= −λ̄2
p + λ̄p

(
λp(σ) + λp(σ

′)
)

+ δλp(σ) δλp(σ
′) .

(7.330)

The product δλp(σ) δλp(σ
′) is of second order in fluctuations, and we neglect it. This leads us to the

mean field Hamiltonian,

ĤMF = +1
2NĴ(0)

∑
p

Ap λ̄
2
p −

∑
i

[
Ĵ(0)

∑
p

Ap λ̄p λp(σi) + Φ(σi)

]
. (7.331)

The free energy is then

f
(
{λ̄p}, θ

)
= 1

2

∑
p

Ap λ̄
2
p − θ ln

∑
α

exp

{
1

θ

[∑
p

Ap λ̄p λp(sα) + ϕ(sα)

]}
. (7.332)

The variational parameters are the mean field values
{
λ̄p
}

.

The single site probabilities {xα} are then

xα =
1

Z
exp

{
1

θ

[∑
p

Ap λ̄p λp(sα) + ϕ(sα)

]}
, (7.333)

with Z implied by the normalization
∑

α xα = 1. These results reproduce exactly what we found in eqn.
7.324, since the mean field equation here, ∂f/∂λ̄p = 0, yields

λ̄p =
K∑
α=1

λp(sα)xα . (7.334)

The free energy is immediately found to be

f(θ) = 1
2

∑
p

Ap λ̄
2
p − θ lnZ , (7.335)

which again agrees with what we found using the variational density matrix.

Thus, whether one extremizes with respect to the set {x1, . . . , xK , ζ}, or with respect to the set {λ̄p},
the results are the same, in terms of all these parameters, as well as the free energy f(θ). Generically,
both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to
a mean field which acts on each site independently21.

21The function Φ(σ) may involve one or more adjustable parameters which could correspond, for example, to an external
magnetic field h. We suppress these parameters when we write the free energy as f(θ).
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7.11 Appendix II : Additional Examples

7.11.1 Blume-Capel model

The Blume-Capel model provides a simple and convenient way to model systems with vacancies. The
simplest version of the model is written

Ĥ = −1
2

∑
i,j

Jij Si Sj + ∆
∑
i

S2
i . (7.336)

The spin variables Si range over the values {−1 , 0 , +1}, so this is an extension of the S = 1 Ising model.
We explicitly separate out the diagonal terms, writing Jii ≡ 0, and placing them in the second term on
the RHS above. We say that site i is occupied if Si = ±1 and vacant if Si = 0, and we identify −∆ as
the vacancy creation energy, which may be positive or negative, depending on whether vacancies are
disfavored or favored in our system.

We make the mean field Ansatz, writing Si = m+ δSi. This results in the mean field Hamiltonian,

ĤMF = 1
2NĴ(0)m2 − Ĵ(0)m

∑
i

Si + ∆
∑
i

S2
i . (7.337)

Once again, we adimensionalize, writing f ≡ F/NĴ(0), θ = kBT/Ĵ(0), and δ = ∆/Ĵ(0). We assume
Ĵ(0) > 0. The free energy per site is then

f(θ, δ,m) = 1
2m

2 − θ ln
(

1 + 2e−δ/θ cosh(m/θ)
)
. (7.338)

Extremizing with respect to m, we obtain the mean field equation,

m =
2 sinh(m/θ)

exp(δ/θ) + 2 cosh(m/θ)
. (7.339)

Note that m = 0 is always a solution. Finding the slope of the RHS at m = 0 and setting it to unity gives
us the critical temperature:

θc =
2

exp(δ/θc) + 2
. (7.340)

This is an implicit equation for θc in terms of the vacancy energy δ.

Let’s now expand the free energy in terms of the magnetization m. We find, to fourth order,

f = −θ ln
(
1 + 2e−δ/θ

)
+

1

2θ

(
θ − 2

2 + exp(δ/θ)

)
m2

+
1

12
(
2 + exp(δ/θ)

)
θ3

(
6

2 + exp(δ/θ)
− 1

)
m4 + . . . .

