
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) The information entropy of a distribution {pn} is defined as S = −
∑

n pn log2 pn, where n
ranges over all possible configurations of a given physical system and pn is the probability
of the state |n〉. If there are Ω possible states and each state is equally likely, then S = log2 Ω,
which is the usual dimensionless entropy in units of ln 2.

Consider a normal deck of 52 distinct playing cards. A new deck always is prepared in the
same order (A♠ 2♠ · · ·K♣).

(a) What is the information entropy of the distribution of new decks?

(b) What is the information entropy of a distribution of completely randomized decks?

Now consider what it means to shuffle the cards. In an ideal riffle shuffle, the deck is split
and divided into two equal halves of 26 cards each. One then chooses at random whether
to take a card from either half, until one runs through all the cards and a new order is
established (see figure).

Figure 1: The riffle shuffle.

(c) What is the increase in information entropy for a distribution of new decks that each
have been shuffled once?

(d) Assuming each subsequent shuffle results in the same entropy increase (i.e. neglect-
ing redundancies), how many shuffles are necessary in order to completely random-
ize a deck?

(e) If in parts (b), (c), and (d), you were to use Stirling’s approximation,

K! ∼ KK e−K
√

2πK ,

how would your answers have differed?
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Solution :

(a) Since each new deck arrives in the same order, we have p1 = 1 while p2,...,52! = 0.
Therefore S = 0.

(b) For completely randomized decks, pn = 1/Ω with n ∈ {1, . . . ,Ω} and Ω = 52!, the total
number of possible configurations. Thus, Srandom = log2 52! = 225.581.

(c) After one riffle shuffle, there are Ω =
(

52
26

)

possible configurations. If all such configura-

tions were equally likely, we would have (∆S)riffle = log2

(

52
26

)

= 48.817. However, they are
not all equally likely. For example, the probability that we drop the entire left-half deck
and then the entire right half-deck is 2−26. After the last card from the left half-deck is
dropped, we have no more choices to make. On the other hand, the probability for the
sequence LRLR · · · is 2−51, because it is only after the 51st card is dropped that we have
no more choices. We can derive an exact expression for the entropy of the riffle shuffle
in the following manner. Consider a deck of N = 2K cards. The probability that we run
out of choices after K cards is the probability of the first K cards dropped being all from
one particular half-deck, which is 2 · 2−K . Now let’s ask what is the probability that we
run out of choices after (K + 1) cards are dropped. If all the remaining (K − 1) cards are
from the right half-deck, this means that we must have one of the R cards among the first
K dropped. Note that this R card cannot be the (K + 1)th card dropped, since then all of
the first K cards are L, which we have already considered. Thus, there are

(

K
1

)

= K such
configurations, each with a probability 2−K−1. Next, suppose we run out of choices after
(K + 2) cards are dropped. If the remaining (K − 2) cards are R, this means we must have
2 of the R cards among the first (K + 1) dropped, which means

(K+1
2

)

possibilities. Note
that the (K + 2)th card must be L, since if it were R this would mean that the last (K − 1)
cards are R, which we have already considered. Continuing in this manner, we conclude

ΩK = 2

K
∑

n=0

(

K + n − 1

n

)

=

(

2K

K

)

and

SK = −
Ω

K
∑

a=1

pa log2 pa =
K−1
∑

n=0

(

K + n − 1

n

)

· 2−(K+n) · (K + n) .

The results are tabulated below in Table 1. For a deck of 52 cards, the actual entropy per
riffle shuffle is S26 = 46.274.

(d) Ignoring redundancies, we require k = Srandom/(∆S)riffle = 4.62 shuffles if we assume
all riffle outcomes are equally likely, and 4.88 if we use the exact result for the riffle en-
tropy. Since there are no fractional shuffles, we round up to k = 5 in both cases. In fact,
computer experiments show that the answer is k = 9. The reason we are so far off is that
we have ignored redundancies, i.e. we have assumed that all the states produced by two
consecutive riffle shuffles are distinct. They are not! For decks with asymptotically large
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K ΩK SK log2

(

2K
K

)

2 6 2.500 2.585

12 2704156 20.132 20.367

26 4.96 × 1014 46.274 48.817

100 9.05 × 1058 188.730 195.851

Table 1: Riffle shuffle results.

numbers of cards N ≫ 1, the number of riffle shuffles required is k ≃ 3
2 log2 N . See D.

Bayer and P. Diaconis, Annals of Applied Probability 2, 294 (1992).

(e) Using the first four terms of Stirling’s approximation of ln K , i.e. out to O(K0), we find
log2 52! ≈ 225.579 and log2

(

52
26

)

≈ 48.824.

(2) In problem #1, we ran across Stirling’s approximation,

lnK! ∼ K ln K − K + 1
2 ln(2πK) + O

(

K−1
)

,

for large K . In this exercise, you will derive this expansion.

(a) Start by writing

K! =

∞
∫

0

dx xK e−x ,

and define x ≡ K(t + 1) so that K! = KK+1 e−K F (K), where

F (K) =

∞
∫

−1

dt eKf(t) .

Find the function f(t).

(b) Expand f(t) =
∑∞

n=0 fn tn in a Taylor series and find a general formula for the ex-
pansion coefficients fn. In particular, show that f0 = f1 = 0 and that f2 = −1

2 .

(c) If one ignores all the terms but the lowest order (quadratic) in the expansion of f(t),
show that

∞
∫

−1

dt e−Kt2/2 =

√

2π

K
− R(K) ,

and show that the remainder R(K) > 0 is bounded from above by a function which
decreases faster than any polynomial in 1/K .

(d) For the brave only! – Find the O
(

K−1
)

term in the expansion for ln K!.
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Solution :

(a) Setting x = K(t + 1), we have

K! = KK+1 e−K

∞
∫

−1

dt (t + 1)K e−t ,

hence f(t) = ln(t + 1) − t.

(b) The Taylor expansion of f(t) is

f(t) = −1
2t2 + 1

3t3 − 1
4t4 + . . . .

(c) Retaining only the leading term in the Taylor expansion of f(t), we have

F (K) ≃
∞
∫

−1

dt e−Kt2/2

=

√

2π

K
−

∞
∫

1

dt e−Kt2/2 .

Writing t ≡ s + 1, the remainder is found to be

R(K) = e−K/2

∞
∫

0

ds e−Ks2/2 e−Ks <

√

π

2K
e−K/2 ,

which decreases exponentially with K , faster than any power.

(d) We have

F (K) =

∞
∫

−1

dt e−
1

2
Kt2e

1

3
Kt3− 1

4
Kt4+...

=

∞
∫

−1

dt e−
1

2
Kt2

{

1 + 1
3Kt3 − 1

4Kt4 + 1
18K2t6 + . . .

}

=

√

2π

K
·
{

1 − 3
4K−1 + 5

6K−1 + O
(

K−2
)

}

Thus,
lnK! = K ln K − K + 1

2 ln K + 1
2 ln(2π) + 1

12K−1 + O
(

K−2
)

.
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(3) A six-sided die is loaded so that the probability to throw a three is twice that of throw-
ing a two, and the probability of throwing a four is twice that of throwing a five.

(a) Find the distribution {pn} consistent with maximum entropy, given these constraints.

