
Physics 210A, Spring 2012 : Homework Problems and

Solutions

Daniel Arovas
Department of Physics

University of California, San Diego

September 13, 2012



Solution Set #1

(1) Consider a system with K possible states | i 〉, with i ∈ {1, . . . ,K}, where the transition
rate Wij between any two states is the same, with Wij = γ > 0.

(a) Find the matrix Γij governing the master equation Ṗi = −Γij Pj .

(b) Find all the eigenvalues and eigenvectors of Γ. What is the equilibrium distribution?

(c) Now suppose there are 2K possible states | i 〉, with i ∈ {1, . . . , 2K}, and the transi-
tion rate matrix is

Wij =

{
α if (−1)ij = +1

β if (−1)ij = −1 ,

with α, β > 0. Repeat parts (a) and (b) for this system.

Solution :

(a) We have, from Eq. 3.3 of the Lecture Notes,

Γij =

{
−Wij = −γ if i 6= j
∑′

k Wkj = (K − 1)γ if i = j .

I.e. Γ is a symmetric K×K matrix with all off-diagonal entries −γ and all diagonal entries
(K − 1)γ.

(b) It is convenient to define the unit vector ~ψ = K−1/2
(
1, 1, . . . , 1

)
. Then

Γ = Kγ
(
I − |ψ 〉〈ψ |

)
.

We now see that |ψ 〉 is an eigenvector of Γ with eigenvalue λ = 0, and furthermore that
any vector orthogonal to |ψ 〉 is an eigenvector of Γ with eigenvalue Kγ. This means that
there is a degenerate (K − 1)-dimensional subspace associated with the eigenvalue Kγ.
The equilibrium distribution is given by |P eq 〉 = K−1/2|ψ 〉, i.e. P eq

i = 1
K .

(c) Define the unit vectors

~ψE = 1√
K

(
0, 1, 0, . . . , 1

)

~ψO = 1√
K

(
1, 0, 1, . . . , 0

)
.
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2 SOLUTION SET #1

Note that 〈ψE |ψO 〉 = 0. Furthermore, we may write Γ as

Γ = 1
2K(3α+β) I+ 1

2K(α−β) J−Kα
(
|ψE 〉〈ψE |+|ψO 〉〈ψE |+|ψE 〉〈ψO |

)
−Kβ |ψO 〉〈ψO |

where I is the identity matrix and Jnn′ = (−1)n δnn′ is a diagonal matrix with alternating
−1 and +1 entries. Note that J |ψO 〉 = −|ψO 〉 and J |ψE 〉 = +|ψE 〉. The key to deriving
the above relation is to notice that

M = Kα
(
|ψE 〉〈ψE | + |ψO 〉〈ψE | + |ψE 〉〈ψO |

)
+Kβ |ψO 〉〈ψO |

=





β α β α · · · β α
α α α α · · · α α
β α β α · · · β α
α α α α · · · α α
...

...
...

...
. . .

...
...

β α β α · · · β α
α α α α · · · α α





.

Now J hasK eigenvalues +1 andK eigenvalues −1. There is therefore a (K−1)-dimensional
degenerate eigenspace of Γ with eigenvalue 2Kα and a (K − 1)-dimensional degenerate
subspace with eigenvalue K(α + β). These subspaces are mutually orthogonal as well as
being orthogonal to the vectors |ψE 〉 and |ψO 〉. The remaining two-dimensional subspace
spanned by these vectors yields the reduced matrix

Γred =

(
〈ψE |Γ |ψE 〉 〈ψE |Γ |ψO 〉
〈ψO |Γ |ψE 〉 〈ψO |Γ |ψO 〉

)
=

(
Kα −Kα
−Kα Kα

)
.

The eigenvalues in this subspace are therefore 0 and 2Kα. Thus, Γ has the following eigen-
values:

λ = 0 (nondegenerate)

λ = K(α+ β) (degeneracy K − 1)

λ = 2Kα (degeneracy K) .

(2) A six-sided die is loaded so that the probability to throw a six is twice that of throwing
a one. Find the distribution {pn} consistent with maximum entropy, given this constraint.

Solution :

The constraint may be written as 2p1 − p6 = 0. Thus, X1
n = 2δn,1 − δn,6, and

pn =






C e−2λ if n = 1

C if n ∈ {2, 3, 4, 5}
C eλ if n = 6 .
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We solve for the unknowns C and λ by enforcing the constraints:

C e−2λ + 4C + C eλ = 1

2C e−2λ − C eλ = 0 .

The second equation gives e3λ = 2, or λ = 1
3 ln 2. Plugging this in the normalization

condition, we have

C =
1

4 + 21/3 + 2−2/3
= 0.16798 . . . .

We then have

p1 = C e−2λ = 0.10695 . . .

p2 = p3 = p4 = p5 = C = 0.16798 . . .

p6 = C eλ = 0.21391 . . . .

(3) Consider a three-state system with the following transition rates:

W12 = 0 , W21 = γ , W23 = 0 , W32 = 3γ , W13 = γ , W31 = γ .

(a) Find the matrix Γ such that Ṗi = −ΓijPj .

(b) Find the equilibrium distribution P eq
i .

(c) Does this system satisfy detailed balance? Why or why not?

Solution :

(a) Following the prescription in Eq. 3.3 of the Lecture Notes, we have

Γ = γ




2 0 −1
−1 3 0
−1 −3 1



 .

(b) Note that summing on the row index yields
∑

i Γij = 0 for any j, hence (1, 1, 1) is a left
eigenvector of Γ with eigenvalue zero. It is quite simple to find the corresponding right

eigenvector. Writing ~ψ t = (a, b, c), we obtain the equations c = 2a, a = 3b, and a+ 3b = c,
the solution of which, with a + b + c = 1 for normalization, is a = 3

10 , b = 1
10 , and c = 6

10 .
Thus,

P eq =




0.3
0.1
0.6



 .
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(c) The equilibrium distribution does not satisfy detailed balance. Consider for example
the ratio P eq

1 /P eq
2 = 3. According to detailed balance, this should be the same as W12/W21,

which is zero for the given set of transition rates.

(4) The cumulative grade distributions of six ’old school’ (no + or - distinctions) professors
from various fields are given in the table below. For each case, compute the entropy of the
grade distribution.

Solution :

We compute the probabilities pn for n ∈ {A,B,C,D,F} and then the statistical entropy of

the distribution, S = −∑n pn log2 pn in units of bits. The results are shown in the amended

table below. The maximum possible entropy is S = log2 5 ≈ 2.3219.

Professor A B C D F N
pA pB pC pD pF S

Landau 1149 2192 1545 718 121 5725
0.2007 0.3829 0.2699 0.1254 0.0211 1.999

Vermeer 8310 1141 231 56 7 9745
0.8527 0.1171 0.0237 0.0057 0.0007 0.7365

Keynes 3310 4141 3446 1032 642 12571
0.2633 0.3294 0.2741 0.0821 0.0511 2.062

Noether 1263 1874 988 355 290 4770
0.2648 0.3929 0.2071 0.0744 0.0608 2.032

Borges 4002 2121 745 109 57 7034
0.5690 0.3015 0.1059 0.0155 0.0081 1.477

Salk 3318 3875 2921 1011 404 11529
0.2878 0.3361 0.2534 0.0877 0.0350 2.025

Turing 2800 3199 2977 1209 562 10747
0.2605 0.2977 0.2770 0.1125 0.0523 2.116

(5) A generalized two-dimensional cat map can be defined by

(
x′

y′

)
=

M︷ ︸︸ ︷(
1 p
q pq + 1

) (
x
y

)
mod Z

2 ,

where p and q are integers. Here x, y ∈ [0, 1] are two real numbers on the unit interval, so
(x, y) ∈ T2 lives on a two-dimensional torus. The inverse map is

M−1 =

(
pq + 1 −p
−q q

)
.

Note that det M = 1.
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(a) Consider the action of this map on a pixelated image of size (lK) × (lK), where
l ∼ 4 − 10 and K ∼ 20 − 100. Starting with an initial state in which all the pixels in
the left half of the array are ”on” and the others are all ”off”, iterate the image with
the generalized cat map, and compute at each state the entropy S = −∑r pr ln pr,
where the sum is over the K2 different l × l subblocks, and pr is the probability to
find an ”on” pixel in subblock r. (Take p = q = 1 for convenience, though you might
want to explore other values).

Now consider a three-dimensional generalization (Chen et al., Chaos, Solitons, and Fractals
21, 749 (2004)), with 


x′

y′

z′



 = M




x
y
z



 mod Z
3 ,

which is a discrete automorphism of T3, the three-dimensional torus. Again, we require
that both M and M−1 have integer coefficients. This can be guaranteed by writing

Mx =




1 0 0
0 1 px

0 qx pxqx + 1



 , My =




1 0 py

0 1 0
qy 0 pyqy + 1



 , Mz =




1 pz 0
qz pzqz + 1 0
0 0 1





and taking M = MxMyMz , reminiscent of how we build a general O(3) rotation from a
product of three O(2) rotations about different axes.

(b) Find M and M−1 when px = qx = py = qy = pz = qz = 1.

(c) Repeat part (a) for this three-dimensional generalized cat map, computing the en-
tropy by summing over the K3 different l × l × l subblocks.

(d) 100 quatloos extra credit if you find a way to show how a three dimensional object (a
ball, say) evolves under this map. Is it Poincaré recurrent?

Solution :

(a) See Figs. 7.3 and 7.2.

(b) We have

Mx =




1 0 0
0 1 1
0 1 2



 , M−1
x =




1 0 0
0 2 −1
0 −1 1



 .