(7.341)

Note that setting the coefficient of the m2 term to zero yields the equation for θc. However, upon further
examination, we see that the coefficient of the m4 term can also vanish. As we have seen, when both the
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Figure 7.24: Mean field phase diagram for the Blume-Capel model. The black dot signifies a tricritical
point, where the coefficients ofm2 andm4 in the Landau free energy expansion both vanish. The dashed
curve denotes a first order transition, and the solid curve a second order transition. The thin dotted line
is the continuation of the θc(δ) relation to zero temperature.

coefficients of the m2 and the m4 terms vanish, we have a tricritical point22. Setting both coefficients to
zero, we obtain

θt = 1
3 , δt = 2

3 ln 2 . (7.342)

At θ = 0, it is easy to see we have a first order transition, simply by comparing the energies of the
paramagnetic (Si = 0) and ferromagnetic (Si = +1 or Si = −1) states. We have

EMF

NĴ(0)
=

{
0 if m = 0
1
2 −∆ if m = ±1 .

(7.343)

These results are in fact exact, and not only valid for the mean field theory. Mean field theory is approx-
imate because it neglects fluctuations, but at zero temperature, there are no fluctuations to neglect!

The phase diagram is shown in fig. 7.24. Note that for δ large and negative, vacancies are strongly
disfavored, hence the only allowed states on each site have Si = ±1, which is our old friend the two-
state Ising model. Accordingly, the phase boundary there approaches the vertical line θc = 1, which is
the mean field transition temperature for the two-state Ising model.

7.11.2 Ising antiferromagnet in an external field

Consider the following model:

Ĥ = J
∑
〈ij〉

σi σj −H
∑
i

σi , (7.344)

22We should really check that the coefficient of the sixth order term is positive, but that is left as an exercise to the eager
student.
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with J > 0 and σi = ±1. We’ve solved for the mean field phase diagram of the Ising ferromagnet; what
happens if the interactions are antiferromagnetic?

It turns out that under certain circumstances, the ferromagnet and the antiferromagnet behave exactly
the same in terms of their phase diagram, response functions, etc. This occurs when H = 0, and when
the interactions are between nearest neighbors on a bipartite lattice. A bipartite lattice is one which can
be divided into two sublattices, which we call A and B, such that an A site has only B neighbors, and a B
site has only A neighbors. The square, honeycomb, and body centered cubic (BCC) lattices are bipartite.
The triangular and face centered cubic lattices are non-bipartite. Now if the lattice is bipartite and the
interaction matrix Jij is nonzero only when i and j are from different sublattices (they needn’t be nearest
neighbors only), then we can simply redefine the spin variables such that

σ′j =

{
+σj if j ∈ A

−σj if j ∈ B .
(7.345)

Then σ′iσ
′
j = −σi σj , and in terms of the new spin variables the exchange constant has reversed. The

thermodynamic properties are invariant under such a redefinition of the spin variables.

We can see why this trick doesn’t work in the presence of a magnetic field, because the field H would
have to be reversed on the B sublattice. In other words, the thermodynamics of an Ising ferromagnet
on a bipartite lattice in a uniform applied field is identical to that of the Ising antiferromagnet, with the
same exchange constant (in magnitude), in the presence of a staggered field HA = +H and HB = −H .

We treat this problem using the variational density matrix method, using two independent variational
parameters mA and mB for the two sublattices:

%A(σ) =
1 +mA

2
δσ,1 +

1−mA

2
δσ,−1

%B(σ) =
1 +mB

2
δσ,1 +

1−mB

2
δσ,−1 .

(7.346)

With the usual adimensionalization, f = F/NzJ , θ = kBT/zJ , and h = H/zJ , we have the free energy

f(mA,mB) = 1
2mAmB − 1

2 h (mA +mB)− 1
2 θ s(mA)− 1

2 θ s(mB) , (7.347)

where the entropy function is

s(m) = −

[
1 +m

2
ln

(
1 +m

2

)
+

1−m
2

ln

(
1−m

2

)]
. (7.348)

Note that
ds

dm
= −1

2 ln

(
1 +m

1−m

)
,

d2s

dm2
= − 1

1−m2
. (7.349)

Differentiating f(mA,mB) with respect to the variational parameters, we obtain two coupled mean field
equations:

∂f

∂mA

= 0 =⇒ mB = h− θ

2
ln

(
1 +mA

1−mA

)
∂f

∂mB

= 0 =⇒ mA = h− θ

2
ln

(
1 +mB

1−mB

)
.

