
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) The information entropy of a distribution {pn} is defined as S = −
∑

n pn log2 pn, where n
ranges over all possible configurations of a given physical system and pn is the probability
of the state |n〉. If there are Ω possible states and each state is equally likely, then S = log2 Ω,
which is the usual dimensionless entropy in units of ln 2.

Consider a normal deck of 52 distinct playing cards. A new deck always is prepared in the
same order (A♠ 2♠ · · ·K♣).

(a) What is the information entropy of the distribution of new decks?

(b) What is the information entropy of a distribution of completely randomized decks?

Now consider what it means to shuffle the cards. In an ideal riffle shuffle, the deck is split
and divided into two equal halves of 26 cards each. One then chooses at random whether
to take a card from either half, until one runs through all the cards and a new order is
established (see figure).

Figure 1: The riffle shuffle.

(c) What is the increase in information entropy for a distribution of new decks that each
have been shuffled once?

(d) Assuming each subsequent shuffle results in the same entropy increase (i.e. neglect-
ing redundancies), how many shuffles are necessary in order to completely random-
ize a deck?

(e) If in parts (b), (c), and (d), you were to use Stirling’s approximation,

K! ∼ KK e−K
√

2πK ,

how would your answers have differed?
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Solution :

(a) Since each new deck arrives in the same order, we have p1 = 1 while p2,...,52! = 0.
Therefore S = 0.

(b) For completely randomized decks, pn = 1/Ω with n ∈ {1, . . . ,Ω} and Ω = 52!, the total
number of possible configurations. Thus, Srandom = log2 52! = 225.581.

(c) After one riffle shuffle, there are Ω =
(

52
26

)

possible configurations. If all such configu-

rations were equally likely, we would have (∆S)riffle = log2

(

52
26

)

= 48.817. However, they
are not all equally likely. For example, the probability that we drop the entire left-half deck
and then the entire right half-deck is 2−26. After the last card from the left half-deck is
dropped, we have no more choices to make. On the other hand, the probability for the
sequence LRLR · · · is 2−51, because it is only after the 51st card is dropped that we have
no more choices. We can derive an exact expression for the entropy of the riffle shuffle
in the following manner. Consider a deck of N = 2K cards. The probability that we run
out of choices after K cards is the probability of the first K cards dropped being all from
one particular half-deck, which is 2 · 2−K . Now let’s ask what is the probability that we
run out of choices after (K + 1) cards are dropped. If all the remaining (K − 1) cards are
from the right half-deck, this means that we must have one of the R cards among the first
K dropped. Note that this R card cannot be the (K + 1)th card dropped, since then all of
the first K cards are L, which we have already considered. Thus, there are

(

K
1

)

= K such
configurations, each with a probability 2−K−1. Next, suppose we run out of choices after
(K + 2) cards are dropped. If the remaining (K − 2) cards are R, this means we must have
2 of the R cards among the first (K + 1) dropped, which means

(K+1
2

)

possibilities. Note
that the (K + 2)th card must be L, since if it were R this would mean that the last (K − 1)
cards are R, which we have already considered. Continuing in this manner, we conclude

ΩK = 2

K
∑

n=0

(

K + n − 1

n

)

=

(

2K

K

)

and

SK = −
Ω

K
∑

a=1

pa log2 pa =
K−1
∑

n=0

(

K + n − 1

n

)

· 2−(K+n) · (K + n) .

The results are tabulated below in Table 1. For a deck of 52 cards, the actual entropy per
riffle shuffle is S26 = 46.274.

(d) Ignoring redundancies, we require k = Srandom/(∆S)riffle = 4.62 shuffles if we assume
all riffle outcomes are equally likely, and 4.88 if we use the exact result for the riffle en-
tropy. Since there are no fractional shuffles, we round up to k = 5 in both cases. In fact,
computer experiments show that the answer is k = 9. The reason we are so far off is that
we have ignored redundancies, i.e. we have assumed that all the states produced by two
consecutive riffle shuffles are distinct. They are not! For decks with asymptotically large
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K ΩK SK log2

(

2K
K

)

2 6 2.500 2.585

12 2704156 20.132 20.367

26 4.96 × 1014 46.274 48.817

100 9.05 × 1058 188.730 195.851

Table 1: Riffle shuffle results.

numbers of cards N ≫ 1, the number of riffle shuffles required is k ≃ 3
2 log2 N . See D.

Bayer and P. Diaconis, Annals of Applied Probability 2, 294 (1992).

(e) Using the first four terms of Stirling’s approximation of ln K , i.e. out to O(K0), we find
log2 52! ≈ 225.579 and log2

(

52
26

)

≈ 48.824.

(2) In problem #1, we ran across Stirling’s approximation,

lnK! ∼ K ln K − K + 1
2 ln(2πK) + O

(

K−1
)

,

for large K . In this exercise, you will derive this expansion.

(a) Start by writing

K! =

∞
∫

0

dx xK e−x ,

and define x ≡ K(t + 1) so that K! = KK+1 e−K F (K), where

F (K) =

∞
∫

−1

dt eKf(t) .

Find the function f(t).

(b) Expand f(t) =
∑∞

n=0 fn tn in a Taylor series and find a general formula for the ex-
pansion coefficients fn. In particular, show that f0 = f1 = 0 and that f2 = −1

2 .

(c) If one ignores all the terms but the lowest order (quadratic) in the expansion of f(t),
show that

∞
∫

−1

dt e−Kt2/2 =

√

2π

K
− R(K) ,

and show that the remainder R(K) > 0 is bounded from above by a function which
decreases faster than any polynomial in 1/K .