My =




1 0 1
0 1 0
1 0 2



 , M−1
y =




2 0 −1
0 1 0
−1 0 1





Mz =




1 1 0
1 2 0
0 0 1



 , M−1
z =




2 −1 0
−1 1 0
0 0 1




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Figure 1: Two-dimensional cat map on a 12×12 square array with l = 4 and K = 3 shown.
Left: initial conditions at t = 0. Right: possible conditions at some later time t > 0. Within
each l× l cell r, the occupation probability pr is computed. The entropy −pr log2 pr is then
averaged over the K2 cells.

Thus,

M = MxMyMz =




1 1 1
2 3 2
3 4 4





M−1 = M−1
z M−1

y M−1
x =




4 0 −1
−2 1 0
−1 −1 1



 .

Note that det M = 1.
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Figure 2: Coarse-grained entropy per unit volume for the iterated two-dimensional cat
map (p = q = 1) on a 200 × 200 pixelated torus, with l = 4 and K = 50. Bottom panel:
coarse-grained entropy per unit volume versus iteration number. Top panel: power spec-
trum of entropy versus frequency bin. A total of 214 = 16384 iterations were used.
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Figure 3: Coarse-grained entropy per unit volume for the iterated two-dimensional cat
map (p = q = 1) on a 200 × 200 pixelated torus, with l = 10 and K = 20. Bottom
panel: coarse-grained entropy per unit volume versus iteration number. Top panel: power
spectrum of entropy versus frequency bin. A total of 214 = 16384 iterations were used.
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Figure 4: Coarse-grained entropy per unit volume for the iterated three-dimensional cat
map (px = qx = py = qy = pz = qz = 1) on a 40 × 40 × 40 pixelated three-dimensional
torus, with l = 4 and K = 10. Bottom panel: coarse-grained entropy per unit volume
versus iteration number. Top panel: power spectrum of entropy versus frequency bin. A
total of 214 = 16384 iterations were used.
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Solution Set #2

(1) Compute the density of states D(E,V,N) for a three-dimensional gas of particles with

Hamiltonian Ĥ =
∑N

i=1A |pi|4, where A is a constant. Find the entropy S(E,V,N), the
Helmholtz free energy F (T, V,N), and the chemical potential µ(T, p).

Solution :

Let’s solve the problem for a general dispersion ε(p) = A|p|α. The density of states is

D(E,V,N) =
V N

N !

∫
ddp1

hd
· · ·
∫
ddpN

hd
δ
(
E −Apα

1 − . . .−Apα
N

)
.

The Laplace transform is

D̂(β, V,N) =
V N

N !

(∫
ddp

hd
e−βApα

)N

=
V N

N !

(
Ωd

hd

∞∫

0

dp pd−1 e−βApα

)N

=
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N
β−Nd/α .

Now we inverse transform, recalling

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

We then conclude

D(E,V,N) =
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N E
Nd
α

−1

Γ(Nd/α)

and

S(E,V,N) = kB lnD(E,V,N)

= NkB ln

(
V

N

)
+
d

α
NkB ln

(
E

N

)
+NkBa0 ,

11
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where a0 is a constant, and we take the thermodynamic limit N → ∞ with V/N and E/N
fixed. From this we obtain the differential relation

dS =
NkB

V
dV +

d

α

NkB

E
dE + s0 dN

=
p

T
dV +

1

T
dE − µ

T
dN ,

where s0 is a constant. From the coefficients of dV and dE, we conclude

pV = NkBT

E =
d

α
NkBT .

Note that we have replaced E = d
α NkBT in order to express F in terms of its ’natural

variables’ T , V , and N .

The Helmholtz free energy is

F = E − TS = E −NkBT ln

(
V

N

)
− d

α
NkBT ln

(
E

N

)
−NkBTa0

=
d

α
NkBT − d

α
NkBT ln

(
d

α
kBT

)
−NkBT ln

(
V

N

)
−NkBTa0 .

The chemical potential is

µ = T

(
∂F

∂N

)

T,V

= − d

α
kBT ln

(
d

α
kBT

)
+
d

α
kBT − kBT ln

(
V

N

)
+ (1 − a0) kBT

= − d

α
kBT ln

(
d

α
kBT

)
+
d

α
kBT − kBT ln

(
kBT

p

)
+ (1 − a0) kBT .

Suppose we wanted the heat capacities CV and Cp. Setting dN = 0, we have

d̄Q = dE + p dV

=
d

α
NkB dT + p dV

=
d

α
NkB dT + p d

(
NkBT

p

)
.

Thus,

CV =
d̄Q

dT

∣∣∣∣
V

=
d

α
NkB , Cp =

d̄Q

dT

∣∣∣∣
p

=

(
1 +

d

α

)
NkB .

(2) Consider a gas of classical spin-3
2 particles, with Hamiltonian

Ĥ =

N∑

i=1

p2
i

2m
− µ0H

∑

i

Sz
i ,
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where Sz
i ∈

{
− 3

2 ,−1
2 ,+

1
2 ,+

3
2

}
and H is the external magnetic field. Find the Helmholtz

free energyF (T, V,H,N), the entropyS(T, V,H,N), and the magnetic susceptibilityχ(T,H, n),
where n = N/V is the number density.

Solution :

The partition function is

Z = Tr e−Ĥ/kBT =
1

N !

V N

λdN
T

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)N
,

so

F = −NkBT ln

(
V

Nλd
T

)
−NkBT −NkBT ln

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)
,

where λT =
√

2π~2/mkBT is the thermal wavelength. The entropy is

S = −
(
∂F

∂T

)

V,N,H

= NkB ln

(
V

Nλd
T

)
+ (1

2d+ 1)NkB +N ln
(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)

− µ0H

2T
· sinh(µ0H/2kBT ) + 3 sinh(3µ0H/2kBT )

cosh(µ0H/2kBT ) + cosh(3µ0H/2kBT )
.

The magnetization is

M = −
(
∂F

∂H

)

T,V,N

= 1
2Nµ0 ·

sinh(µ0H/2kBT ) + 3 sinh(3µ0H/2kBT )

cosh(µ0H/2kBT ) + cosh(3µ0H/2kBT )
.

The magnetic susceptibility is

χ(T,H, n) =
1

V

(
∂M

∂H

)

T,V,N

=
nµ2

0

4kBT
f(µ0H/2kBT )

where

f(x) =
d

dx

(
sinhx+ 3 sinh(3x)

cosh x+ cosh(3x)

)
.

In the limit H → 0, we have f(0) = 5, so χ = 4nµ2
0/4kBT at high temperatures. This is a

version of Curie’s law.

(3) Compute the RMS volume fluctuations in the T − p−N ensemble.

Solution :

Averages within the T − p−N ensemble are computed by

〈A〉 =
Tr Ae−β(Ĥ+pV )

Tr e−β(Ĥ+pV )
.
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Let Y = Tr −β(Ĥ+pV ) = e−βG. Then

〈V 2〉 =
1

β2Y

∂2Y

∂p2
= β−2 eβG ∂2

∂p2
e−βG

= − 1

β

∂2G

∂p2
+

(
∂G

∂p

)2
,

and since ∂G
∂p = V , we have

〈V 2〉 − 〈V 〉2 = −kBT
∂2G

∂p2
.

For the case of a nonrelativistic ideal gas, we have

〈V k〉 =

∞∫

0

dV e−βpV Z(T, V,N)V k

/ ∞∫

0

dV e−βpV Z(T, V,N)

=

∞∫

0

dV e−βpV V N+k

/ ∞∫

0

dV e−βpV V N =
(N + k)!

N !

(
kBT

p

)k

,

since Z(T, V,N) = 1
N !(V/λT )N . Thus,

〈V 〉 = (N + 1)
kBT

p
, 〈V 2〉 = (N + 1)(N + 2)

(
kBT

p

)2

and therefore

V 2
rms = 〈V 2〉 − 〈V 〉2 = (N + 1)

(
kBT

p

)2

⇒ Vrms = N1/2 kBT

p
.

Thus Vrms/〈V 〉 = N−1/2 ≪ 1. This is, once again, the Central Limit Theorem in action.

(4) For the system described in problem (1), compute the distribution of speeds f̄(v). Find
the most probable speed, the mean speed, and the RMS speed.

Solution :

Again, we solve for the general case ε(p) = Apα. The momentum distribution is

g(p) = C e−βApα
,

where C is a normalization constant, defined so that
∫
ddp g(p) = 1. Changing variables to

t ≡ βApα, we find

C =
α (βA)

d
α

Ωd Γ
(

d
α

) .
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The velocity v is given by

v =
∂ε

∂p
= αApα−1 p̂ .

Thus, the speed distribution is given by

f̄(v) = C

∫
ddp e−βApα

δ
(
v − αApα−1

)
.

Now

δ
(
v − αApα−1

)
=
δ
(
p− (v/αA)1/(α−1)

)

α(α− 1)Apα−2
.

We therefore have

f̄(v) =
C

α(α − 1)A
pd−α+1 e−βApα

∣∣∣∣
p=(v/αA)1/(α−1)

.

We can now calculate

〈vr〉 = C

∫
ddp e−βApα(

αApα−1
)r
,

and so

‖v‖r = 〈vr〉1/r = αAα−1
(kBT )1−α−1

(
Γ
(

d−r
α + r

)

Γ
(

d
α

)
)1/α

.

To find the most probable speed, we extremize f̄(v). We obtain

βApα =
d− α+ 1

α
,

which means

v = αA

(
d− α+ 1

αβA

)1−α−1

= (αA)α
−1

(d− α+ 1)1−α−1
(kBT )1−α−1

.
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Solution Set #3

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is
ε(p) = pc.

(a) Find T , p, and µ within the microcanonical ensemble (variables S, V , N ).