(b) Assuming the maximum entropy distribution, given two such identical dice, what is
the probability to roll a total of seven if both are thrown simultaneously?

Solution :

(a) We have the following constraints:

X0(p) = p1 + p2 + p3 + p4 + p5 + p6 − 1 = 0

X1(p) = p3 − 2p2 = 0

X2(p) = p4 − 2p5 = 0 .

We define

S∗(p,λ) ≡ −
∑

n

pn ln pn −
2

∑

a=0

λa X(a)(p) ,

and freely extremize over the probabilities {p1, . . . , p6} and the undetermined Lagrange
multipliers {λ0, λ1, λ2}. We obtain

∂S∗

∂p1

= −1 − ln p1 − λ0

∂S∗

∂p4

= −1 − ln p4 − λ0 − λ2

∂S∗

∂p2

= −1 − ln p2 − λ0 + 2λ1

∂S∗

∂p5

= −1 − ln p5 − λ0 + 2λ2

∂S∗

∂p3

= −1 − ln p3 − λ0 − λ1

∂S∗

∂p6

= −1 − ln p6 − λ0 .

Extremizing with respect to the undetermined multipliers generates the three constraint
equations. We therefore have

p1 = e−λ
0
−1 p4 = e−λ

0
−1 e−λ

2

p2 = e−λ
0
−1 e2λ

1 p5 = e−λ
0
−1 e2λ

2

p3 = e−λ
0
−1 e−λ

1 p6 = e−λ
0
−1 .

We solve for {λ0, λ1, λ2} by imposing the three constraints. Let x ≡ p1 = p6 = e−λ
0
−1.

Then p2 = x e2λ
1 , p3 = x e−λ

1 , p4 = x e−λ
2 , and p5 = x e2λ

2 . We then have

p3 = 2p2 ⇒ e−3λ
1 = 2

p4 = 2p5 ⇒ e−3λ
2 = 2 .
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We may now solve for x:

6
∑

n=1

pn =
(

2 + 21/3 + 24/3
)

x = 1 ⇒ x =
1

2 + 3 · 21/3
.

We now have all the probabilities:

p1 = x = 0.1730 p4 = 21/3x = 0.2180

p2 = 2−2/3x = 0.1090 p5 = 2−2/3x = 0.1090

p3 = 21/3x = 0.2180 p6 = x = 0.1730 .

(b) The probability to roll a seven with two of these dice is

P (7) = 2 p1 p6 + 2 p2 p5 + 2 p3 p4

= 2
(

1 + 2−4/3 + 22/3
)

x2 = 0.1787 .

(4) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
· 1

x2 + γ2
.

Consider the sum XN =
∑N

i=1 xi , where each xi is independently distributed according to
P (xi). Find the probability ΠN(Y ) that |XN | < Y , where Y > 0 is arbitrary.

Solution :

As discussed in the Lecture Notes §1.4.2, the distribution of a sum of identically distributed

random variables, X =
∑N

i=1 xi , is given by

PN (X) =

∞
∫

−∞

dk

2π

[

P̂ (k)
]N

eikX ,

where P̂ (k) is the Fourier transform of the probability distribution P (xi) for each of the xi.
The Fourier transform of a Lorentzian is an exponential:

∞
∫

−∞

dx P (x) e−ikx = e−γ|k| .

Thus,

PN (X) =

∞
∫

−∞

dk

2π
e−Nγ|k| eikX

=
Nγ

π
· 1

X2 + N2γ2
.
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The probability for X to lie in the interval X ∈ [−Y, Y ], where Y > 0, is

ΠN(Y ) =

Y
∫

−Y

dX PN (X) =
2

π
tan−1

(

Y

Nγ

)

.

The integral is easily performed with the substitution X = Nγ tan θ. Note that ΠN (0) = 0
and ΠN(∞) = 1.

7



PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) A box of volume V contains N1 identical atoms of mass m1 and N2 identical atoms of
mass m2.

(a) Compute the density of states D(E,V,N1, N2).

(b) Let x1 ≡ N1/N be the fraction of particles of species #1. Compute the statistical
entropy S(E,V,N, x1).

(c) Under what conditions does increasing the fraction x1 result in an increase in statis-
tical entropy of the system? Why?

Solution :

(a) Following the method outlined in §4.2.2 of the Lecture Notes, we rescale all the mo-
menta pi with i ∈ {1, . . . , N1} as pα

i =
√

2m1E uα
i , and all the momenta pj with j ∈

{N1 + 1, . . . , N1 + N2} as pα
j =

√

2m2E uα
j . We then have

D(E,V,N1, N2) =
V N

1
+N

2

N1!N2!

(

√

2m1E

h

)N
1
d(

√

2m2E

h

)N
2
d

E−1 · 1
2Ω(N

1
+N

2
)d .

Thus,

D(E,V,N1, N2) =
V N

N1!N2!

(

m

2π~2

)
1

2
Nd E

1

2
Nd−1

Γ(Nd/2)
,

where N = N1 + N2 and m ≡ m
N

1
/N

1 m
N

2
/N

2 has dimensions of mass. Note that the N1!N2!
term in the denominator, in contrast to N !, appears because only particles of the same
species are identical.

(b) Using Stirling’s approximation ln K! ≃ K ln K − K + O(ln K), we find

S

k
B

= ln D = N ln

(

V

N

)

+1
2Nd ln

(

2E

Nd

)

−N
(

x1 lnx1+x2 ln x2

)

+1
2Nd ln

(

m
x
1

1 m
x
2

2

2π~2

)

+N
(

1+1
2d

)

,

where x2 = 1 − x1.

(c) Using x2 = 1 − x1, we have

∂S

∂x1

= N ln

(

1 − x1

x1

)

+ 1
2Nd ln

(

m1

m2

)

.

Setting ∂S/∂x1 to zero at the solution x = x∗
1, we obtain

x∗
1 =

m
d/2
1

m
d/2
1 + m

d/2
2

, x∗
2 =

m
d/2
2

m
d/2
1 + m

d/2
2

.

Thus, an increase of x1 will result in an increase in statistical entropy if x1 < x∗
1. The reason

is that x1 = x∗
1 is optimal in terms of maximizing S.
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(2) Two chambers containing Argon gas at p = 1.0 atm and T = 300 K are connected via a
narrow tube. One chamber has volume V1 = 1.0 L and the other has volume V2 = r V1.

(a) Compute the RMS energy fluctuations of the particles in the smaller chamber when
the volume ration is r = 2.

(b) Compute the RMS energy fluctuations of the particles in the smaller chamber when
the volume ration is r = ∞.

Solution :

For two systems in thermal contact (see Lecture Notes §4.5), the RMS energy fluctuation of

system #1 is ∆E1 =
√

k
B
T 2 C̄V , where

C̄V =
CV,1 CV,2

CV,1 + CV,2

=
r

r + 1
CV,1 .

Thus, with CV = 3
2Nk

B
= 3pV/T , we have

∆E1 =

√

r

r + 1
·
√

3
2 pV k

B
T =

√

r

r + 1
· 7.93 × 10−10 J .

Thus, (a) for r = 2 we have ∆E1 = 648 pJ, and (b) for r = ∞ we have ∆E1 = 793 pJ, where
1 pJ = 10−12 J.