(7.350)
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Figure 7.25: Graphical solution to the mean field equations for the Ising antiferromagnet in an external
field, here for θ = 0.6. Clockwise from upper left: (a) h = 0.1, (b) h = 0.5, (c) h = 1.1, (d) h = 1.4.

Recognizing tanh−1(x) = 1
2 ln

[
(1 + x)/(1 − x)

]
, we may write these equations in an equivalent but

perhaps more suggestive form:

mA = tanh

(
h−mB

θ

)
, mB = tanh

(
h−mA

θ

)
. (7.351)

In other words, the A sublattice sites see an internal field H
A,int = −zJmB from their B neighbors, and

the B sublattice sites see an internal field H
B,int = −zJmA from their A neighbors.

We can solve these equations graphically, as in fig. 7.25. Note that there is always a paramagnetic
solution with mA = mB = m, where

m = h− θ

2
ln

(
1 +m

1−m

)
⇐⇒ m = tanh

(
h−m
θ

)
. (7.352)

However, we can see from the figure that there will be three solutions to the mean field equations pro-
vided that ∂mA

∂mB
< −1 at the point of the solution wheremA = mB = m. This gives us two equations with

which to eliminate mA and mB, resulting in the curve

h∗(θ) = m+
θ

2
ln

(
1 +m

1−m

)
with m =

√
1− θ . (7.353)
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Figure 7.26: Mean field phase diagram for the Ising antiferromagnet in an external field. The phase
diagram is symmetric under reflection in the h = 0 axis.

Thus, for θ < 1 and |h| < h∗(θ) there are three solutions to the mean field equations. It is usually the
case, the broken symmetry solutions, which mean those for which mA 6= mB in our case, are of lower
energy than the symmetric solution(s). We show the curve h∗(θ) in fig. 7.26.

We can make additional progress by defining the average and staggered magnetizations m and ms,

m ≡ 1
2(mA +mB) , ms ≡ 1

2(mA −mB) . (7.354)

We expand the free energy in terms of ms:

f(m,ms) = 1
2m

2 − 1
2m

2
s − hm− 1

2 θ s(m+ms)− 1
2 θ s(m−ms)

= 1
2m

2 − hm− θ s(m)− 1
2

(
1 + θ s′′(m)

)
m2

s − 1
24 θ s

′′′′(m)m4
s + . . . .

(7.355)

The term quadratic in ms vanishes when θ s′′(m) = −1, i.e. when m =
√

1− θ. It is easy to obtain

d3s

dm3
= − 2m

(1−m2)2
,

d4s

dm4
= −2 (1 + 3m2)

(1−m2)3
, (7.356)

from which we learn that the coefficient of the quartic term, − 1
24 θ s

′′′′(m), never vanishes. Therefore the
transition remains second order down to θ = 0, where it finally becomes first order.

We can confirm the θ → 0 limit directly. The two competing states are the ferromagnet, withmA = mB =
±1, and the antiferromagnet, with mA = −mB = ±1. The free energies of these states are

fFM = 1
2 − h , fAFM = −1

2 . (7.357)

There is a first order transition when fFM = fAFM, which yields h = 1.



74 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

7.11.3 Canted quantum antiferromagnet

Consider the following model for quantum S = 1
2 spins:

Ĥ =
∑
〈ij〉

[
− J

(
σxi σ

x
j + σyi σ

y
j

)
+ ∆σzi σ

z
j

]
+ 1

4K
∑
〈ijkl〉

σzi σ
z
jσ

z
kσ

z
l , (7.358)

where σi is the vector of Pauli matrices on site i. The spins live on a square lattice. The second sum is
over all square plaquettes. All the constants J , ∆, and K are positive.

Let’s take a look at the Hamiltonian for a moment. The J term clearly wants the spins to align ferro-
magnetically in the (x, y) plane (in internal spin space). The ∆ term prefers antiferromagnetic alignment
along the ẑ axis. The K term discourages any kind of moment along ẑ and works against the ∆ term.
We’d like our mean field theory to capture the physics behind this competition.