(b) Find F , S, p, and µ within the ordinary canonical ensemble (variables T , V , N ).

(c) Find Ω, S, p, and N within the grand canonical ensemble (variables T , V , µ).

(d) Find G, S, V , and µ within the Gibbs ensemble (variables T , p, N ).

(e) Find H, T , V , and µ within the S-p-N ensemble. Here H = E + pV is the enthalpy.

Solution :

(a) The density of statesD(E,V,N) is the inverse Laplace transform of the ordinary canon-
ical partition function Z(β, V,N). We have

Z(β, V,N) =
V N

N !

(∫
d3p

h3
e−βpc

)N

=
V N

N !

β−3N

π2N (~c)3N
.

Thus,

D(E,V,N) =

c+i∞∫

c−i∞

dβ

2πi
Z(β, V,N) eβE =

V N

N !

(
π2/3

~c
)−3N E3N−1

(3N − 1)!
.

Taking the logarithm, and using ln(K!) = K lnK −K + O(lnK) for large K ,

S(E,V,N) = kB lnD(E,V,N) = NkB ln

(
V

N

)
+ 3NkB ln

(
E

N

)
− 3NkB ln a ,

where a = 3π2/3e−4/3~c is a constant. Inverting to find E(S, V,N), we have

E(S, V,N) =
aN4/3

V 1/3
exp

(
S

3NkB

)
.

17
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From the differential relation

dE = T dS − p dV + µdN

we then derive

T (S, V,N) = +

(
∂E

∂S

)

V,N

=
a

3kB

(
N

V

)1/3

exp

(
S

3NkB

)

p(S, V,N) = −
(
∂E

∂V

)

S,N

=
a

3

(
N

V

)4/3

exp

(
S

3NkB

)

µ(S, V,N) = +

(
∂E

∂N

)

S,V

=
a

3

(
N

V

)1/3(
4 − S

NkB

)
exp

(
S

3NkB

)
.

Note that pV = NkBT .

(b) The Helmholtz free energy is

F (T, V,N) = −kBT lnZ

= 3NkBT −NkBT ln

(
V

N

)
− 3NkBT ln(3kBT ) + 3NkBT ln a ,

and from

dF = −S dT − p dV + µdN

we read off

S(T, V,N) = −
(
∂F

∂T

)

V,N

= NkB ln

(
V

N

)
+ 3NkB ln(3kBT ) + 3NkB ln a

p(T, V,N) = −
(
∂F

∂V

)

T,N

=
NkBT

V

µ(T, V,N) = +

(
∂F

∂N

)

T,V

= −kBT ln

(
V

N

)
− 3kBT ln(3kBT ) + (4 + 3 ln a) kBT .

(c) The grand potential is Ω = F − µN = −kBT ln Ξ, where

Ξ =

∞∑

N=0

eβµNZ(β, V,N) = exp

{

V eµ/kBT

(
kBT

π2/3~c

)3}

.

Thus,

Ω(T, V,N) = − V

π2
· (kBT )4

(~c)3
· eµ/kBT .

The differential is

dΩ = −S dT − p dV −N dµ ,
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and therefore

S(T, V, µ) = −
(
∂Ω

∂T

)

V,µ

=
V

π2
· (kBT )3

(~c)3
· eµ/kBT ·

(
4kB − µ

T

)

p(T, V, µ) = −
(
∂Ω

∂V

)

T,µ

=
(kBT )4

π2(~c)3
· eµ/kBT

N(T, V, µ) = −
(
∂Ω

∂µ

)

T,V

=
V

π2
·
(
kBT

~c

)3
· eµ/kBT .

Note that p = −Ω/V .

(d) The Gibbs free energy is

G(T, p,N) = F + pV

= NkBT ln p− 4NkBT ln(kBT ) +NkBT
(
4 + 3 ln(1

3a)
)

The differential of G is
dG = −S dT + V dP + µdN ,

and therefore

S(T, p,N) = −
(
∂G

∂T

)

p,N

= −NkB ln p+ 4NkB ln(kBT ) −NkB ln(1
3a)

V (T, p,N) = +

(
∂G

∂p

)

T,N

=
NkBT

p

µ(T, p,N) = +

(
∂G

∂N

)

T,p

= kBT ln p− 4kBT ln(kBT ) + kBT
(
4 + 3 ln(1

3a)
)
.

Note that µ = G/N .

(e) The enthalpy is

H(S, p,N) = E + pV

= 4N
(

1
3a
)3/4

p1/4 exp

(
S

4NkB

)
.

From
dH = T dS + V dp+ µdN ,

we have

T (S, p,N) = +

(
∂H

∂S

)

p,N

=

(
1
3a
)3/4

p1/4

kB

exp

(
S

4NkB

)

V (S, p,N) = +

(
∂H

∂p

)

S,N

= N

(
a

3p

)3/4

exp

(
S

4NkB

)

µ(S, p,N) =

(
∂H

∂N

)

S,p

=
(

1
3a
)3/4

p1/4

(
4 − S

NkB

)
exp

(
S

4NkB

)
.



20 SOLUTION SET #3

(2) Consider a surface containing Ns adsorption sites which is in equilibrium with a two-
component nonrelativistic ideal gas containing atoms of types A and B . (Their respective
masses are mA and mB). Each adsorption site can be in one of three possible states: (i)
vacant, (ii) occupied by an A atom, with energy −∆A, and (ii) occupied with a B atom,
with energy −∆B.

(a) Find the grand partition function for the surface, Ξsurf(T, µA, µB, Ns).

(b) Suppose the number densities of the gas atoms are nA and nB. Find the fraction
fA(nA, nB, T ) of adsorption sites with A atoms, and the fraction f0(nA, nB, T ) of ad-
sorption sites which are vacant.

Solution :

(a) The surface grand partition function is

Ξsurf(T, µA, µB, Ns) =
(
1 + e(∆A

+µ
A
)/kBT + e(∆B

+µ
B
)/kBT

)Ns

.

(b) From the grand partition function of the gas, we have

nA = λ−3
T,A e

µ
A
/kBT , nB = λ−3

T,B e
µ

B
/kBT ,

with

λT,A =

√
2π~2

mAkBT
, λT,B =

√
2π~2

mBkBT
.

Thus,

f0 =
1

1 + nA λ
3
T,A e

∆
A
/kBT + nB λ

3
T,B e

∆
B
/kBT

fA =
nA λ

3
T,A e

∆
A
/kBT

1 + nA λ
3
T,A e

∆
A
/kBT + nB λ

3
T,B e

∆
B
/kBT

fB =
nB λ

3
T,B e

∆
B
/kBT

1 + nA λ
3
T,A e

∆
A
/kBT + nB λ

3
T,B e

∆
B
/kBT

.

Note that f0 + fA + fB = 1.

(3) Consider a system composed of spin tetramers, each of which is described by the
Hamiltonian

Ĥ = −J(σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4) − µ0H(σ1 + σ2 + σ3 + σ4) .

The individual tetramers are otherwise noninteracting.
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(a) Find the single tetramer partition function ζ .

(b) Find the magnetization per tetramer m = µ0

〈
σ1 + σ2 + σ3 + σ4

〉
.

(c) Suppose the tetramer number density is nt. The magnetization density is M = ntm.
Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.

Solution :

(a) Note that we can write

Ĥ = 2J − 1
2J(σ1 + σ2 + σ3 + σ4)

2 − µ0H (σ1 + σ2 + σ3 + σ4) .

Thus, for each of the 24 = 16 configurations of the spins of any given tetramer, only the
sum

∑4
i=1 σi is necessary in computing the energy. We list the degeneracies of these states

in the table below. Thus, according to the table, we have

σ1 + σ2 + σ3 + σ4 degeneracy g energy E

+4 1 −6J − 4µ0H

+2 4 −2µ0H

0 6 −2J

−2 4 +2µ0H

−4 1 −6J + 4µ0H

ζ = 6 e−2J/kBT + 8 cosh

(
2µ0H

kBT

)
+ 2 e6J/kBT cosh

(
4µ0H

kBT

)
.

(b) The magnetization per tetramer is

m = − ∂f

∂H
= kBT

∂ ln ζ

∂H
= 4µ0 ·

2 sinh(2βµ0H) + e6βJ sinh(4βµ0H)

3 e−2βJ + 4 cosh(2βµ0H) + e6βJ cosh(4βµ0H)
.

(c) The zero field susceptibility is

χ(T ) =
16nt µ

2
0

kBT
· 1 + e6βJ

3 e−2βJ + 4 + e6βJ

Note that for βJ → ∞ we have χ(T ) = (4µ0)
2nt/kBT , which is the Curie value for a single

Ising spin with moment 4µ0. In this limit, all the individual spins are locked together, and
there are only two allowed configurations for each tetramer: |↑↑↑↑ 〉 and |↓↓↓↓ 〉. When
J = 0, we have χ = 4µ2

0nt/kBT , which is to say four times the single spin susceptibility.
I.e. all the spins in each tetramer are independent when J = 0. When βJ → −∞, the only
allowed configurations are the six ones with

∑4
i=1 σi = 0. In order to exhibit a moment,

an energy gap of 2|J | must be overcome, hence χ ∝ exp(−2β|J |), which is exponentially
suppressed.



22 SOLUTION SET #3



Solution Set #4

(1) A strange material obeys the equation of state E(S, V,N) = aS7/V 4N2, where a is a
dimensionful constant.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansionαp = 1
V

(
∂V
∂T

)
p

and the isothermal compress-

ibility κT = − 1
V

(
∂V
∂p

)

T
. Express your answers in terms of p and T .

(d) ν moles of this material execute a Carnot cycle between reservoirs at temperatures
T1 and T2. Find the heat Q and work W for each leg of the cycle, and find the cycle
efficiency η.