(d) For the brave only! – Find the O
(

K−1
)

term in the expansion for ln K!.
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Solution :

(a) Setting x = K(t + 1), we have

K! = KK+1 e−K

∞
∫

−1

dt (t + 1)K e−t ,

hence f(t) = ln(t + 1) − t.

(b) The Taylor expansion of f(t) is

f(t) = −1
2t2 + 1

3t3 − 1
4t4 + . . . .

(c) Retaining only the leading term in the Taylor expansion of f(t), we have

F (K) ≃
∞
∫

−1

dt e−Kt2/2

=

√

2π

K
−

∞
∫

1

dt e−Kt2/2 .

Writing t ≡ s + 1, the remainder is found to be

R(K) = e−K/2

∞
∫

0

ds e−Ks2/2 e−Ks <

√

π

2K
e−K/2 ,

which decreases exponentially with K , faster than any power.

(d) We have

F (K) =

∞
∫

−1

dt e−
1

2
Kt2e

1

3
Kt3− 1

4
Kt4+...

=

∞
∫

−1

dt e−
1

2
Kt2

{

1 + 1
3Kt3 − 1

4Kt4 + 1
18K2t6 + . . .

}

=

√

2π

K
·
{

1 − 3
4K−1 + 5

6K−1 + O
(

K−2
)

}

Thus,
lnK! = K ln K − K + 1

2 ln K + 1
2 ln(2π) + 1

12K−1 + O
(

K−2
)

.
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(3) A six-sided die is loaded so that the probability to throw a three is twice that of throw-
ing a two, and the probability of throwing a four is twice that of throwing a five.

(a) Find the distribution {pn} consistent with maximum entropy, given these constraints.

(b) Assuming the maximum entropy distribution, given two such identical dice, what is
the probability to roll a total of seven if both are thrown simultaneously?

Solution :

(a) We have the following constraints:

X0(p) = p1 + p2 + p3 + p4 + p5 + p6 − 1 = 0

X1(p) = p3 − 2p2 = 0

X2(p) = p4 − 2p5 = 0 .

We define

S∗(p,λ) ≡ −
∑

n

pn ln pn −
2

∑

a=0

λa X(a)(p) ,

and freely extremize over the probabilities {p1, . . . , p6} and the undetermined Lagrange
multipliers {λ0, λ1, λ2}. We obtain

∂S∗

∂p1

= −1 − ln p1 − λ0

∂S∗

∂p4

= −1 − ln p4 − λ0 − λ2

∂S∗

∂p2

= −1 − ln p2 − λ0 + 2λ1

∂S∗

∂p5

= −1 − ln p5 − λ0 + 2λ2

∂S∗

∂p3

= −1 − ln p3 − λ0 − λ1

∂S∗

∂p6

= −1 − ln p6 − λ0 .

Extremizing with respect to the undetermined multipliers generates the three constraint
equations. We therefore have

p1 = e−λ
0
−1 p4 = e−λ

0
−1 e−λ

2

p2 = e−λ
0
−1 e2λ

1 p5 = e−λ
0
−1 e2λ

2

p3 = e−λ
0
−1 e−λ

1 p6 = e−λ
0
−1 .

We solve for {λ0, λ1, λ2} by imposing the three constraints. Let x ≡ p1 = p6 = e−λ
0
−1.

Then p2 = x e2λ
1 , p3 = x e−λ

1 , p4 = x e−λ
2 , and p5 = x e2λ

2 . We then have

p3 = 2p2 ⇒ e−3λ
1 = 2

p4 = 2p5 ⇒ e−3λ
2 = 2 .
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We may now solve for x:

6
∑

n=1

pn =
(

2 + 21/3 + 24/3
)

x = 1 ⇒ x =
1

2 + 3 · 21/3
.

We now have all the probabilities:

p1 = x = 0.1730 p4 = 21/3x = 0.2180

p2 = 2−2/3x = 0.1090 p5 = 2−2/3x = 0.1090

p3 = 21/3x = 0.2180 p6 = x = 0.1730 .

(b) The probability to roll a seven with two of these dice is

P (7) = 2 p1 p6 + 2 p2 p5 + 2 p3 p4

= 2
(

1 + 2−4/3 + 22/3
)

x2 = 0.1787 .

(4) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
· 1

x2 + γ2
.

Consider the sum XN =
∑N

i=1 xi , where each xi is independently distributed according to
P (xi). Find the probability ΠN(Y ) that |XN | < Y , where Y > 0 is arbitrary.

Solution :

As discussed in the Lecture Notes §1.4.2, the distribution of a sum of identically distributed

random variables, X =
∑N

i=1 xi , is given by

PN (X) =

∞
∫

−∞

dk

2π

[

P̂ (k)
]N

eikX ,

where P̂ (k) is the Fourier transform of the probability distribution P (xi) for each of the xi.
The Fourier transform of a Lorentzian is an exponential:

∞
∫

−∞

dx P (x) e−ikx = e−γ|k| .

Thus,

PN (X) =

∞
∫

−∞

dk

2π
e−Nγ|k| eikX

=
Nγ

π
· 1

X2 + N2γ2
.
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The probability for X to lie in the interval X ∈ [−Y, Y ], where Y > 0, is

ΠN(Y ) =

Y
∫

−Y

dX PN (X) =
2

π
tan−1

(

Y

Nγ

)

.

The integral is easily performed with the substitution X = Nγ tan θ. Note that ΠN (0) = 0
and ΠN(∞) = 1.
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