
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) A substance obeys the thermodynamic relation E = aS4/V N2.

(a) Compute the heat capacity CV,N in terms of N , V , and T .

(b) Compute the equation of state relating p, V , N , and T .

(c) Compute the ratio Cϕ,N/CV,N , where Cϕ,N is the heat capacity at constant ϕ and N ,
with ϕ = V 2/T .

Solution :

(a) We have

T =
∂E

∂S

∣

∣

∣

∣

V,N

=
4aS3

V N2
⇒ S =

(

TVN2

4a

)1/3

.

Plugging this into the expression for E(S, V,N), we obtain

E(T, V,N) = 1

4
(4a)−1/3 T 4/3V 1/3N2/3 ,

and hence

CV,N =
∂E

∂T

∣

∣

∣

∣

V,N

= 1

3
(4a)−1/3 T 1/3V 1/3N2/3 .

(b) We have T (S, V,N) and so we must find p(S, V,N) and then eliminate S. Thus,

p = −∂E

∂V

∣

∣

∣

∣

S,N

=
aS4

V 2N2
= 1

4
(4a)−1/3 T 4/3V −2/3N2/3 .

Cubing this result eliminates the fractional powers, yielding the equation of state

256a p3V 2 = N2T 4 .

Note also that E = pV and CV,N = 4pV/3T .

(d) We have dE = d̄Q − p dV , so

d̄Q = dE + p dV = CV,N dT +

{(

∂E

∂V

)

T,N

+ p

}

dV .

Now we need to compute dV
∣

∣

ϕ,N
. We write

dϕ = −V 2

T 2
dT +

2V

T
dV ,

hence

dV
∣

∣

ϕ,N
=

V

2T
dT .
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Substituting this into our expression for d̄Q, we have

Cϕ,N = CV,N +

{(

∂E

∂V

)

T,N

+ p

}

V

2T
.

It is now left to us to compute

(

∂E

∂V

)

T,N

= 1

12
(4a)−1/3 T 4/3V −2/3N2/3 = 1

3
p .

We then have

Cϕ,N = CV,N +
2pV

3T
= 3

2
CV,N .

Thus,
Cϕ,N

CV,N

= 3

2
.

(2) Consider an engine cycle which follows the thermodynamic path in Fig. 1. The work
material is ν moles of a diatomic ideal gas. BC is an isobar (dp = 0), CA is an isochore
(dV = 0), and along AB one has

p(V ) = p
B

+ (p
A
− pB) ·

√

V
B
− V

V
B
− V

A

.

A

BC

Figure 1: Thermodynamic path for problem 2.

(a) Find the heat acquired Q
AB

and the work done W
AB

.

(b) Find the heat acquired Q
BC

and the work done W
BC

.
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(c) Find the heat acquired Q
CA

and the work done W
CA

.

(d) Find the work W done per cycle.

Solution :

Note that p
C

= p
B

and V
C

= V
A

, so we will only need to use {p
A
, p

B
, V

A
, V

B
} in our analysis.

For a diatomic ideal gas, E = 5

2
pV .

(a) We first compute the work done along AB. Let’s define u such that V = V
A
+(V

B
−V

A
)u.

Then along AB we have p = p
B

+ (p
A
− p

B
)
√

1 − u, and

WAB =

B
∫

A

dV p

= (VB − VA)

1
∫

0

du
{

pB + (pA − pB)
√

1 − u
}

= pB(VB − VA) + 2

3
(VB − VA)(pA − pB) .

The change in energy along AB is

(∆E)AB = EB − EA = 5

2
(pBVB − pAVA) ,

hence

QAB = (∆E)AB + WAB

= 5

6
pBVB − 19

6
pAVA + 2

3
pAVB + 5

3
pBVA .

(b) Along BC we have

WBC = pB(VA − VB)

(∆E)BC = 5

2
pB(VA − VB)

QBC = (∆E)BC − WBC = 3

2
pB(VA − VB) .

(c) Along CA we have

WBC = 0

(∆E)BC = 5

2
(pA − pB)VA

QCA = (∆E)CA − WCA = 5

2
(pA − pB)VA .
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(c) The work done per cycle is

W = WAB + WBC + WCA

= 2

3
(VB − VA)(pA − pB) .

(3) For each of the following differentials, determine whether it is exact or inexact. If it is
exact, find the function whose differential it represents.

(a) xy2 dx + x2y dy

(b) z dx + x dy + y dz

(c) x−2 dx − 2x−3 dy

(d) ex dx + ln(y) dy

Solution :

We will represent each differential as d̄A =
∑

µ Aµ dxµ.

(a) Ax = xy2 and Ay = x2y, so ∂A
x

∂y = 2xy =
∂A

y

∂x . The differential is exact, and is dA, where

A(x, y) = 1

2
x2y2 + C , where C is a constant.

(b) With Ax = z, Ay = x, and Az = y, we have ∂A
x

∂y = 0 =
∂A

y

∂x , but ∂A
x

∂z = 1 6= ∂A
z

∂x = 0. So
the differential is inexact.

(c) Ax = x−2 and Ay = −2x−3, so ∂Ax

∂y = −2x−3 and
∂A

y

∂x = 0, so the differential is inexact.

(d) Ax = ex and Ay = ln y, so ∂A
x

∂y = 0 =
∂Ay

∂x = 0. The differential is exact, with A(x, y) =
ex + y ln y − y + C .
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