Solution :

(a) Clearly [a] = K7 m12/J2 where K are Kelvins, m are meters, and J are Joules.

(b) We have

T = +

(
∂E

∂S

)

V,N

=
7aS6

N2V 4

p = −
(
∂E

∂V

)

S,N

=
4aS7

N2V 5
.

We must eliminate S. Dividing the second of these equations by the first, we find S =
7pV/4T , and substituting this into either equation, we obtain the equation of state,

p = c ·
(
N

V

)1/3

T 7/6 ,

with c = 6
77/6 a

−1/6.

(c) Taking the logarithm and then the differential of the above equation of state, we have

dp

p
+
dV

3V
− 7 dT

6T
− dN

3N
= 0 .

23
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Figure 3.5: The Carnot cycle.

Thus,

αp =
1

V

(
∂V

∂T

)

p,N

=
7

2T
, κT = − 1

V

(
∂V

∂p

)

T,N

=
3

p
.

(d) From the results of part (b), we have that dS = 0 means d(N2V 4T ) = 0, so with N
constant the equation for adiabats is d(TV 4) = 0. Thus, for the Carnot cycle of Fig. 7.1, we
have

T2 V
4
A = T1 V

4
D , T2 V

4
B = T1 V

4
C .

We shall use this relation in due time. Another relation we shall use is obtained by dividing
out the S7 factor common in the expressions for E and for p, then substituting for p using
the equation of state:

E = 1
4pV = 1

4cN
1/3 V 2/3 T 7/6 .

AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the
isotherm to find

WAB =

V
B∫

V
A

dV p = 3
2cN

1/3 T
7/6
2

(
V

2/3
B − V

2/3
A

)
.

Since E depends on volume, unlike the case of the ideal gas, there is a change in energy
along this leg:

(∆E)AB = EB − EA = 1
4cN

1/3 T
7/6
2

(
V

2/3
B − V

2/3
A

)
.

Finally, the heat absorbed by the engine material during this leg is

QAB = (∆E)AB +WAB = 7
4cN

1/3 T
7/6
2

(
V

2/3
B − V

2/3
A

)
.
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BC: Next, consider the BC leg. Clearly QBC = 0 since BC is an adiabat. Thus,

WBC = −(∆E)BC = EB −EC = 1
4cN

1/3
(
T

7/6
2 V

2/3
B − T

7/6
1 V

2/3
C

)
.

But the fact that BC is an adiabat guarantees V
2/3
C = (T2/T1)

1/6 V
2/3
B , hence

WBC = 1
4cN

1/3 V
2/3
B T

1/6
2 (T2 − T1) .

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,

WCD = 3
2cN

1/3 T
7/6
2

(
V

2/3
D − V

2/3
C

)
.

We now use the adiabat conditions V
2/3
C = (T2/T1)

1/6 V
2/3
B and V

2/3
D = (T2/T1)

1/6 V
2/3
A to

write WCD as

WCD = 3
2cN

1/3 T1 T
1/6
2

(
V

2/3
A − V

2/3
B

)
.

We therefore have
QCD = 7

4cN
1/3 T1 T

1/6
2

(
V

2/3
A − V

2/3
B

)
.

Note that both WCD and QCD are negative.

DA: We apply the results from the BC leg, mutatis mutandis, and invoke the adiabat condi-
tions. We find QDA = 0 and

WDA = 1
4cN

1/3 V
2/3
A T

1/6
2 (T2 − T1) .

For the cycle, we therefore have

Wcyc = WAB +WBC +WCD +WDA = 7
4cN

1/3 T
1/6
2 (T2 − T1)

(
V

2/3
B − V

2/3
A

)
.

and thus

η =
Wcyc

QAB

= 1 − T1

T2

.

This is the same result as for an ideal gas, as must be the case as per the Second Law of
Thermodynamics.

(2) The entropy of a thermodynamic system S(E,V,N) is given by

S(E,V,N) = r Eα V β Nγ ,

where r is a dimensionful constant.

(a) Extensivity of S imposes a condition on (α, β, γ). Find this constraint.
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(b) Even with the extensivity condition satisfied, the system may violate one or more sta-
bility criteria. Find the general conditions on (α, β, γ) which are thermodynamically
permissible.

Solution :

(a) Clearly we must have α+ β + γ = 1 in order for S to be extensive.

(b) The Hessian is

Q =
∂2S

∂Xi ∂Xj

=




α(α− 1)S/E2 αβ S/EV αγ S/EN
αβ S/EV β(β − 1)S/V 2 βγ S/VN
αγ S/EN βγ S/VN γ(γ − 1)S/N2



 .

As shown in the notes, for any 2 × 2 submatrix of Q, obtained by eliminating a single

row and its corresponding column, and written

(
a b
b c

)
, we must have a < 0, c < 0, and

ac > b2. For example, if we take the upper left 2 × 2 submatrix, obtained by eliminating
the third row and third column of Q, we have a = α(α − 1)S/E2, b = αβ S/EV , and
c = β(β − 1)S/V 2. The condition a < 0 requires α ∈ (0, 1). Similarly, β < 0 requires
β ∈ (0, 1). Finally, ac > b2 requires α + β < 1. Since α + β + γ = 1, this last condition
requires γ > 0. Obviously we must have γ < 1 as well, else either α or β would have
to be negative. An examination of either of the other two submatrices yields the same
conclusions. Thus,

α ∈ (0, 1) , β ∈ (0, 1) , γ ∈ (0, 1) .

(3) For an ideal gas, find the difference Cϕ − CV for the following functions ϕ. You are to
assume N is fixed in each case.

(a) ϕ(p, V ) = p3 V 2

(b) ϕ(p, T ) = p eT/T0

(c) ϕ(T, V ) = V T−1

Solution :

In general,

Cϕ = T

(
∂S

∂T

)

ϕ

.

Note that

d̄Q = dE + p dV .
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We will also appeal to the ideal gas law, pV = NkBT . Below, we shall abbreviate ϕV = ∂ϕ
∂V ,

ϕT = ∂ϕ
∂T , and ϕp = ∂ϕ

∂p .

(a) We have
d̄Q = 1

2fNkB dT + p dV ,

and therefore

Cϕ − CV = p

(
∂V

∂T

)

ϕ

.

Now for a general function ϕ(p, V ), we have

dϕ = ϕp dp + ϕV dV

=
NkB

V
ϕp dT +

(
ϕV − p

V
ϕp

)
dV ,

after writing dp = d(NkBT/V ) in terms of dT and dV . Setting dϕ = 0, we then have

Cϕ − CV = p

(
∂V

∂T

)

ϕ

=
NkB pϕp

pϕp − V ϕV

.

This is the general result. For ϕ(p, V ) = p3V 2, we find

Cϕ −CV = 3NkB .

(b) We have
d̄Q =

(
1
2f + 1

)
NkB dT − V dp ,

and therefore

Cϕ − CV = NkB − V

(
∂p

∂T

)

ϕ

.

For a general function ϕ(p, T ), we have

dϕ = ϕp dp + ϕT dT =⇒
(
∂p

∂T

)

ϕ

= −ϕT

ϕp

.

Therefore,

Cϕ − CV = NkB + V
ϕT

ϕp

.

This is the general result. For ϕ(p, T ) = p eT/T0 , we find

Cϕ − CV = NkB

(
1 +

T

T0

)
.

(c) We have

Cϕ − CV = p

(
∂V

∂T

)

ϕ

,
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as in part (a). For a general function ϕ(T, V ), we have

dϕ = ϕT dT + ϕV dV =⇒
(
∂V

∂T

)

ϕ

= −ϕT

ϕV

,

and therefore

Cϕ − CV = −p ϕT

ϕV

.

This is the general result. For ϕ(T, V ) = V/T , we find

Cϕ − CV = NkB .

(4) Find an expression for the energy density ε = E/V for a system obeying the Dieterici
equation of state,

p(V −Nb) = NkBT e
−Na/V kBT ,

where a and b are constants. Your expression for ε(v, T ) should involve an integral which
can be expressed in terms of the exponential integral,

Ei(x) =

x∫

−∞

dt
et

t
.

Solution :

We have (
∂E

∂V

)

T,N

= T

(
∂S

∂V

)

T,N

− p = T

(
∂p

∂T

)

V,N

− p ,

where we have invoked a Maxwell relation. For the Dieterici equation of state, then,
(
∂E

∂V

)

T,N

=
NkBT

V −Nb
· Na

V kBT
· e−Na/V kBT .

Let n = N/V be the density and ε = E/N be the energy per particle. Then the above result
is equivalent to

∂ε

∂n
= − a

1 − bn
e−na/kBT .

We integrate this between n = 0 and n, with bn < 1. Define the dimensionless quantity
λ = a/bkBT and t = λ(1 − bn). Then

ε(n, T ) − ε(0, T ) = −a e
−λ

b

λ∫

(1−bn)λ

dt

t
et =

{
Ei
(
(1 − bn)λ

)
− Ei(λ)

}a e−λ

b

In the zero density limit, the gas must be ideal, in which case ε(0, T ) = 1
2fkBT . Thus,

ε(n, T ) = 1
2fkBT −

{

Ei

(
(1 − bn)a

bkBT

)
− Ei

(
a

bkBT

)}

· a e
−a/bkBT

b
.

In terms of the volume per particle, write v = V/N = 1/n.
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(1) For a noninteracting quantum system with single particle density of states g(ε) = Aεr

(with ε ≥ 0), find the first three virial coefficients for bosons and for fermions.