Accordingly, we break up the square lattice into two interpenetrating
√

2 ×
√

2 square sublattices (each
rotated by 45◦ with respect to the original), in order to be able to describe an antiferromagnetic state. In
addition, we include a parameter α which describes the canting angle that the spins on these sublattices
make with respect to the x̂-axis. That is, we write

%A = 1
2 + 1

2m
(

sinα σx + cosα σz)

%B = 1
2 + 1

2m
(

sinα σx − cosα σz) . (7.359)

Note that Tr %A = Tr %B = 1 so these density matrices are normalized. Note also that the mean direction
for a spin on the A and B sublattices is given by

mA,B = Tr (%A,B σ) = ±m cosα ẑ +m sinα x̂ . (7.360)

Thus, when α = 0, the system is an antiferromagnet with its staggered moment lying along the ẑ axis.
When α = 1

2π, the system is a ferromagnet with its moment lying along the x̂ axis.

Finally, the eigenvalues of %A,B are still λ± = 1
2(1±m), hence

s(m) ≡ −Tr (%A ln %A) = −Tr (%B ln %B)

= −

[
1 +m

2
ln

(
1 +m

2

)
+

1−m
2

ln

(
1−m

2

)]
.

(7.361)

Note that we have taken mA = mB = m, unlike the case of the antiferromagnet in a uniform field. The
reason is that there remains in our model a symmetry between A and B sublattices.

The free energy is now easily calculated:

F = Tr (%Ĥ) + kBT Tr (% ln %)

= −2N
(
J sin2α+ ∆ cos2α

)
m2 + 1

4NKm
4 cos4α−NkBT s(m)

(7.362)
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Figure 7.27: Mean field phase diagram for the model of eqn. 7.358 for the case κ = 1.

We can adimensionalize by defining δ ≡ ∆/J , κ ≡ K/4J , and θ ≡ kBT/4J . Then the free energy per site
is f ≡ F/4NJ is

f(m,α) = −1
2m

2 + 1
2

(
1− δ

)
m2 cos2α+ 1

4κm
4 cos4α− θ s(m) . (7.363)

There are two variational parameters: m and θ. We thus obtain two coupled mean field equations,

∂f

∂m
= 0 = −m+

(
1− δ

)
m cos2α+ κm3 cos4α+ 1

2θ ln

(
1 +m

1−m

)
∂f

∂α
= 0 =

(
1− δ + κm2 cos2α

)
m2 sinα cosα .

(7.364)

Let’s start with the second of the mean field equations. Assuming m 6= 0, it is clear from eqn. 7.363 that

cos2α =



0 if δ < 1

(δ − 1)/κm2 if 1 ≤ δ ≤ 1 + κm2

1 if δ ≥ 1 + κm2 .

(7.365)

Suppose δ < 1. Then we have cosα = 0 and the first mean field equation yields the familiar result

m = tanh
(
m/θ

)
. (7.366)

Along the θ axis, then, we have the usual ferromagnet-paramagnet transition at θc = 1.

For 1 < δ < 1 + κm2 we have canting with an angle

α = α∗(m) = cos−1

√
δ − 1

κm2
. (7.367)
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Substituting this into the first mean field equation, we once again obtain the relation m = tanh
(
m/θ

)
.

However, eventually, as θ is increased, the magnetization will dip below the value m0 ≡
√

(δ − 1)/κ .
This occurs at a dimensionless temperature

θ0 =
m0

tanh−1(m0)
< 1 ; m0 =

√
δ − 1

κ
. (7.368)

For θ > θ0, we have δ > 1 + κm2, and we must take cos2α = 1. The first mean field equation then
becomes

δm− κm3 =
θ

2
ln

(
1 +m

1−m

)
, (7.369)

or, equivalently, m = tanh
(
(δm−κm3)/θ

)
. A simple graphical analysis shows that a nontrivial solution

exists provided θ < δ. Since cosα = ±1, this solution describes an antiferromagnet, with mA = ±mẑ
andmB = ∓mẑ. The resulting mean field phase diagram is then as depicted in fig. 7.27.