(3) Consider a system of N identical but distinguishable particles, each of which has a
nondegenerate ground state with energy zero, and a g-fold degenerate excited state with
energy ε > 0.

(a) Let the total energy of the system be fixed at E = Mε, where M is the number of
particles in an excited state. What is the total number of states Ω(E,N)?

(b) What is the entropy S(E,N)? Assume the system is thermodynamically large. You
may find it convenient to define ν ≡ M/N , which is the fraction of particles in an
excited state.

(c) Find the temperature T (ν). Invert this relation to find ν(T ).

(d) Show that there is a region where the temperature is negative.

(e) What happens when a system at negative temperature is placed in thermal contact
with a heat bath at positive temperature?
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Solution :

(a) Since each excited particle can be in any of g degenerate energy states, we have

Ω(E,N) =

(

N

M

)

gM =
N ! gM

M ! (N − M)!
.

(b) Using Stirling’s approximation, we have

S(E,N) = k
B

ln Ω(E,N) = −Nk
B

{

ν ln ν + (1 − ν) ln(1 − ν) − ν ln g
}

,

where ν = M/N = E/Nε.

(c) The inverse temperature is

1

T
=

(

∂S

∂E

)

N

=
1

Nε

(

∂S

∂ν

)

N

=
k

B

ε
·
{

ln

(

1 − ν

ν

)

+ ln g

}

,

hence
k

B
T =

ε

ln
(

1−ν
ν

)

+ ln g
.

Inverting,

ν(T ) =
g e−ε/k

B
T

1 + g e−ε/k
B

T
.

(d) The temperature diverges when the denominator in the above expression for T (ν) van-
ishes. This occurs at ν = ν∗ ≡ g/(g + 1). For ν ∈ (ν∗, 1), the temperature is negative! This
is technically correct, and a consequence of the fact that the energy is bounded for this sys-
tem: E ∈ [0, Nε]. The entropy as a function of ν therefore has a maximum at ν = ν∗. The
model is unphysical though in that it neglects various excitations such as kinetic energy
(e.g. lattice vibrations) for which the energy can be arbitrarily large.

(e) When a system at negative temperature is placed in contact with a heat bath at positive
temperature, heat flows from the system to the bath. The energy of the system therefore
decreases, and since ∂S

∂E < 0, this results in a net entropy increase, which is what is de-
manded by the Second Law of Thermodynamics.

(4) Solve for the model in problem 3 using the ordinary canonical ensemble. The Hamilto-
nian is

Ĥ = ε

N
∑

i=1

(

1 − δσ
i
,1

)

,

where σi ∈ {1, . . . , g + 1}.

(a) Find the partition function Z(T,N) and the Helmholtz free energy F (T,N).
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(b) Show that M̂ = ∂Ĥ
∂ε counts the number of particles in an excited state. Evaluate the

thermodynamic average ν(T ) = 〈M̂ 〉/N .

(c) Show that the entropy S = −
(

∂F
∂T

)

N
agrees with your result from problem 3.

Solution :

(a) We have

Z(T,N) = Tr e−βĤ =
(

1 + g e−ε/k
B

T
)N

.

The free energy is

F (T,N) = −k
B
T ln F (T,N) = −Nk

B
T ln

(

1 + g e−ε/k
B

T
)

.

(b) We have

M̂ =
∂Ĥ

∂ε
=

N
∑

i=1

(

1 − δσ
i
,1

)

.

Clearly this counts all the excited particles, since the expression 1 − δσ
i
,1 vanishes if i = 1,

which is the ground state, and yields 1 if i 6= 1, i.e. if particle i is in any of the g excited
states. The thermodynamic average of M̂ is 〈M̂ 〉 =

(

∂F
∂ε

)

T,N
, hence

ν =
〈M̂ 〉
N

=
g e−ε/k

B
T

1 + g e−ε/k
B

T
,

which agrees with the result in problem 3c.

(c) The entropy is

S = −
(

∂F

∂T

)

N

= Nk
B

ln
(

1 + g e−ε/k
B

T
)

+
Nε

T

g e−ε/k
B

T

1 + g e−ε/k
B

T
.

Working with our result for ν(T ), we derive

1 + g e−ε/k
B

T =
1

1 − ν
ε

k
B
T

= ln

(

g(1 − ν)

ν

)

.

Inserting these results into the above expression for S, we verify

S = −Nk
B

ln(1 − ν) + Nk
B

ν ln

(

g(1 − ν)

ν

)

= −Nk
B

{

ν ln ν + (1 − ν) ln(1 − ν) − ν ln g
}

,

as we found in problem 3b.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a system described by the Hamiltonian

Ĥ = −H
N

∑

i=1

σi + ∆
N

∑

i=1

(1 − σ2
i ) ,

where each σi ∈ {−1, 0,+1}.

(a) Compute the ordinary canonical partition function Z(T,N,H,∆) and the free energy
F (T,N,H,∆).

(b) Find the magnetization M(T,N,H,∆).

(c) Show that ∂M
∂∆ = −∂N

0

∂H , where N0 =
∑N

i=1 δσ
i
,0.

Solution :

(a) We have

Z(T, V,N,∆) =
(

eβH + e−β∆ + e−βH
)N

F (T, V,N,∆) = −Nk
B
T ln

(

2 cosh(βH) + e−β∆
)

(b) The thermodynamic magnetization is given by

M = −
(

∂F

∂H

)

N,∆

=
N sinh(βH)

cosh(βH) + 1
2 e−β∆

.

(c) The Hamiltonian can be written Ĥ = −HM + ∆N0, since δσ,0 = 1 − σ2 when σ ∈
{−1, 0,+1}. Thus,

N0 = +

(

∂F

∂∆

)

H,N

⇒ − ∂2F

∂H ∂∆
=

∂M

∂∆
= −∂N0

∂H
.

(2) Consider a three-dimensional gas of N identical particles of mass m, each of which
has a magnetic dipole moment m = µ0n̂, where n̂ is a three-dimensional unit vector. The
Hamiltonian is

Ĥ =

N
∑

i=1

[

p2
i

2m
− µ0H · n̂i

]

.

1



(a) What is the grand potential Ω(T, V, µ,H)?

(b) Express M in terms of T , V , N , and H, where N is the average number of particles.

(c) Find M(T, V,N,H) to lowest order in the external field.

Solution :

(a) The contribution from the orientational (n̂) degrees of freedom to the single particle
partition function is

ξn̂ =

∫

dn̂

4π
eβµ

0
H·n̂ = 1

2

1
∫

−1

dx eβµ
0
Hx =

sinh(βµ0H)

βµ0H
,

where the integral is done by choosing the ẑ-axis to lie along H, then integrating out over

the azimuthal angle φ (yielding 2π), and finally over x =
ˆ̂
H · n̂ = cos θ. Then

ξ(T,H) = V λ−d
T ξn̂(T,H)

and so Z(T, V, µ,H) = ξN/N ! is the canonical partition function. The grand potential,
following the discussion in the Lecture Notes, is then

Ω(T, V, µ,H) = −V k
B
Tλ−d

T eµ/k
B

T · sinh(µ0H/k
B
T )

µ0H/k
B
T

.