Solution :

We have

n(T, z) =

∞∑

j=1

(±1)j−1 Cj(T ) zj , p(T, z) = kBT

∞∑

j=1

(±1)j−1 zj j−1 Cj(T ) zj ,

where

Cj(T ) =

∞∫

−∞

dε g(ε) e−jε/kBT = AΓ(r + 1)

(
kBT

j

)r+1

.

Thus, we have

±nvT =

∞∑

j=1

j−(r+1) (±z)j

± pvT /kBT =
∞∑

j=1

j−(r+2) (±z)j ,

where

vT =
1

AΓ(r + 1) (kBT )r+1
.

has dimensions of volume. Thus, we let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^(r+1) + x^3/3^(r+1) + x^4/4^(r+1) + O[x]^5 ]

In[2]= w = y + y^2/2^(r+2) + y^3/3^(r+2) + y^4/4^(r+2) + O[y]^5 .

The result is

p = nkBT
[
1 +B2(T )n +B3(T )n2 + . . .

]
,

29
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where

B2(T ) = ∓2−2−r vT

B3(T ) =
(
2−2−2r − 2 · 3−2−r

)
v2
T

B4(T ) = ±2−4−3r 3−r
(
23+2r − 5 · 3r − 2r 31+r

)
v3
T .

(2) How would you formulate the Lindemann melting criterion for Einstein phonons?

Solution :

For a one-dimensional harmonic oscillator, we have

〈
u2
〉

=
~

2mω0

ctnh
(
~ω0/2kBT

)
,

where ω0 is the oscillation frequency andm is the mass. For a d-dimensional Einstein solid,
then, the Lindemann criterion should take the form

〈
u2
〉

=
d~

2mω0

ctnh (~ω0/2kBTL) = (fa)2 ,

where f ≈ 1
10 , with a the lattice spacing. The Lindemann temperature is then

kBTL =
~ω0

ln
(1+η

1−η

) ,

where

η =
d~

2f2mω0a2
.

Plugging in typical numbers, one finds η ≪ 1 for most solids, assuming ~ω0/kB ∼ 100K.
This procedure would then predict a melting temperature much higher than that observed
for most solids.

(3) Derive the analogue of Stefan’s Law for a two-dimensional blackbody. What happens
if the photon dispersion is replaced by ε(k) = C|k|α?

Solution :

The power emitted per unit length of the boundary of such a two-dimensional blackbody
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is

dP

dL
=

∫
d2k

(2π)2
k̂ · ∂ε

∂k
· ε(k)

eε(k)/kBT − 1
Θ(k̂ · v)

=
αC2

2π2

∞∫

0

dk
k2α

eβCkα − 1

=
1

2π2
Γ(2 + α−1) ζ(2 + α−1)C−α−1

(kBT )2+α−1

≡ σT 2+α−1
.

Thus, for α = 1, we have P/L = σT 3.
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Solution Set #6

(1) In our derivation of the low temperature phase of an ideal Bose condensate, we split
off the lowest energy state ε0 but treated the remainder as a continuum, taking µ = 0 in
all expressions relating to the overcondensate. Under what conditions is this justified? I.e.
why are we not obligated to separately consider the contributions from the first excited
state, etc.?

Solution :

In the condensed phase, there is an extensive population N0 of the lowest single particle

energy state, and the chemical potential takes the value µ = ε0 − kBT
g0N0

, where g0 is the

degeneracy of the single particle ground state. Let ε1 be the energy of the first excited state
and g1 its degeneracy Then the number of bosons in the first excited state is

N1 =
g1

e(ε1−µ)/kBT − 1
≈ g1kBT

ε1 − µ
,

assuming ε1 − µ≪ kBT . Now

ε1 − µ = (ε0 − µ) + (ε1 − ε0) =
kBT

g0N0

+ (ε1 − ε0) .

So we need to ask about the energy difference ∆ε1 ≡ ε1 − ε0. If ∆ε1 ∝ V −r, assuming
0 < r < 1, then the number of particles in the first excited state will be subextensive, and
the corresponding density n1 = N1/V ∝ V r−1 will vanish in the thermodynamic limit. In
this case, we are justified in singling out only the single particle ground state as having
an extensive occupancy. For a ballistic dispersion and periodic boundary conditions, the
quantized single particle plane wave energies are given by

ε(lx, ly, lz) =
~2

2m

{(
2πlx
Lx

)2
+

(
2πly
Ly

)2
+

(
2πlz
Lz

)2}

,

and thus ε1 ∝ V −2/3. Therefore r = 2
3 and the occupancy of the first excited state is

subextensive.

(2) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by σ = ±1. The single particle energies are given by

ε(p, σ) =
p2

2m
+ σ∆ ,

33
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where ∆ > 0.

(a) Find the density of states per unit volume g(ε).

(b) Find an implicit expression for the condensation temperature Tc(n,∆). When ∆ →
∞, your expression should reduce to the familiar one derived in class.

(c) When ∆ = ∞, the condensation temperature should agree with the familiar result
for three-dimensional Bose condensation. Assuming ∆ ≪ kBTc(n,∆ = ∞), find
analytically the leading order difference Tc(n,∆) − Tc(n,∆ = ∞).

Solution :

(a) Let g0(ε) be the DOS per unit volume for the case ∆ = 0. Then

g0(ε) dε =
d3k

(2π)3
=
k2 dk

2π2
⇒ g0(ε) =

1

4π2

(
2m

~2

)1/2

ε1/2 Θ(ε) .

For finite ∆, the single particle energies are shifted uniformly by ±∆ for the σ = ±1 states,
hence

g(ε) = g0(ε+ ∆) + g0(ε− ∆) .

(b) For Bose statistics, we have in the uncondensed phase,

n =

∞∫

−∞

dε
g(ε)

e(ε−µ)/kBT − 1

= Li3/2

(
e(µ+∆)/kBT

)
λ−3

T + Li3/2

(
e(µ−∆)/kBT

)
λ−3

T .

In the condensed phase, µ = −∆ −O(N−1) is pinned just below the lowest single particle
energy, which occurs for k = p/~ = 0 and σ = −1. We then have

n = n0 + ζ(3/2)λ−3
T + Li3/2

(
e−2∆/kBT

)
λ−3

T .

To find the critical temperature, set n0 = 0 and µ = −∆:

n = ζ(3/2)λ−3
Tc

+ Li3/2

(
e−2∆/kBTc

)
λ−3

Tc
.

This is a nonlinear and implicit equation for Tc(n,∆). When ∆ = ∞, we have

kBT
∞
c (n) =

2π~2

m

(
n

ζ(3/2)

)2/3

.

(c) For finite ∆, we still have the implicit nonlinear equation to solve, but in the limit
∆ ≫ kBTc, we can expand Tc(∆) = T∞

c + ∆Tc(∆). We may then set Tc(n,∆) to T∞
c (n) in

the second term of our nonlinear implicit equation, move this term to the LHS, whence

ζ(3/2)λ−3
Tc

≈ n− Li3/2

(
e−2∆/kBT∞

c
)
λ−3

T∞
c
.
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which is a simple algebraic equation for Tc(n,∆). The second term on the RHS is tiny since
∆ ≫ kBT

∞
c . We then find

Tc(n,∆) = T∞
c (n)

{
1 − 3

2 e
−2∆/kBT∞

c (n) + O
(
e−4∆/kBT∞

c (n)
)}

.

(3) For an ideal Fermi gas in three dimensions,

(a) Find an expression for the isothermal compressibility κT,N as a function of the tem-
perature T and fugacity z.

(b) Find an expression for the adiabatic compressibility κS,N as a function of the temper-
ature T and fugacity z.

(c) Find an expression for the ratio Cp,N/CV,N as a function of the temperature T and
fugacity z.

Solution :

Recall

N = V

∞∫

−∞

dε g f

S = −kBV

∞∫

−∞

dε g
{
f ln f + (1 − f) ln(1 − f)

}

p = −kBT

∞∫

−∞

dε g ln(1 − f) ,

where g = g(ε) and f = f(ε−µ) in the above expressions. Note further that the differential
of the Fermi function is written in terms of dT and dµ as follows:

df = d

(
1

e(ε−µ)/kBT + 1

)
=

(
− ∂f

∂ε

)
·
{

(ε− µ)
dT

T
+ dµ

}
.

Thus, we have

V −1 dN = I1 d ln V + I2 dT + I3 dµ

V −1 dS = J1 d lnV + J2 dT + J3 dµ

dp = K1 dT +K2 dµ ,
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where

I1 =

∞∫

−∞

dε g f J1 = −kB

∞∫

−∞

dε g
{
f ln f + (1 − f) ln(1 − f)

}

I2 =

∞∫

−∞

dε g

(
− ∂f

∂ε

)(
ε− µ

kBT

)
J2 = kB

∞∫

−∞

dε g

(
− ∂f

∂ε

)(
ε− µ

kBT

)2

I3 =

∞∫

−∞

dε g

(
− ∂f

∂ε

)
J3 = kB

∞∫

−∞

dε g

(
− ∂f

∂ε

)(
ε− µ

kBT

)
= kB I2

and

K1 = −kB

∞∫

−∞

dε g

{

ln(1 − f) +

(
− ∂f

∂ε

)
(ε− µ)

}

K2 = −kBT

∞∫

−∞

dε
g

1 − f

(
− ∂f

∂ε

)

(a) Setting dT = dN = 0, we obtain dµ = −(I1/I3) d ln V , and therefore

κT,N = −
(
∂ lnV

∂p

)

T,N

=
I3

I1K2 − I3K1

.

(b) Setting dN = dS = 0, we obtain

dµ =
I1
I3
d ln V +

I2
I3
dT =

J1

J3

d lnV +
J2

J3

dT .