7.11.4 Coupled order parameters

Consider the Landau free energy

f(m,φ) = 1
2 amm

2 + 1
4 bmm

4 + 1
2 aφ φ

2 + 1
4 bφ φ

4 + 1
2Λm

2 φ2 . (7.370)

We write
am ≡ αm θm , aφ = αφ θφ , (7.371)

where

θm =
T − Tc,m

T0

, θφ =
T − Tc,φ

T0

, (7.372)

where T0 is some temperature scale. We assume without loss of generality that Tc,m > Tc,φ. We begin by
rescaling:

m ≡
(
αm
bm

)1/2

m̃ , φ ≡
(
αm
bm

)1/2

φ̃ . (7.373)

We then have

f = ε0

{
r
(

1
2θm m̃

2 + 1
4 m̃

4
)

+ r−1
(

1
2 θφ φ̃

2 + 1
4 φ̃

4
)

+ 1
2 λ m̃

2φ̃2

}
, (7.374)

where

ε0 =
αm αφ

(bm bφ)1/2
, r =

αm
αφ

(
bφ
bm

)1/2

, λ =
Λ

(bm bφ)1/2
. (7.375)

It proves convenient to perform one last rescaling, writing

m̃ ≡ r−1/4 m , φ̃ ≡ r1/4 ϕ . (7.376)

Then

f = ε0

{
1
2q θmm2 + 1

4 m
4 + 1

2q
−1 θφ ϕ

2 + 1
4 ϕ

4 + 1
2 λm

2 ϕ2

}
, (7.377)
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where

q =
√
r =

(
αm
αφ

)1/2( bφ
bm

)1/4

. (7.378)

Note that we may write

f(m, ϕ) =
ε0

4

(
m2 ϕ2

)(1 λ
λ 1

)(
m2

ϕ2

)
+
ε0

2

(
m2 ϕ2

)( q θm
q−1 θφ

)
. (7.379)

The eigenvalues of the above 2×2 matrix are 1±λ, with corresponding eigenvectors
(

1
±1

)
. Since ϕ2 > 0,

we are only interested in the first eigenvector
(

1
1

)
, corresponding to the eigenvalue 1 + λ. Clearly when

λ < 1 the free energy is unbounded from below, which is unphysical.

We now set
∂f

∂m
= 0 ,

∂f

∂ϕ
= 0 , (7.380)

and identify four possible phases:

• Phase I : m = 0, ϕ = 0. The free energy is fI = 0.

• Phase II : m 6= 0 with ϕ = 0. The free energy is

f =
ε0

2

(
q θmm2 + 1

2 m
4
)
, (7.381)

hence we require θm < 0 in this phase, in which case

mII =
√
−q θm , fII = −ε0

4
q2 θ2

m . (7.382)

• Phase III : m = 0 with ϕ 6= 0. The free energy is

f =
ε0

2

(
q−1 θφ ϕ

2 + 1
2 ϕ

4
)
, (7.383)

hence we require θφ < 0 in this phase, in which case

ϕIII =
√
−q−1 θφ , fIII = −ε0

4
q−2 θ2

φ . (7.384)

• Phase IV : m 6= 0 and ϕ 6= 0. Varying f yields(
1 λ
λ 1

)(
m2

ϕ2

)
= −

(
q θm
q−1 θφ

)
, (7.385)

with solution

m2 =
q θm − q−1 θφ λ

λ2 − 1

ϕ2 =
q−1 θφ − q θm λ

λ2 − 1
.

(7.386)
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Since m2 andϕ2 must each be nonnegative, phase IV exists only over a yet-to-be-determined subset
of the entire parameter space. The free energy is

fIV =
q2 θ2

m + q−2 θ2
φ − 2λ θm θφ

4(λ2 − 1)
. (7.387)

We now define θ ≡ θm and τ ≡ θφ − θm = (Tc,m − Tc,φ)/T0. Note that τ > 0. There are three possible
temperature ranges to consider.

