PHYSICS 140A : STATISTICAL PHYSICS
HW #9 SOLUTIONS

(1) Consider a three-dimensional gas of noninteracting quantum particles with dispersion

e(k) = Ak

(a) Find the single particle density of states per unit volume g(¢).

(b) Find expressions for n(7, z) and p(T), z), each expressed as power series in the fugac-
ity z, for both Bose-Einstein and Fermi-Dirac statistics.

(c) Find the virial expansion for the equation of state up to terms of order n?3, for both
bosons and fermions.

Solution :

(a) The density of states for dispersion (k) = A |k|” is
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where r = d/o and
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(c) We now let x = £z, and interrogate Mathematica:

In[1]= y = InverseSeries[x + x72/2°r + x°3/3°r + x"4/4°r + O[x]"5]

In[2]= w =y + y°2/2°(z+1) + y~3/3~(r+1) + y~4/4"(z+1) + Olyl"5.

The result is
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Substitute o = 2 to find the solution for the conditions given.

(2) You know that at most one fermion may occupy any given single-particle state. A
parafermion is a particle for which the maximum occupancy of any given single-particle
state is k, where k is an integer greater than zero. (For k£ = 1, parafermions are regular
everyday fermions; for £ = oo, parafermions are regular everyday bosons.) Consider
a system with one single-particle level whose energy is ¢, i.e. the Hamiltonian is simply
'H = en, where n is the particle number.

(a) Compute the partition function =(x, T') in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(u,T"). What is n when 1 = —00? When p = &?
When i = +00? Does this make sense? Show that n(u,T") reduces to the Fermi and
Bose distributions in the appropriate limits.

(c) Sketch n(u,T) as a function of x for both 7= 0and T > 0.
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Figure 1: k = 3 parafermion occupation number versus ¢ — p for kg7 = 0, kgT = 0.25,
ksT = 0.5, and kgT = 1. (Problem 2b)

Solution:

The general expression for ='is
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Now the sum on n runs from 0 to &k, and

k

. 1—:L'k+1
D Ca
= 1—=2x

(a) Thus,
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(c) A plot of n(e, T, ) for k = 3 is shown in Fig. 1. Qualitatively the shape is that of the
Fermi function f(e — p). At T = 0, the occupation function is n(e,7 = 0, ) = EO(p — ¢).
This step function smooths out for 7" finite.



(d) For each k < oo, the occupation number n(z,T) is a finite order polynomial in z, and
hence an analytic function of z. Therefore, there is no possibility for Bose condensation
except for k = oo.

(3) A gas of quantum particles with photon statistics has dispersion e(k) = A |k|*.

(a) Find the single particle density of states per unit volume g(¢).
(b) Repeat the arguments of §5.5.2 in the Lecture Notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the
earth-sun orbit, and the radius of the earth, what would you expect the surface tem-
perature of the earth to be if the sun radiated particles with this dispersion instead of
photons?

Solution :
(a) See the solution to part (a) of problem 1 above. For d = 3 and ¢ = 4 we have
_ 8 4-3/4_-1/4

(b) Scaling volume by A scales the lengths b A/3 the quantized wavevectors by A\~1/3,
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and the energy eigenvalues by A\~%/3, since ¢ « k*. Thus,
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(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form (k) for the (non-
conserved) bosons. Then the energy current incident on a differential area dA of surface
normal to 2 is
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Note that
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Now let us assume a power law dispersion ¢(k) = Ak®. Changing variables to ¢ =
Ak® kT, we find
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One can check that for g = 2, A = fic, and « = 1 that this result reduces to Stefan’s Law.

c=(2+2)T(2+2)

Equating the power incident on the earth to that radiated by the earth,
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Plugging in the appropriate constants and setting o = 4, we obtain 7T, = 45.2 K. Brrr!
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which yields