This can be used to express dT and dµ in terms of d lnV at fixedN and S. The final answer
is quite involved and I won’t reproduce it here. I regret asking this question!

(c) We set dN = 0 to write d lnV
∣∣
N

in terms of dT and dµ, and set dp = 0 to write dµ
∣∣
p

=

−(K1/K2) dT . Thus, we can write both dµ and d lnV in terms of dT and compute Cp,N .
For CV,N , set dN = d ln V = 0 to find dµ = −(I2/I3) dT and substitute into the equation
for dS. Again the final result is somewhat tedious.

(4) At low energies, the conduction electron states in graphene can be described as fourfold
degenerate fermions with dispersion ε(k) = ~vF|k|. Using the Sommerfeld expension,

(a) Find the density of single particle states g(ε).

(b) Find the chemical potential µ(T, n) up to terms of order T 4.
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(c) Find the energy density E(T, n) = E/V up to terms of order T 4.

Solution :

(a) The DOS per unit volume is

g(ε) = 4

∫
d2k

(2π)2
δ(ε − ~vFk) =

2ε

π(~vF)2
.

(b) The Sommerfeld expansion is

∞∫

−∞

dε f(ε− µ) φ(ε) =

µ∫

−∞

dε φ(ε) +
π2

6
(kT )2 φ′(µ) +

7π4

360
(kBT )4 φ′′′(µ) + . . . .

For the particle density, set φ(ε) = g(ε), in which case

n =
1

π

(
µ

~vF

)2
+
π

3

(
kBT

~vF

)2
.

The expansion terminates after the O(T 2) term. Solving for µ,

µ(T, n) = ~vF(πn)1/2

[
1 − π

3n

(
kBT

~vF

)2]1/2

= ~vF(πn)1/2

{
1 − π

6n

(
kBT

~vF

)2
− π2

72n2

(
kBT

~vF

)4
+ . . .

}

(c) For the energy density E , we take φ(ε) = ε g(ε), whence

E(T, n) =
2µ

3π

[(
µ

~vF

)2
+

(
πkBT

~vF

)2]

= 2
3

√
π ~vFn

3/2

{
1 +

π

2n

(
kBT

~vF

)2
− π2

8n2

(
kBT

~vF

)4
+ . . .

}



38 SOLUTION SET #6



Solution Set #7

(1) For each of the two cluster diagrams in Fig. 1, find the symmetry factor sγ and write
an expression for the cluster integral bγ(T ).

Figure 6.6: Mayer cluster expansion diagrams.

Solution :

The symmetry factors of the diagrams are sa = 2 · (3!)2 = 72 and sb = 6! = 720. To see
this, note that sites 2, 3, and 4 and sites 5, 6, and 7 of figure 1a can be separately permuted
in any of 3! = 6 ways, and finally that the two triples themselves can be swapped to give
a final factor of 2. For figure 1b, the sites {2, 3, 4, 5, 6, 7} can be permuted in any way. One
then has

ba =
1

72V

∫ 8∏

i=1

ddxi f12 f13 f14 f23 f24 f34 · f78 f68 f58 f67 f57 f56 · f18

bb =
1

720V

∫ 7∏

i=1

ddxi f12 f13 f14 f15 f16 f17 .

(2) Consider the one-dimensional Ising model with next-nearest neighbor interactions,

Ĥ = −J
∑

n

σnσn+1 −K
∑

n

σnσn+2 ,

on a ring with N sites, where N is even. By considering consecutive pairs of sites, show
that the partition function may be written in the form Z = Tr (RN/2), where R is a 4 × 4
transfer matrix. Find R. Hint: It may be useful to think of the system as a railroad trestle,
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Figure 6.7: Labeled Mayer cluster expansion diagrams.

depicted in Fig. 2, with Hamiltonian

Ĥ = −
∑

j

[
Jσjµj + Jµjσj+1 +Kσjσj+1 +Kµjµj+1

]
.

Then R = R(σjµj),(σj+1µj+1), with (σµ) a composite index which takes one of four possible

values (++), (+−), (−+), or (−−).

Figure 6.8: Railroad trestle representation of next-nearest neighbor chain.

Solution :

The transfer matrix can be read off from the Hamiltonian:

R(σµ),(σ′µ′) = eβJµ(σ+σ′) eβK(σσ′+µµ′) .

Expressed as a matrix of rank four, with rows and columns corresponding to {++,+−,−+,−−},
we have

R =





e2β(J+K) e2βJ 1 e−2βK

e−2βJ e−2β(J−K) e−2βK 1

1 e−2βK e−2β(J−K) e−2βJ

e−2βK 1 e2βJ e2β(J+K)



 .

Querying WolframAlpha for the eigenvalues, we find

λ1 = 1
2

[
uv − (1 + u−1)

√
u2v2 − 2uv2 + 4u+ v2 + 2v−1 + u−1v

]

λ2 = 1
2

[
uv + (1 + u−1)

√
u2v2 − 2uv2 + 4u+ v2 + 2v−1 + u−1v

]

λ3 = 1
2

[
uv − (1 − u−1)

√
u2v2 + 2uv2 − 4u+ v2 − 2v−1 + u−1v

]

λ4 = 1
2

[
uv + (1 − u−1)

√
u2v2 + 2uv2 − 4u+ v2 − 2v−1 + u−1v

]
,
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where u = e2βJ and v = e2βK . The partition function on a ring of N sites, with N even, is

Z = Tr
(
RN/2

)
= λ

N/2
1 + λ

N/2
2 + λ

N/2
3 + λ

N/2
4 .
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Solution Set #8

(1) Consider a ferromagnetic spin-S Ising model on a lattice of coordination number z.
The Hamiltonian is

Ĥ = −J
∑

〈ij〉
σi σj − µ0H

∑

i

σi ,

where σ ∈ {−S,−S + 1, . . . ,+S} with 2S ∈ Z.

(a) Find the mean field Hamiltonian ĤMF.

(b) Adimensionalize by setting θ ≡ kBT/zJ , h ≡ µ0H/zJ , and f ≡ F/NzJ . Find the
dimensionless free energy per site f(m,h) for arbitrary S.

(c) Expand the free energy as

f(m,h) = f0 + 1
2am

2 + 1
4bm

4 − chm+ O(h2, hm3,m6)

and find the coefficients f0, a, b, and c as functions of θ and S.

(d) Find the critical point (θc, hc).

(e) Find m(θc, h) to leading order in h.

Solution :

(a) Writing σi = m+ δσi, we find

ĤMF = 1
2NzJm

2 − (µ0H + zJ)
∑

i

σi .

(b) Using the result
S∑

σ=−S

eβµ0Heffσ =
sinh

(
(S + 1

2)βµ0H
)

sinh
(

1
2βµ0H

) ,

we have

f = 1
2m

2 − θ ln sinh
(
(2S + 1)(m+ h)/2θ

)
+ θ ln sinh

(
(m+ h)/2θ

)
.
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(c) Expanding the free energy, we obtain

f = f0 + 1
2am

2 + 1
4bm

4 − chm+ O(h2, hm3,m6)

= −θ ln(2S + 1) +

(
3θ − S(S + 1)

6θ

)
m2 +

S(S + 1)(2S2 + 2S + 1)

360 θ3
m4 − 2

3 S(S + 1)hm + . . . .

Thus,

f0 = −θ ln(2S+1) , a = 1−1
3S(S+1)θ−1 , b =

S(S + 1)(2S2 + 2S + 1)

90 θ3
, c = 2

3 S(S+1) .

(d) Set a = 0 and h = 0 to find the critical point: θc = 1
3S(S + 1) and hc = 0.

(e) At θ = θc, we have f = f0 + 1
4bm

4 − chm + O(m6). Extremizing with respect to m, we

obtain m = (ch/b)1/3. Thus,

m(θc, h) =

(
60

2S2 + 2S + 1

)1/3

θ h1/3 .

(2) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

Ĥ = −1
2

∑

i,j

Jij Si Sj + ∆
∑

i

S2
i ,

where Jij = J(Ri − Rj) and Si ∈ {−1, 0,+1}. The mean field theory for this model is
discussed in section 7.11 of the Lecture Notes, using the ’neglect of fluctuations’ method.
Consider instead a variational density matrix approach. Take ̺(S1, . . . , SN ) =

∏
i ˜̺(Si),

where

˜̺(S) =

(
n+m

2

)
δS,+1 + (1 − n) δS,0 +

(
n−m

2

)
δS,−1 .

(a) Find 〈1〉, 〈Si〉, and 〈S2
i 〉.

(b) Find E = Tr (̺H).

(c) Find S = −kBTr (̺ ln ̺).

(d) Adimensionalizing by writing θ = kBT/Ĵ(0), δ = ∆/Ĵ(0), and f = F/NĴ(0), find
the dimensionless free energy per site f(m,n, θ, δ).

(e) Write down the mean field equations.

(f) Show that m = 0 always permits a solution to the mean field equations, and find
n(θ, δ) when m = 0.
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(g) To find θc, set m = 0 but use both mean field equations. You should recover eqn.
7.322 of the Lecture Notes.

(h) Show that the equation for θc has two solutions for δ < δ∗ and no solutions for δ > δ∗,
and find the value of δ∗.1

(i) Assume m2 ≪ 1 and solve for n(m, θ, δ) using one of the mean field equations. Plug
this into your result for part (d) and obtain an expansion of f in terms of powers of
m2 alone. Find the first order line. You may find it convenient to use Mathematica

here.

Solution :

(a) From the given expression for ˜̺, we have

〈1〉 = 1 , 〈S〉 = m , 〈S2〉 = n ,

where 〈A〉 = Tr(˜̺A).