(1) θφ > θm > 0. The only possible phases are I and IV. For phase IV, we must impose the conditions
m2 > 0 and φ2 > 0. If λ2 > 1, then the numerators in eqns. 7.386 must each be positive:

λ <
q2 θm
θφ

, λ <
θφ

q2 θm
⇒ λ < min

(
q2 θm
θφ

,
θφ
q2θm

)
. (7.388)

But since either q2θm/θφ or its inverse must be less than or equal to unity, this requires λ < −1,
which is unphysical.

If on the other hand we assume λ2 < 1, the non-negativeness of m2 and ϕ2 requires

λ >
q2 θm
θφ

, λ >
θφ

q2 θm
⇒ λ > max

(
q2 θm
θφ

,
θφ
q2θm

)
> 1 . (7.389)

Thus, λ > 1 and we have a contradiction.

Therefore, the only allowed phase for θ > 0 is phase I.

(2) θφ > 0 > θm. Now the possible phases are I, II, and IV. We can immediately rule out phase I
because fII < fI. To compare phases II and IV, we compute

∆f = fIV − fII =
(q λ θm − q−1 θφ)2

4(λ2 − 1)
. (7.390)

Thus, phase II has the lower energy if λ2 > 1. For λ2 < 1, phase IV has the lower energy, but the
conditions m2 > 0 and ϕ2 > 0 then entail

q2θm
θφ

< λ <
θφ
q2θm

⇒ q2|θm| > θφ > 0 . (7.391)

Thus, λ is restricted to the range

λ ∈

[
− 1 , −

θφ
q2|θm|

]
. (7.392)

With θm ≡ θ < 0 and θφ ≡ θ + τ > 0, the condition q2|θm| > θφ is found to be

− τ < θ < − τ

q2 + 1
. (7.393)

Thus, phase IV exists and has lower energy when

− τ < θ < − τ

r + 1
and − 1 < λ < −θ + τ

rθ
, (7.394)

where r = q2.
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Figure 7.28: Phase diagram for τ = 0.5, r = 1.5 (top) and τ = 0.5, r = 0.25 (bottom). The hatched
purple region is unphysical, with a free energy unbounded from below. The blue lines denote second
order transitions. The thick red line separating phases II and III is a first order line.

(3) 0 > θφ > θm. In this regime, any phase is possible, however once again phase I can be ruled out
since phases II and III are of lower free energy. The condition that phase II have lower free energy
than phase III is

fII − fIII =
ε0

4

(
q−2θ2

φ − q2θ2
m

)
< 0 , (7.395)

i.e. |θφ| < r|θm|, which means r|θ| > |θ| − τ . If r > 1 this is true for all θ < 0, while if r < 1 phase II
is lower in energy only for |θ| < τ/(1− r).

We next need to test whether phase IV has an even lower energy than the lower of phases II and
III. We have

fIV − fII =
(q λ θm − q−1 θφ)2

4(λ2 − 1)

fIV − fIII =
(q θm − q−1 λ θφ)2

4(λ2 − 1)
.

(7.396)

In both cases, phase IV can only be the true thermodynamic phase if λ2 < 1. We then require
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m2 > 0 and ϕ2 > 0, which fixes

λ ∈

[
− 1 , min

(
q2 θm
θφ

,
θφ
q2θm

)]
. (7.397)

The upper limit will be the first term inside the rounded brackets if q2|θm| < θφ, i.e. if r|θ| < |θ|− τ .
This is impossible if r > 1, hence the upper limit is given by the second term in the rounded
brackets:

r > 1 : λ ∈
[
− 1 ,

θ + τ

r θ

]
(condition for phase IV) . (7.398)

If r < 1, then the upper limit will be q2θm/θφ = rθ/(θ+ τ) if |θ| > τ/(1− r), and will be θφ/q
2θm =

(θ + τ)/rθ if |θ| < τ/(1− r).

r < 1 , − τ

1− r
< θ < −τ : λ ∈

[
− 1 ,

θ + τ

rθ

]
(phase IV)

r < 1 , θ < − τ

1− r
: λ ∈

[
− 1 ,

rθ

θ + τ

]
(phase IV) .

(7.399)

Representative phase diagrams for the cases r > 1 and r < 1 are shown in fig. 7.28.
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