(b) Let α ≡ µ0H/k
B
T , and define ξ(α) = α−1 sinhα. We have

M = − ∂Ω

∂H
= V λ−d

T eµ/k
B

T · µ0Ĥ ξ′(α)
∣

∣

α=µ
0
H/k

B
T

.

The particle number is

N = −∂Ω

∂µ
= V λ−d

T eµ/k
B

T ξ(α) ,

hence

M = Nµ0Ĥ · ξ′(α)

ξ(α)
= Nµ0Ĥ ·

(

ctnhα − α−1
)

.

Note that we have here used
∂H

∂H
= Ĥ =

H

H
,

where H = |H|.

(c) We expand ctnh α = 1
α + α

3 + O(α3) in a Laurent series. To lowest order in H, then,

M =
Nµ2

0 H

3k
B
T

.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) Consider a d-dimensional ultrarelativistic gas of classical indistinguishable particles
with a dispersion ε(p) = c |p|.

(a) Find an expression for the grand potential Ω(T, V, µ).

(b) Find the average number of particles N(T, V, µ).

(c) Find the entropy S(T, V, µ).

(d) Express the RMS fluctuations in the number of particle number, (∆N)
RMS

, in terms
of the volume V , temperature T , and the pressure p.

Solution :

(a) The OCE partition function Z(T, V,N) is computed in §4.2.4 of the Lecture Notes. One
finds

Z(T, V,N) =
V N

N !

(

Γ(d)Ωd

(βhc)d

)N

.

From Ξ = e−βΩ =
∑∞

N=0 eβµN Z(T, V,N), we obtain

Ω(T, V, µ) = −Γ(d)Ωd

(hc)d
V (k

B
T )d+1 eµ/k

B
T .

(b) The particle number is

N(T, V, µ) = −
(

∂Ω

∂µ

)

T,V

= −(d + 1)
Γ(d)Ωd

(hc)d
V (k

B
T )d eµ/k

B
T

(c) The entropy is

S(T, V, µ) = −
(

∂Ω

∂T

)

V,µ

=

(

(d + 1)k
B
− µ

T

)

Γ(d)Ωd

(hc)d
V (k

B
T )d eµ/k

B
T .

(d) The variance of the number N̂ is (see eqn. 4.138 of the Lecture Notes)

var(N̂ ) = k
B
T

(

∂N

∂µ

)

T,V

= N =
pV

k
B
T

.

Thus,

(∆N)
RMS

=

√

var(N̂) =

(

pV

k
B
T

)1/2

.

1



(2) Consider again the d-dimensional classical ultrarelativistic gas with ε(p) = cp.

(a) If d = 3, find the momentum distribution function g(p).

(b) Again for d = 3, find a general formula for the moments 〈 |p|k 〉.

(c) Repeat parts (a) and (b) for the case d = 2.

(d) In d = 3, what is the distribution function f(v) for velocities?

Solution :

(a) We have

g(p) =
〈

δ(p − p1)
〉

=
e−βcp

∫

d3p e−βcp
=

c3

8π(k
B
T )3

e−βcp .

(b) The moments are

〈

|p|k
〉

= 1
2(βc)3

∞
∫

0

dp p2+k e−βcp = 1
2(k + 2)! (βc)−k

(c) In d = 2,

g(p) =
〈

δ(p − p1)
〉

=
e−βcp

∫

d2p e−βcp
=

c2

2π(k
B
T )2

e−βcp

and

〈

|p|k
〉

= (βc)2
∞
∫

0

dp p1+k e−βcp = (k + 1)! (βc)−k

(d) The velocity is v = ∂ε
∂p

= c p̂. Thus, the magnitude is fixed at |v| = c and the direction
is distributed isotropically, i.e.

f(v) =
δ(v − c)

4πc2
.

(3) A classical gas of indistinguishable particles in three dimensions is described by the
Hamiltonian

Ĥ =

N
∑

i=1

{

A |pi|3 − µ0HSi

}

,

where A is a constant, and where Si ∈ {−1 , 0 , +1} (i.e. there are three possible spin po-
larization states).
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(a) Compute the free energy Fgas(T,H, V,N).

(b) Compute the magnetization density mgas = Mgas/V as a function of temperature,
pressure, and magnetic field.

The gas is placed in thermal contact with a surface containing NS adsorption sites, each
with adsorption energy −∆. The surface is metallic and shields the adsorbed particles
from the magnetic field, so the field at the surface may be approximated by H = 0.

(c) Find the Landau free energy for the surface, Ωsurf(T,N
S
, µ).

(d) Find the fraction f0(T, µ) of empty adsorption sites.

(e) Find the gas pressure p∗(T,H) at which f0 = 1
2 .

Solution :

(a) The single particle partition function is

ζ(T, V,H) = V

∫

d3p

h3
e−Ap3/k

B
T

1
∑

S=−1

eµ
0
HS/k

B
T =

4πV k
B
T

3Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

.

The N -particle partition function is Zgas(T,H, V,N) = ζN/N ! , hence

Fgas = −Nk
B
T

[

ln

(

4πV k
B
T

3NAh3

)

+ 1

]

− Nk
B
T ln

(

1 + 2 cosh(µ0H/k
B
T )

)

(b) The magnetization density is

mgas(T, p,H) = − 1

V

∂F

∂H
=

pµ0

k
B
T

· 2 sinh(µ0H/k
B
T )

1 + 2 cosh(µ0H/k
B
T )

We have used the ideal gas law, pV = Nk
B
T here.

(c) There are four possible states for an adsorption site: empty, or occupied by a particle
with one of three possible spin polarizations. Thus, Ξsurf(T,Ns, µ) = ξNs , with

ξ(T, µ) = 1 + 3 e(µ+∆)/k
B

T .

Thus,

Ωsurf(T,Ns, µ) = −NskB
T ln

(

1 + 3 e(µ+∆)/k
B

T
)

(d) The fraction of empty adsorption sites is 1/ξ, i.e.

f0(T, µ) =
1

1 + 3 e(µ+∆)/k
B

T

3



(e) Setting f0 = 1
2 , we obtain the equation 3 e(µ+∆)/k

B
T = 1, or

eµ/k
B

T = 1
3 e−∆/k

B
T .

We now need the fugacity z = eµ/k
B

T in terms of p, T , and H . To this end, we compute the
Landau free energy of the gas,

Ωgas = −pV = −k
B
T ζ eµ/k

B
T .

Thus,

p∗(T,H) =
k

B
T ζ

V
eµ/k

B
T =

4π(k
B
T )2

9Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

e−∆/k
B

T

4



PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a system composed of N spin tetramers, each of which is described by a
Hamiltonian

Ĥ = −J(σ1σ2 +σ1σ3 +σ1σ4 +σ2σ3 +σ2σ4 +σ3σ4)−Kσ1σ2σ3σ4 −µ0H(σ1 +σ2 +σ3 +σ4) .

The individual tetramers are otherwise noninteracting.

(a) Find the single tetramer partition function ζ . Suggestion: construct a table of all the
possible tetramer states and their energies.

(b) Find the magnetization per tetramer m = µ0

〈

σ1 + σ2 + σ3 + σ4

〉

.

(c) Suppose the tetramer number density is nt. The magnetization density is M = ntm.
Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.