(b) From the results of part (a), we have

E = Tr(˜̺Ĥ)

= −1
2NĴ(0)m2 +N∆n ,

assuming Jii = 0 for al i.

(c) The entropy is

S = −kBTr (̺ ln ̺)

= −NkB

{(
n−m

2

)
ln

(
n−m

2

)
+ (1 − n) ln(1 − n) +

(
n+m

2

)
ln

(
n+m

2

)}

.

(d) The dimensionless free energy is given by

f(m,n, θ, δ) = −1
2m

2+δn+θ

{(
n−m

2

)
ln

(
n−m

2

)
+(1−n) ln(1−n)+

(
n+m

2

)
ln

(
n+m

2

)}
.

(e) The mean field equations are

0 =
∂f

∂m
= −m+ 1

2θ ln

(
n−m

n+m

)

0 =
∂f

∂n
= δ + 1

2θ ln

(
n2 −m2

4 (1 − n)2

)
.

1This problem has been corrected: (θ∗, δ∗) is not the tricritical point.
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These can be rewritten as

m = n tanh(m/θ)

n2 = m2 + 4 (1 − n)2 e−2δ/θ .

(f) Settingm = 0 solves the first mean field equation always. Plugging this into the second
equation, we find

n =
2

2 + exp(δ/θ)
.

(g) If we set m→ 0 in the first equation, we obtain n = θ, hence

θc =
2

2 + exp(δ/θc)
.

(h) The above equation may be recast as

δ = θ ln

(
2

θ
− 2

)

with θ = θc. Differentiating, we obtain

∂δ

∂θ
= ln

(
2

θ
− 2

)
− 1

1 − θ
=⇒ θ =

δ

δ + 1
.

Plugging this into the result for part (g), we obtain the relation δ eδ+1 = 2, and numerical
solution yields the maximum of δ(θ) as

θ∗ = 0.3164989 . . . , δ = 0.46305551 . . . .

This is not the tricritical point.

(i) Plugging in n = m/ tanh(m/θ) into f(n,m, θ, δ), we obtain an expression for f(m, θ, δ),
which we then expand in powers of m, obtaining

f(m, θ, δ) = f0 + 1
2am

2 + 1
4bm

4 + 1
6cm

6 + O(m8) .

We find

a =
2

3θ

{
δ − θ ln

(
2(1 − θ)

θ

)}

b =
1

45 θ3

{
4(1 − θ) θ ln

(
2(1 − θ)

θ

)
+ 15θ2 − 5θ + 4δ(θ − 1)

}

c =
1

1890 θ5(1 − θ)2

{
24 (1 − θ)2 θ ln

(
2(1 − θ)

θ

)
+ 24δ(1 − θ)2 + θ

(
35 − 154 θ + 189 θ2

)
}
.
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The tricritical point occurs for a = b = 0, which yields

θt = 1
3 , δt = 2

3 ln 2 .

If, following Landau, we consider terms only up through orderm6, we predict a first order
line given by the solution to the equation

b = − 4√
3

√
ac .

The actual first order line is obtained by solving for the locus of points (θ, δ) such that
f(m, θ, δ) has a degenerate minimum, with one of the minima at m = 0 and the other at
m = ±m0. The results from Landau theory will coincide with the exact mean field solution
at the tricritical point, where them0 = 0, but in general the first order lines obtained by the
exact mean field theory solution and by a truncated sixth order Landau expansion of the
free energy will differ.
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Solution Set #9

(1) Consider a two-state Ising model, with an added quantum dash of flavor. You are
invited to investigate the transverse Ising model, whose Hamiltonian is written

Ĥ = −J
∑

〈ij〉
σx

i σ
x
j −H

∑

i

σz
i ,

where the σα
i are Pauli matrices:

σx
i =

(
0 1
1 0

)

i

, σz
i =

(
1 0
0 −1

)

i

.

(a) Using the trial density matrix,

̺i = 1
2 + 1

2 mx σ
x
i + 1

2 mz σ
z
i

on each site, compute the mean field free energy F/NĴ(0) ≡ f(θ, h,mx,mz), where
θ = kBT/Ĵ(0), and h = H/Ĵ(0). Hint: Work in an eigenbasis when computing
Tr (̺ ln ̺).

(b) Derive the mean field equations for mx and mz .

(c) Show that there is always a solution withmx = 0, although it may not be the solution
with the lowest free energy. What is mz(θ, h) when mx = 0?

(d) Show that mz = h for all solutions with mx 6= 0.

(e) Show that for θ ≤ 1 there is a curve h = h∗(θ) below which mx 6= 0, and along which
mx vanishes. That is, sketch the mean field phase diagram in the (θ, h) plane. Is the
transition at h = h∗(θ) first order or second order?

(f) Sketch, on the same plot, the behavior of mx(θ, h) and mz(θ, h) as functions of the
field h for fixed θ. Do this for θ = 0, θ = 1

2 , and θ = 1.

Solution :
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(a) We have Tr (̺ σx) = mx and Tr (̺ σz) = mz . The eigenvalues of ̺ are 1
2(1 ±m), where

m = (m2
x +m2

z)
1/2. Thus,

f(θ, h,mx,mz) = −1
2m

2
x − hmz + θ

[
1 +m

2
ln

(
1 +m

2

)
+

1 −m

2
ln

(
1 −m

2

)]
.

(b) Differentiating with respect to mx and mz yields

∂f

∂mx

= 0 = −mx +
θ

2
ln

(
1 +m

1 −m

)
· mx

m

∂f

∂mz

= 0 = −h+
θ

2
ln

(
1 +m

1 −m

)
· mz

m
.

Note that we have used the result
∂m

∂mµ

=
mµ

m

where mα is any component of the vector m.

(c) If we setmx = 0, the first mean field equation is satisfied. We then have mz = m sgn(h),
and the second mean field equation yields mz = tanh(h/θ). Thus, in this phase we have

mx = 0 , mz = tanh(h/θ) .

(d) When mx 6= 0, we divide the first mean field equation by mx to obtain the result

m =
θ

2
ln

(
1 +m

1 −m

)
,

which is equivalent to m = tanh(m/θ). Plugging this into the second mean field equation,
we find mz = h. Thus, when mx 6= 0,

mz = h , mx =
√
m2 − h2 , m = tanh(m/θ) .

Note that the length of the magnetization vector,m, is purely a function of the temperature
θ in this phase and thus does not change as h is varied when θ is kept fixed. What does
change is the canting angle of m, which is α = tan−1(h/m) with respect to the ẑ axis.

(e) The two solutions coincide when m = h, hence

h = tanh(h/θ) =⇒ θ∗(h) =
2h

ln
(

1+h
1−h

) .

Inverting the above transcendental equation yields h∗(θ). The component mx, which
serves as the order parameter for this system, vanishes smoothly at θ = θc(h). The transi-
tion is therefore second order.

(f) See Fig. 9.1.
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Figure 8.9: Solution to the mean field equations for problem 2. Top panel: phase diagram.
The region within the thick blue line is a canted phase, where mx 6= 0 and mz = h > 0;
outside this region the moment is aligned along ẑ and mx = 0 with mz = tanh(h/θ).
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Final Examination

All parts are worth 5 points each

(1) [40 points total] Consider a noninteracting gas of bosons in d dimensions. Let the
single particle dispersion be ε(k) = A |k|σ, where σ > 0.

(a) Find the single particle density of states per unit volume g(ε). Show that g(ε) =
C εp−1 Θ(ε), and find C and p in terms of A, d, and σ. You may abbreviate the total
solid angle in d dimensions as Ωd = 2πd/2/Γ(d/2).

We have

g(ε) dε =
ddk

(2π)d
= (2π)−dΩd k

d−1 dk

and hence

g(ε) = (2π)−dΩd k
d−1 dk

dε
= C εp−1 ,

where p = d/σ and

C =
ΩdA

−d/σ

σ(2π)d
=

A−d/σ

2d−1πd/2 Γ(d/2)σ
.

(b) Under what conditions will there be a finite temperature Tc for Bose condensation?

The number density is

n(T, z) =

∞∫

0

dε
g(ε)

z−1 eβε − 1
= C Γ(p)β−p Lip(z) .

The RHS is a monotonically increasing function of the fugacity z. It vanishes for
z = 0. In the limit z → 1−, the RHS diverges for p ≤ 1. In this case, we can invert this
equation to obtain a unique solution for z(T, n). In this case, there is no Bose con-
densation. If p > 1, the RHS is finite for z = 1, which establishes a maximum density
nmax(T ) at each temperature, above which the system must be in a condensed phase.
Thus, the criterion for a finite Tc is p > 1, i.e. d > σ.
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(c) For T > Tc, find an expression for the number density n(T, z). You may find the
following useful:

∞∫

0

dε
εq−1

z−1eβε − 1
= Γ(q)β−q Liq(z) ,

where Liq(z) =
∑∞

j=1 z
j/jq is the polylogarithm function. Note that Liq(1) = ζ(q).

This has been computed in part (b) above: n(T, z) = C Γ(p) (kBT )p Lip(z).

(d) Assuming Tc > 0, find an expression for Tc(n).

Set z = 1 and T = Tc. We then have

kBTc =

(
n

C Γ(p) ζ(p)

)1/p

.

(e) For T < Tc, find an expression for the condensate number density n0(T, n).

We set z = 1. Then n0 = n− nmax(T ), i.e.

n0(T ) = n ·
{

1 −
(

T

Tc(n)

)p
}
.

where Tc(n) is given in part (d).

(f) For T < Tc, compute the molar heat capacity at constant volume and particle number
cV,N (T, n). Recall that cV,N = NA

N

(
∂E
∂T

)
V,N

.

The energy density is

E = V

∞∫

0

dε
ε g(ε)

eβε − 1
= C V Γ(p+ 1) ζ(p + 1) (kBT )p+1 .

