
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) A box of volume V contains N1 identical atoms of mass m1 and N2 identical atoms of
mass m2.

(a) Compute the density of states D(E,V,N1, N2).

(b) Let x1 ≡ N1/N be the fraction of particles of species #1. Compute the statistical
entropy S(E,V,N, x1).

(c) Under what conditions does increasing the fraction x1 result in an increase in statis-
tical entropy of the system? Why?

Solution :

(a) Following the method outlined in §4.2.2 of the Lecture Notes, we rescale all the mo-
menta pi with i ∈ {1, . . . , N1} as pα

i =
√

2m1E uα
i , and all the momenta pj with j ∈

{N1 + 1, . . . , N1 + N2} as pα
j =

√

2m2E uα
j . We then have
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Thus,

D(E,V,N1, N2) =
V N

N1!N2!

(

m

2π~2

)
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,

where N = N1 + N2 and m ≡ m
N

1
/N

1 m
N

2
/N

2 has dimensions of mass. Note that the N1!N2!
term in the denominator, in contrast to N !, appears because only particles of the same
species are identical.

(b) Using Stirling’s approximation ln K! ≃ K ln K − K + O(ln K), we find
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where x2 = 1 − x1.

(c) Using x2 = 1 − x1, we have

∂S

∂x1

= N ln

(

1 − x1

x1

)

+ 1
2Nd ln

(

m1

m2

)

.

Setting ∂S/∂x1 to zero at the solution x = x∗

1, we obtain

x∗

1 =
m

d/2
1

m
d/2
1 + m

d/2
2

, x∗

2 =
m

d/2
2

m
d/2
1 + m

d/2
2

.

Thus, an increase of x1 will result in an increase in statistical entropy if x1 < x∗

1. The reason
is that x1 = x∗

1 is optimal in terms of maximizing S.
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(2) Two chambers containing Argon gas at p = 1.0 atm and T = 300 K are connected via a
narrow tube. One chamber has volume V1 = 1.0 L and the other has volume V2 = r V1.

(a) Compute the RMS energy fluctuations of the particles in the smaller chamber when
the volume ration is r = 2.

(b) Compute the RMS energy fluctuations of the particles in the smaller chamber when
the volume ration is r = ∞.

Solution :

For two systems in thermal contact (see Lecture Notes §4.5), the RMS energy fluctuation of

system #1 is ∆E1 =
√

k
B
T 2 C̄V , where

C̄V =
CV,1 CV,2

CV,1 + CV,2

=
r

r + 1
CV,1 .

Thus, with CV = 3
2Nk

B
= 3pV/T , we have

∆E1 =

√

r

r + 1
·
√

3
2 pV k

B
T =

√

r

r + 1
· 7.93 × 10−10 J .

Thus, (a) for r = 2 we have ∆E1 = 648 pJ, and (b) for r = ∞ we have ∆E1 = 793 pJ, where
1 pJ = 10−12 J.

(3) Consider a system of N identical but distinguishable particles, each of which has a
nondegenerate ground state with energy zero, and a g-fold degenerate excited state with
energy ε > 0.

(a) Let the total energy of the system be fixed at E = Mε, where M is the number of
particles in an excited state. What is the total number of states Ω(E,N)?

(b) What is the entropy S(E,N)? Assume the system is thermodynamically large. You
may find it convenient to define ν ≡ M/N , which is the fraction of particles in an
excited state.

(c) Find the temperature T (ν). Invert this relation to find ν(T ).

(d) Show that there is a region where the temperature is negative.

(e) What happens when a system at negative temperature is placed in thermal contact
with a heat bath at positive temperature?
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Solution :

(a) Since each excited particle can be in any of g degenerate energy states, we have

Ω(E,N) =

(

N

M

)

gM =
N ! gM

M ! (N − M)!
.

(b) Using Stirling’s approximation, we have

S(E,N) = k
B

ln Ω(E,N) = −Nk
B

{

ν ln ν + (1 − ν) ln(1 − ν) − ν ln g
}

,

where ν = M/N = E/Nε.

(c) The inverse temperature is

1

T
=

(

∂S

∂E

)

N

=
1

Nε

(

∂S

∂ν

)

N

=
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B

ε
·

{

ln

(
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ν

)

+ ln g

}

,

hence
k

B
T =

ε

ln
(

1−ν
ν

)

+ ln g
.

Inverting,

ν(T ) =
g e−ε/k

B
T

1 + g e−ε/k
B

T
.

(d) The temperature diverges when the denominator in the above expression for T (ν) van-
ishes. This occurs at ν = ν∗ ≡ g/(g + 1). For ν ∈ (ν∗, 1), the temperature is negative! This
is technically correct, and a consequence of the fact that the energy is bounded for this sys-
tem: E ∈ [0, Nε]. The entropy as a function of ν therefore has a maximum at ν = ν∗. The
model is unphysical though in that it neglects various excitations such as kinetic energy
(e.g. lattice vibrations) for which the energy can be arbitrarily large.

(e) When a system at negative temperature is placed in contact with a heat bath at positive
temperature, heat flows from the system to the bath. The energy of the system therefore
decreases, and since ∂S

∂E < 0, this results in a net entropy increase, which is what is de-
manded by the Second Law of Thermodynamics.

(4) Solve for the model in problem 3 using the ordinary canonical ensemble. The Hamilto-
nian is

Ĥ = ε

N
∑

i=1

(

1 − δσ
i
,1

)

,

where σi ∈ {1, . . . , g + 1}.

(a) Find the partition function Z(T,N) and the Helmholtz free energy F (T,N).
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(b) Show that M̂ = ∂Ĥ
∂ε counts the number of particles in an excited state. Evaluate the

thermodynamic average ν(T ) = 〈M̂ 〉/N .

(c) Show that the entropy S = −
(

∂F
∂T

)

N
agrees with your result from problem 3.

Solution :

(a) We have

Z(T,N) = Tr e−βĤ =
(

1 + g e−ε/k
B

T
)N

.

The free energy is

F (T,N) = −k
B
T ln F (T,N) = −Nk

B
T ln

(

1 + g e−ε/k
B

T
)

.

(b) We have

M̂ =
∂Ĥ

∂ε
=

N
∑

i=1

(

1 − δσ
i
,1

)

.

Clearly this counts all the excited particles, since the expression 1 − δσ
i
,1 vanishes if i = 1,

which is the ground state, and yields 1 if i 6= 1, i.e. if particle i is in any of the g excited
states. The thermodynamic average of M̂ is 〈M̂ 〉 =

(

∂F
∂ε

)

T,N
, hence

ν =
〈M̂ 〉

N
=

g e−ε/k
B

T

1 + g e−ε/k
B

T
,

which agrees with the result in problem 3c.

(c) The entropy is

S = −

(

∂F

∂T

)

N

= Nk
B

ln
(

1 + g e−ε/k
B

T
)

+
Nε

T

g e−ε/k
B

T

1 + g e−ε/k
B

T
.

Working with our result for ν(T ), we derive

1 + g e−ε/k
B

T =
1

1 − ν
ε

k
B
T

= ln

(

g(1 − ν)

ν

)

.

Inserting these results into the above expression for S, we verify

S = −Nk
B

ln(1 − ν) + Nk
B

ν ln

(

g(1 − ν)

ν

)

= −Nk
B

{

ν ln ν + (1 − ν) ln(1 − ν) − ν ln g
}

,

as we found in problem 3b.
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