Solution :

(a) First, note that

−J(σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4) = 2J − 1
2J(σ1 + σ2 + σ3 + σ4)

2 .

Next, construct a table, as in Tab. 1. We see that

ζ = 2 eβ(6J+K) cosh(4βµ0H) + 8 e−βK cosh(2βµ0H) + 6 e−β(2J−K) .

(b) We have

m =
1

β ζ
· ∂ζ

∂H
=

4µ0 eβ(6J+K) sinh(4βµ0H) + 8µ0 e−βK sinh(2βµ0H)

eβ(6J+K) cosh(4βµ0H) + 4 e−βK cosh(2βµ0H) + 3 e−β(2J−K)

(c) In the limit H → 0, we have

M(T,H) = nt m(T,H) =
16βµ2

0 eβ(6J+K) + 16βµ2
0 e−βK

eβ(6J+K) + 4 e−βK + 3 e−β(2J−K)
· nt ,

so

χ(T ) =
16ntµ

2
0

k
B
T

· e(6J+K)/k
B

T + e−K/k
B

T

e(6J+K)/k
B

T + 4 e−K/k
B

T + 3 e−(2J−K)/k
B

T
.

Note that this expression reduces to 4ntµ
2
0/kB

T when J = K = 0, which is the limit of
noninteracting spins.

1



|Ψ 〉 E |Ψ 〉 E

| ↑↑↑↑ 〉 −6J − K − 4µ0H | ↑↑↑↓ 〉 K − 2µ0H

| ↓↓↓↓ 〉 −6J − K + 4µ0H | ↑↑↓↑ 〉 K − 2µ0H

| ↑↑↓↓ 〉 2J − K | ↑↓↑↑ 〉 K − 2µ0H

| ↑↓↑↓ 〉 2J − K | ↓↑↑↑ 〉 K − 2µ0H

| ↑↓↓↑ 〉 2J − K | ↓↑↑↑ 〉 K + 2µ0H

| ↓↑↑↓ 〉 2J − K | ↑↓↑↑ 〉 K + 2µ0H

| ↓↑↓↑ 〉 2J − K | ↑↑↓↑ 〉 K + 2µ0H

| ↓↓↑↑ 〉 2J − K | ↑↑↑↓ 〉 K + 2µ0H

Table 1: Energy table for problem 1.

(2) Look up the relevant parameters for the HCl molecule and find the corresponding
value of Θrot. Then compute the value of the rotational partition function ξrot(T ) at T =
300K, showing the contribution from each of the terms in eqn. 4.266 of the Lecture Notes.

Solution :

HCl is a diatomic molecule. Let the separation of the nuclei be d. From elementary me-
chanics, the moment of inertia about the CM is I = µd2, where µ = m

H
m

Cl
/(m

H
+ m

Cl
)

is the reduced mass. The molar mass of hydrogen is 1 g/mol, while that of chlorine is
35.5 g/mol. Thus, µ = 0.97 g/mol. I find d = 0.13 nm via web sources. Thus, the tempera-
ture associated with rotations is

Θ =
~

2

2µd2k
B

=
(1.055 × 10−27 g cm2/s)2

2 · (0.97 g/6.02 × 1023) · (1.3 × 10−8 cm)2 · 1.38 × 10−16 erg/K
= 15K .

The rotational partition function is

ξrot =

∞
∫

0

dL (2L + 1) e−L(L+1) Θ/T =
T

Θ
+

1

3
+

1

15

Θ

T
+

4

315

(

Θ

T

)2

+ . . . ,

where Θ = ~
2/2Ik

B
. At T = 300K, Θ/T = 0.05, and the above series yields

ξrot = 20 + 0.33333 + 0.0033333 + 0.0000317 + . . . = 20.336698 . . . .

(3) In a chemical reaction among σ species,

ζ1 A1 + ζ2 A2 + · · · + ζσ Aσ = 0 ,

where Aa is a chemical formula and ζa is a stoichiometric coefficient. When ζa > 0, the
corresponding Aa is a product; when ζa < 0, Aa is a reactant. (See §2.13.1 of the Lecture
Notes.) The condition for equilibrium is

σ
∑

a=1

ζa µa = 0 ,

2



where µa is the chemical potential of the ath species. The equilibrium constant for the reac-
tion is defined as

κ(T, p) =

σ
∏

a=1

xζa

a ,

where xa = na

/
∑σ

b=1 nb is the fraction of species a.

(a) Working in the grand canonical ensemble, show that

κ(T, p) =
σ

∏

a=1

(

k
B
T ξa(T )

pλ3
a

)ζa

.

Note that the above expression does not involve any of the chemical potentials µa.

(b) Compute the equilibrium constant κ(T, p) for the dissociative reaction N2 ⇋ 2N
at T = 5000K, assuming the following: the characteristic temperature of rotation
and that of vibration of the N2 molecule are Θrot = 2.84K and Θvib = 3350K. The
dissociation energy, including zero point contributions, is ∆ = 169.3 kcal mol−1. The
electronic ground state of N2 has no degeneracy, but that of the N atom is 4 due to
electronic spin.

Solution :

(a) In the GCE, we have

Ω
(

T, V, {µa}
)

= −k
B
T V

σ
∑

a=1

λ−3
a eµa/k

B
T ξa ,

where λa = (2π~
2/makB

T )1/2 the thermal wavelength for species a and ξa(T ) is the inter-
nal coordinate partition function for species a. We then have

na = − 1

V

(

∂Ω

∂µa

)

T,V,µ
b6=a

= za λ−3
a ξa ,

where za = eµa/k
B

T . OK, so we now define

xa =
na

∑σ
b=1 nb

=
zaλ

−3
a ξa

p/k
B
T

=
k

B
T ξa za

p λ3
a

,

since
∑

b nb = −Ω/V k
B
T = p/k

B
T . (Remember Ω = −pV ). Therefore

κ(T, p) ≡
σ

∏

a=1

xζa

a

=

σ
∏

a=1

(

k
B
T ξa

pλ3
a

)ζa

·
σ

∏

a=1

zζa

a .

3



However,
σ

∏

a=1

zζa

a =

σ
∏

a=1

eζaµa/k
B

T = exp

(

1

k
B
T

σ
∑

a=1

ζa µa

)

= 1 ,

since
∑σ

a=1 ζa µa = 0.

(b) The internal partition function for N is just ξN = (2S + 1)(2I + 1), where S = 3
2 is the

total electronic spin from Hund’s rules, and I = 1 is the nuclear spin. It turns out that we
will never need to know the value of I . For for N2 the internal partition function is

ξN
2

= (2I + 1)2 · T

2Θrot

· e∆/T

1 − e−Θ
vib

/T
.

This formula requires some explanation. We appeal to Eqs. 4.288 and 4.289 in the Lecture
Notes. Since T ≫ Θrot, we have

ζg ≈ ζu ≈ 1
2

∞
∫

0

du e−uΘ
rot

/T =
T

2Θrot

,

where the factor of 1
2 comes from summing only over half the allowed L values, i.e. either

all even or all odd, and where u = L(L + 1) so du = (2L + 1) dL. We then have ξrot =
(2I+1)2T/2Θrot because gg+gu = (2I+1)2. The vibrational partition function was derived

to be ξvib = 1
2 csch (Θvib/2T ), however since we are including the zero point vibrational

energy 1
2~ωvib = 1

2k
B
Θvib in the dissociation energy, we get the above expression for ξN

2

.