Thus,

CV,N =

(
∂E

∂T

)

V,N

= C kB V Γ(p+ 2) ζ(p + 1) (kBT )p .

As we have derived above, the particle number is related to the critical temperature
by

N = C V Γ(p) ζ(p) (kBTc)
p .

Therefore the molar heat capacity is

cV,N (T, n) =
NA

N
· CV,N = R · p(p+ 1) ζ(p + 1)

ζ(p)
·
(

T

Tc(n)

)p

.

where R = NAkB is the gas constant.
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(g) For T > Tc, compute the molar heat capacity at constant volume and particle number
cV,N (T, z).

In this regime,

N(T, V, z) = V

∞∫

0

dε
g(ε)

z−1eβε − 1
= C V Γ(p) (kBT )p Lip(z)

E(T, V, z) = V

∞∫

0

dε
ε g(ε)

z−1 eβε − 1
= C V Γ(p+ 1) (kBT )p+1 Lip+1(z) .

Now take the differentials:

dN = C V Γ(p) (kBT )p ·
{
p Lip(z)

dT

T
+ Lip−1(z)

dz

z

}

dE = C V Γ(p+ 1) (kBT )p+1 ·
{

(p+ 1)Lip+1(z)
dT

T
+ Lip(z)

dz

z

}
.

Since dN = 0, we can use the first of these to solve for dz in terms of dT :

dz

z

∣∣∣∣∣
N

= −
p Lip(z)

Lip−1(z)
· dT
T
.

Inserting this into the equation for dE, we have

dE
∣∣
N

= C V Γ(p+ 1) (kBT )p+1 ·
{

(p+ 1)Lip+1(z) −
p Li2p(z)

Lip−1(z)

}

· dT
T

= pNkBT ·
{

(p+ 1)Lip+1(z)

Lip(z)
−
p Lip(z)

Lip−1(z)

}

· dT
T

,

and hence

cV,N (T, z) = pR ·
{

(p+ 1)Lip+1(z)

Lip(z)
−
p Lip(z)

Lip−1(z)

}
.

(h) Show that under certain conditions the heat capacity is discontinuous at Tc, and eval-
uate cV,N (T±

c ) just above and just below the transition.

Setting z = 1 and T = Tc, the results from parts (f) and (g) yield

cV,N (T−
c ) =

p(p+ 1) ζ(p+ 1)R

ζ(p)

cV,N (T+
c ) =

p(p+ 1) ζ(p+ 1)R

ζ(p)
− p2ζ(p)R

ζ(p− 1)
.



56 FINAL EXAMINATION

Subtracting these values we obtain the discontinuity at the transition,

∆c ≡ cV,N (T+
c ) − cV,N (T−

c ) = −p
2 ζ(p)R

ζ(p− 1)
.

For 1 < p < 2 we have Tc > 0 and ∆c = 0, since ζ(p − 1) = ∞. For p > 2, however,
there is a finite discontinuity in the specific heat at the transition.

(2) [30 points total] Consider the following model Hamiltonian,

Ĥ =
∑

〈ij〉
E(σi, σj) ,

where each σi may take on one of three possible values, and

E(σ, σ′) =




−J +J 0
+J −J 0
0 0 +K



 ,

with J > 0 and K > 0. Consider a variational density matrix ̺v(σ1, . . . , σN ) =
∏

i ˜̺(σi),
where the normalized single site density matrix has diagonal elements

˜̺(σ) =

(
n+m

2

)
δσ,1 +

(
n−m

2

)
δσ,2 + (1 − n) δσ,3 .

(a) What is the global symmetry group for this Hamiltonian?

The global symmetry group is Z2. If we label the spin values as σ ∈ {1, 2, 3}, then
the group elements can be written as permutations, 1 =

(
123
123

)
and J =

(
123
213

)
, with

J 2 = 1.

(b) Evaluate E = Tr (̺v Ĥ).

For each nearest neighbor pair (ij), the distribution of {σ,σj} is according to the
product ˜̺(σi) ˜̺(σj). Thus, we have

E = 1
2NzJ

∑

σ,σ′

˜̺(σ) ˜̺(σ′) ε(σ, σ′)

= 1
2NzJ ·

{
˜̺2(1)

︷ ︸︸ ︷(
n+m

2

)2

(−J)+

˜̺2(2)
︷ ︸︸ ︷(
n−m

2

)2

(−J)+

2 ˜̺(1) ˜̺(2)︷ ︸︸ ︷

2

(
n+m

2

)(
n−m

2

)
(+J)+

˜̺2(3)
︷ ︸︸ ︷
(1 − n)2 (+K)

}

= −1
2Nz

[
Jm2 −K(1 − n)2

]
.
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(c) Evaluate S = −kB Tr (̺v ln ̺v).

The entropy is

S = −NkB Tr
(
˜̺ ln ˜̺

)

= −NkB

{(
n+m

2

)
ln

(
n+m

2

)
+

(
n−m

2

)
ln

(
n−m

2

)
+ (1 − n) ln(1 − n)

}
.

(d) Adimensionalize by writing θ = kBT/zJ and c = K/J , where z is the lattice coordi-
nation number. Find f(n,m, θ, c) = F/NzJ .

This can be solved by inspection from the results of parts (b) and (c):

f = −1
2m

2+1
2c (1−n)2+θ

[(
n+m

2

)
ln

(
n+m

2

)
+

(
n−m

2

)
ln

(
n−m

2

)
+(1−n) ln(1−n)

]

.

(e) Find all the mean field equations.

There are two mean field equations, obtained by extremizing with respect to n and
to m, respectively:

∂f

∂n
= 0 = c (n − 1) + 1

2θ ln

(
n2 −m2

4 (1 − n)2

)

∂f

∂m
= 0 = −m+ 1

2θ ln

(
n−m

n+m

)
.

These may be recast as

n2 = m2 + 4 (1 − n)2 e−2c(n−1)/θ

m = n tanh(m/θ) .

(f) Find an equation for the critical temperature θc, and show graphically that it has a
unique solution.

To find θc, we take the limitm → 0. The second mean field equation then gives n = θ.
Substituting this into the first mean field equation yields

θ = 2 (1 − θ) e−2c(θ−1)/θ .

If we define u ≡ θ−1 − 1, this equation becomes

2u = e−cu .

It is clear that for c > 0 this equation has a unique solution, since the LHS is mono-
tonically increasing and the RHS is monotonically decreasing, and the difference
changes sign for some u > 0. The low temperature phase is the ordered phase,
which spontaneously breaks the aforementioned Z2 symmetry. In the high tempera-
ture phase, the Z2 symmetry is unbroken.
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(3) [30 points total] Provide clear, accurate, and brief answers for each of the follow-
ing:

(a) Explain what is meant by (i) recurrent, (ii) ergodic, and (iii) mixing phase flows.

(i) In a recurrent system, for every neighborhood N of phase space there exists a
point ϕ0 ∈ N which will return to N after a finite number of application of the
τ -advance map gτ , where τ is finite. (ii) An ergodic system is one in which time
averages may be replaced by phase space averages. (iii) A mixing system is one for
which, as t→ ∞, the instantaneous time average of a quantity may be replaced by its
phase space average.

(b) Why is it more accurate to compute response functions χij = ∂mi/∂Hj rather than
correlation functions Cij = 〈σi σj〉 − 〈σi〉〈σj〉 in mean field theory? What is the exact
thermodynamic relationship between χij and Cij?

Within the conventional mean field theory approach we have discussed, Cij = 0
because each site is independent, as the trial density matrix is a direct product of
individual single site density matrices. Extremizing the free energy, though yields a
set of coupled nonlinear equations formi in terms of all the local fields {Hj}, so χij is

nonzero. Another way to look at it is that χij = −∂2F/∂Hi ∂Hj , and the variational

approach assures us that F is accurate up to terms of order (δρ)2, where ρ = ρv + δρ.
Using this expression, we see that Cij is only accurate up to terms of order δρ. The
exact relation between correlation and response functions is Cij = kBT χij .

(c) What is a tricritical point?

A critical point Tc may be extended to a critical curve in an extended parameter space
(T, λ), where λ is an additional parameter which does not explicitly break the sym-
metry group G which is spontaneously broken in the ordered phase. At a specific
point (Tt, λt) along this critical curve, the transition may change from first to second
order. The confluence of the first and second order boundaries lies at a tricritical point.

(d) Sketch what the radial distribution function g(r) looks like for a simple fluid like
liquid Argon. Identify any relevant length scales, as well as the proper limiting value
for g(r → ∞).

See Fig. 6.13 of the Lecture Notes. Note that g(∞) = 1, and g(r) = 0 for r < a, where
a is the hard sphere core diameter.

(e) Discuss the First Law of Thermodynamics from the point of view of statistical me-
chanics.

The thermodynamic energy is E =
∑

n PnEn, where Pn = Z−1e−En/kBT . Thus dE =
d̄Q = d̄W , with d̄Q =

∑
nEn dPn and d̄W = −∑n Pn dEn. The differential heat is

due to changes in the probability distribution Pn, while the differential work is due
to changes in the energy eigenvalues En.

(f) Explain what is meant by the Dulong-Petit limit of the heat capacity of a solid.
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In the high temperature limit (but below the melting point), the ion cores of any solid
behave classically. Each of the N ion cores has 2d degrees of freedom: d coordinates
and d momenta. The potential energy can be modeled as a harmonic potential (in all
the coordinates), and the kinetic energy is the usual ballistic expression. Thus, from
equipartition, the energy is N × 2d × 1

2kBT = NdkBT , and the heat capacity in this
limit is CV,N = NdkB.