According to our result from part (a), we have

κ(T, p) = 32k
B
Θrot · e−∆/T ·

(

1 − e−Θ
vib

/T
)

·
λ3

N
2

pλ6
N

= 8
√

2 · k
B
Θrot

pλ3
N

· e−∆/T ·
(

1 − e−Θ
vib

/T
)

.

Now we need to evaluate some quantities. The gas constant is

R = N
A
k

B
= 8.314 J/mol · K = 1.986 × 10−3 kcal/mol · K ,

hence at T = 5000K, we have ∆/k
B
T = 17.0. Furthermore, Θvib/T = 0.670. The thermal

wavelength of N at this temperature is found to be

λN =

(

2π · (1.055 × 10−27 g cm2/s)2

(14 g/6.02 × 1023) · (1.38 × 10−16 erg/K) · 5000K

)1/2

= 6.60 Å .

We also have

k
B
Θrot

pλ3
N

=
p0

p
· (1.38 × 10−16 erg/K) · (2.84K)

(1.013 × 106 g/cm · s2)(6.60 × 10−8 cm)3
= 1.35 p0/p ,

where p0 = 1.013 × 105 Pa is atmospheric pressure. Putting it all together, we obtain

κ(T = 5000K, p) = 3.09 × 10−7 · p0

p
.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) A substance obeys the thermodynamic relation E = aS4/V N2.

(a) Compute the heat capacity CV,N in terms of N , V , and T .

(b) Compute the equation of state relating p, V , N , and T .

(c) Compute the ratio Cϕ,N/CV,N , where Cϕ,N is the heat capacity at constant ϕ and N ,
with ϕ = V 2/T .

Solution :

(a) We have

T =
∂E

∂S

∣

∣

∣

∣

V,N

=
4aS3

V N2
⇒ S =

(

TVN2

4a

)1/3

.

Plugging this into the expression for E(S, V,N), we obtain

E(T, V,N) = 1
4(4a)−1/3 T 4/3V 1/3N2/3 ,

and hence

CV,N =
∂E

∂T

∣

∣

∣

∣

V,N

= 1
3(4a)−1/3 T 1/3V 1/3N2/3 .

(b) We have T (S, V,N) and so we must find p(S, V,N) and then eliminate S. Thus,

p = −∂E

∂V

∣

∣

∣

∣

S,N

=
aS4

V 2N2
= 1

4(4a)−1/3 T 4/3V −2/3N2/3 .

Cubing this result eliminates the fractional powers, yielding the equation of state

256a p3V 2 = N2T 4 .

Note also that E = pV and CV,N = 4pV/3T .

(d) We have dE = d̄Q − p dV , so

d̄Q = dE + p dV = CV,N dT +

{(

∂E

∂V

)

T,N

+ p

}

dV .

Now we need to compute dV
∣

∣

ϕ,N
. We write

dϕ = −V 2

T 2
dT +

2V

T
dV ,

hence

dV
∣

∣

ϕ,N
=

V

2T
dT .

1



Substituting this into our expression for d̄Q, we have

Cϕ,N = CV,N +

{(

∂E

∂V

)

T,N

+ p

}

V

2T
.

It is now left to us to compute

(

∂E

∂V

)

T,N

= 1
12 (4a)−1/3 T 4/3V −2/3N2/3 = 1

3 p .

We then have

Cϕ,N = CV,N +
2pV

3T
= 3

2 CV,N .

Thus,
Cϕ,N

CV,N

= 3
2 .

(2) Consider an engine cycle which follows the thermodynamic path in Fig. 1. The work
material is ν moles of a diatomic ideal gas. BC is an isobar (dp = 0), CA is an isochore
(dV = 0), and along AB one has

p(V ) = pB + (pA − pB) ·

√

VB − V

VB − VA

.

A

BC

Figure 1: Thermodynamic path for problem 2.

(a) Find the heat acquired QAB and the work done WAB.

(b) Find the heat acquired QBC and the work done WBC.

2



(c) Find the heat acquired QCA and the work done WCA.

(d) Find the work W done per cycle.

Solution :

Note that pC = pB and VC = VA, so we will only need to use {pA, pB, VA, VB} in our analysis.
For a diatomic ideal gas, E = 5

2pV .

(a) We first compute the work done along AB. Let’s define u such that V = VA+(VB−VA)u.
Then along AB we have p = pB + (pA − pB)

√
1 − u, and

WAB =

B
∫

A

dV p

= (VB − VA)

1
∫

0

du
{

pB + (pA − pB)
√

1 − u
}

= pB(VB − VA) + 2
3 (VB − VA)(pA − pB) .

The change in energy along AB is

(∆E)AB = EB − EA = 5
2(pBVB − pAVA) ,

hence

QAB = (∆E)AB + WAB

= 5
6 pBVB − 19

6 pAVA + 2
3 pAVB + 5

3 pBVA .

(b) Along BC we have

WBC = pB(VA − VB)

(∆E)BC = 5
2pB(VA − VB)

QBC = (∆E)BC − WBC = 3
2pB(VA − VB) .

(c) Along CA we have

WBC = 0

(∆E)BC = 5
2(pA − pB)VA

QCA = (∆E)CA − WCA = 5
2 (pA − pB)VA .

3



(c) The work done per cycle is

W = WAB + WBC + WCA

= 2
3(VB − VA)(pA − pB) .

(3) For each of the following differentials, determine whether it is exact or inexact. If it is
exact, find the function whose differential it represents.

(a) xy2 dx + x2y dy

(b) z dx + x dy + y dz

(c) x−2 dx − 2x−3 dy

(d) ex dx + ln(y) dy

Solution :

We will represent each differential as d̄A =
∑

µ Aµ dxµ.

(a) Ax = xy2 and Ay = x2y, so ∂Ax

∂y = 2xy =
∂Ay

∂x . The differential is exact, and is dA, where

A(x, y) = 1
2x2y2 + C , where C is a constant.

(b) With Ax = z, Ay = x, and Az = y, we have ∂Ax

∂y = 0 =
∂Ay

∂x , but ∂Ax

∂z = 1 6= ∂Az

∂x = 0. So
the differential is inexact.

(c) Ax = x−2 and Ay = −2x−3, so ∂Ax

∂y = −2x−3 and
∂Ay

∂x = 0, so the differential is inexact.

(d) Ax = ex and Ay = ln y, so ∂Ax

∂y = 0 =
∂Ay

∂x = 0. The differential is exact, with A(x, y) =
ex + y ln y − y + C .
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #7

(1) A strange material satisfies E(S, V,N) = aS6/V 3N2.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansion αp = 1
V

(

∂V
∂T

)

p
. Express your answer in

terms of T .

(d) Find the coefficient of isothermal compressibility κT = − 1
V

(

∂V
∂p

)

T
. Express your

answer in terms of p.

Solution :

(a) Since [S] = J/K, we have [a] = K6m9/J5.

(b) We have

T =

(

∂E

∂S

)

V,N

=
6aS5

V 3N2
, p = −

(

∂E

∂V

)

S,N

=
3aS6

V 4N2
.

The combination T 6/p5 eliminates S, and we obtain the equation of state,

192a p5V 2 = N2T 6 .

(c) At constant p and N , we have ln V = 3 ln T + const. Thus, the coefficient of thermal
expansion is

αp =

(

∂ ln V

∂T

)

p,N

=
3

T
.

(d) At constant T and N , we have ln V = −5
2 ln p + const. Thus, the isothermal compress-

ibility is

κT = −
(

∂ ln V

∂p

)

T,N

=
5

2p
.

1



(2) ν moles of the substance in problem 1 execute a Carnot cycle between reservoirs at
temperatures T1 and T2. The top isotherm extends from volume VA to VB. Find the heat Q
and work W for each leg of the cycle, and compute the cycle efficiency.

Solution :

It is useful to use §2.7.6 of the Lecture Notes as a template. From the results of problem (1),
we have

E = 1
3pV =

1

3

(

N2V 3T 6

192a

)1/5

.

Thus, under isothermal conditions,

dE
∣

∣

T
=

1

5

(

N2T 6

192a

)1/5 dV

V 2/5
= 1

5 p dV .

Thus, along an isotherm, we have

Wif =

V
f

∫

V
i

dV p = 5 (Ef − Ei)

Qif = Ef − Ei + Wif = 6 (Ef − Ei) .

Along an adiabat, we have TV 3 = const. and E/T = const., so

E
B

=

(

V
B

V
A

)3/5

E
A

, E
C

=
T1

T2

(

V
B

V
A

)3/5

E
A

, E
D

=
T1

T2

E
A

,

where AB is an isotherm at T2, BC is an adiabat, CD is an isotherm at T1, and DA is an
adiabat. We now have

W
AB

= 5(E
B
− E

A
) = 5

{

(

V
B

V
A

)3/5

− 1

}

E
A

Q
AB

= 6(E
B
− E

A
) = 6

{

(

V
B

V
A

)3/5

− 1

}

E
A

W
BC

= E
C
− E

B
=

(

1 − T1

T2

)(

V
B

V
A

)3/5

E
A

Q
BC

= 0

and

W
CD

= 5(E
D
− E

C
) = 5

T1

T2

{

1 −
(

V
B

V
A

)3/5
}

E
A

Q
CD

= 6(E
D
− E

C
) = 6

T1

T2

{

1 −
(

V
B

V
A

)3/5
}

E
A

W
DA

= E
A
− E

D
=

(

T1

T2

− 1

)

E
A

Q
DA

= 0
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Adding up the work along the four legs of the Carnot cycle, we have

W = 6

(

1 − T1

T2

)

{

(

V
B

V
A

)3/5

− 1

}

E
A

,

and the efficiency is

η =
W

Q
AB

= 1 − T1

T2

,

which is the same result as for an ideal gas. Were the efficiency different from that of the
ideal gas Carnot cycle running between the same two reservoirs, one could use one of
the engines to drive the other run as a refrigerator and thereby violate the Second Law
of Thermodynamics, i.e. transferring heat from the cold reservoir to the warm reservoir
during a cycle. The fact that this is impossible requires that the efficiencies are exactly the
same.

(3) An interacting diatomic gas obeys the equation of state

p(v − b) = RT e−a/v ,

where v = N
A
V/N is the molar volume.

(a) Show that E(T, V,N) = f
2Nk

B
T , the same as for an ideal gas.

(b) Find the molar specific heat cp as a function of the specific volume v.

Solution :

(a) We know that
(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

v

− p ,

where ε and v are molar energy and molar volume, respectively. For our system, the RHS
of the above equation vanishes, hence ε = ε(T ). In the dilute limit we know the answer,
and since ε is independent of volume, this is true for arbitrary molar volumes. Thus,
ε(T ) = 1

2fRT , i.e. E = 1
2fNk

B
T .

(b) We have

cp = T

(

∂s

∂T

)

p

=

(

∂ε

∂T

)

p

+ p

(

∂v

∂T

)

p

.

The first term on the RHS yields 1
2fR. To evaluate the second term, we appeal to the

equation of state at constant pressure, which yields, upon taking the differential,

p dv = R e−a/v dT +
RTa

v2
e−a/v dv

=
RT

v − b
e−a/v dv .

3



Thus,
(

∂v

∂T

)

p

=
v − b

T − Ta(v−b)
v2

.

We then have

cp = 1
2fR +

R e−a/v

1 − a(v−b)
v2

.

Note that cp(v → ∞) = (1
2f + 1)R, which is the ideal gas value.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #8 SOLUTIONS

(1) A grocer starts his day with 4 boxes of pears, 5 boxes of oranges, and 6 boxes of apples.
Each box contains 24 fruit and is initially completely filled.

(a) At some time, the grocer notes that exactly half the pears, a third of the oranges, and
a quarter of the apples have been sold. Assuming that customers take fruit from
random positions in each of the boxes, find the dimensionless entropy ln W of the
fruit distribution.

(b) A clumsy customer then topples the table on which the fruit boxes rest, and all the
fruit fall to the ground. The customer cleans up the mess, putting all the fruit back
into the boxes, but into random locations. What is the entropy of the final state?

Solution :

(a) The grocer starts with 96 pears, 120 oranges, and 144 apples. By the time the grocer
checks, 48 pears, 40 oranges, and 36 apples have been removed. The number of ways of
doing this is

W =

(

96

48

)(

120

40

)(

144

36

)

= 8.303 × 1093 .

Thus, ln W = 216.3.

(b) There are a total of 96+ 120+ 144 = 360 slots for the fruit, which contain the remaining
48 pears, 120 oranges, and 108 apples. The rest of the slots, which amount to 360 − 48 −
120 − 108 = 84 in total, are empty. Therefore,

W ′ =
360!

94! · 48! · 120! · 108! = 1.093 × 10205 ,

and the dimensionless entropy is ln W ′ = 472.1.

(2) The triple point of a single component thermodynamic system is an isolated point
(Tt, pt) in the (T, p) plane where there is three phase coexistence between solid, liquid,
and vapor. Consider three phase coexistence between a pure solid, a pure vapor, and a
solution where the solute fraction is x. Find the shift (∆Tt,∆pt) as a function of x, Tt , and
the quantities s

S,L,V
and v

S,L,V
, i.e. the molar entropies and volumes of the three respective

phases.

Solution :

At the triple point, we have µ
S
(Tt, pt) = µ

L
(Tt, pt) = µ

V
(Tt, pt), which gives two equations

for the two unknowns Tt and pt. We write Tt = T 0
t + ∆T and pt = p0

t + ∆p, and we solve

µ0
L
(T 0

t + ∆T, p0
t + ∆p) − xk

B
(T 0

t + ∆T ) = µ0
V
(T 0

t + ∆T, p0
t + ∆p)

µ0
V
(T 0

t + ∆T, p0
t + ∆p) = µ0

S
(T 0

t + ∆T, p0
t + ∆p) ,

1



where the 0 superscript indicates the value for a pure phase. We now expand in the no-
tionally small quantities ∆T and ∆p, and we use

(

∂µ

∂T

)

p,N

= −
(

∂S

∂N

)

p,T

= − s

NA

,

(

∂µ

∂p

)

T,N

=

(

∂V

∂N

)

p,T

=
v

NA

,

where s and v are the molar entropy and molar volume, respectively. This yields the linear
system,

(

s
V
− s

L
v

L
− v

V

s
S
− s

V
v

V
− v

S

)(

∆T
∆p

)

=

(

xRT 0
t

0

)

.

This yields

∆T =
(v

V
− v

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

∆p =
(s

V
− s

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

.

Note that we do not retain terms of order x∆T , because we have assumed x is small, i.e. a
weak solution.

(3) A solution of 4.00 g of hemoglobin in 100 mL of water was prepared and its osmotic
pressure was measured to be π = 0.0130 atm at T = 280K. Estimate the molecular mass of
hemoglobin.

Solution :

We use the formula πv = xRT for the osmotic pressure π of weak solutions. Here v is the
molar volume of the solvent, and x is the molar fraction of solute. If M is the molar mass
of hemoglobin, then

x =
4.00 g

M

/

100 g

18 g
=

18 g

25M
,

since the density of water is 1.0 g/cm3 = 1g/mL. We then have

M = 18
25 g · RT

πv

=
18g

25
· (8.314 × 107 erg/mol K)(280K)

(0.013 atm)(1.013 × 106 g/cm s2 atm)(18 cm3/mol)
= 70710 g .

The actual value is M = 65706 g.
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PHYSICS 140A : STATISTICAL PHYSICS

HW #9 SOLUTIONS

(1) Consider a three-dimensional gas of noninteracting quantum particles with dispersion
ε(k) = A |k|3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find expressions for n(T, z) and p(T, z), each expressed as power series in the fugac-
ity z, for both Bose-Einstein and Fermi-Dirac statistics.

(c) Find the virial expansion for the equation of state up to terms of order n3, for both
bosons and fermions.

Solution :

(a) The density of states for dispersion ε(k) = A |k|σ is

g(ε) = g

∫

ddk

(2π)d
δ
(

ε − Akσ
)

=
gΩd

(2π)d

∞
∫

0

dk kd−1 δ
(

k − (ε/A)1/σ
)

σAkσ−1
= D ε

d

σ
−1 ,

with

D =
2g

(2
√

π)d σΓ(d/2)
A−d/σ .

(b) We have

n(T, z) =
∞
∑

j=1

(±1)j−1 Cj(T ) zj

p(T, z) = k
B
T

∞
∑

j=1

(±1)j−1 zj j−1 Cj(T ) zj ,

where

Cj(T ) =

∞
∫

−∞

dε g(ε) e−jε/k
B

T = D Γ(d/σ)

(

k
B
T

j

)d/σ

.

Thus, we have

±nvT =
∞

∑

j=1

j−r (±z)j

± pvT /k
B
T =

∞
∑

j=1

j−(r+1) (±z)j ,

1



where r = d/σ and

vT =
1

D Γ(d/σ) (k
B
T )d/σ

=
(2
√

π)dσ Γ(d/2)

2gD Γ(d/σ)

(

A

k
B
T

)d/σ

.

has dimensions of volume.

(c) We now let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^r + x^3/3^r + x^4/4^r + O[x]^5 ]

In[2]= w = y + y^2/2^(r+1) + y^3/3^(r+1) + y^4/4^(r+1) + O[y]^5 .

The result is
p = nk

B
T

[

1 + B2(T )n + B3(T )n2 + . . .
]

,

where

B2(T ) = ∓2−(r+1) vT

B3(T ) =
(

2−2r − 2 · 3−(r+1)
)

v2
T

B4(T ) = ±2−(3r+1) 31−r
(

22r+1 − 5 · 3r−1 − 2r−1 3r
)

v3
T .

Substitute σ = 3
2 to find the solution for the conditions given.

(2) You know that at most one fermion may occupy any given single-particle state. A
parafermion is a particle for which the maximum occupancy of any given single-particle
state is k, where k is an integer greater than zero. (For k = 1, parafermions are regular
everyday fermions; for k = ∞, parafermions are regular everyday bosons.) Consider
a system with one single-particle level whose energy is ε, i.e. the Hamiltonian is simply
H = εn, where n is the particle number.

(a) Compute the partition function Ξ(µ, T ) in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(µ, T ). What is n when µ = −∞? When µ = ε?
When µ = +∞? Does this make sense? Show that n(µ, T ) reduces to the Fermi and
Bose distributions in the appropriate limits.

(c) Sketch n(µ, T ) as a function of µ for both T = 0 and T > 0.

2



Figure 1: k = 3 parafermion occupation number versus ε − µ for kBT = 0, kBT = 0.25,
kBT = 0.5, and kBT = 1. (Problem 2b)

Solution:

The general expression for Ξ is

Ξ =
∏

α

∑

nα

(

z e−βεα

)nα .

Now the sum on n runs from 0 to k, and

k
∑

n=0

xn =
1 − xk+1

1 − x
.

(a) Thus,

Ξ =
1 − e(k+1)β(µ−ε)

1 − eβ(µ−ε)
.

(b) We then have

n = −∂Ω

∂µ
=

1

β

∂ ln Ξ

∂µ

=
1

eβ(ε−µ) − 1
− k + 1

e(k+1)β(ε−µ) − 1

(c) A plot of n(ε, T, µ) for k = 3 is shown in Fig. 1. Qualitatively the shape is that of the
Fermi function f(ε − µ). At T = 0, the occupation function is n(ε, T = 0, µ) = k Θ(µ − ε).
This step function smooths out for T finite.

3



(d) For each k < ∞, the occupation number n(z, T ) is a finite order polynomial in z, and
hence an analytic function of z. Therefore, there is no possibility for Bose condensation
except for k = ∞.

(3) A gas of quantum particles with photon statistics has dispersion ε(k) = A |k|4.

(a) Find the single particle density of states per unit volume g(ε).

(b) Repeat the arguments of §5.5.2 in the Lecture Notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the
earth-sun orbit, and the radius of the earth, what would you expect the surface tem-
perature of the earth to be if the sun radiated particles with this dispersion instead of
photons?

Solution :

(a) See the solution to part (a) of problem 1 above. For d = 3 and σ = 4 we have

g(ε) =
g

2π2
A−3/4 ε−1/4 .

(b) Scaling volume by λ scales the lengths by λ1/3, the quantized wavevectors by λ−1/3,
and the energy eigenvalues by λ−4/3, since ε ∝ k4. Thus,

p = −
(

∂E

∂V

)

S

=
4E

3V
,

which says
(

∂E

∂V

)

T

= T

(

∂p

∂T

)

V

− p = 3
4 p ⇒ p(T ) = B T 7/4 .

Indeed,

p(T ) = −k
B
T

∞
∫

−∞

g(ε) ln
(

1 − e−ε/k
B

T
)

= − g

2π2 A3/4
(k

B
T )7/4

∞
∫

−∞

du u−1/4 ln(1 − e−u) .

(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form ε(k) for the (non-
conserved) bosons. Then the energy current incident on a differential area dA of surface
normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz

· 1

eε(k)/k
B

T − 1
.

4



Note that
∂ε(k)

∂kz

=
kz

k

∂ε

∂k
= cos θ ε′(k) .

Now let us assume a power law dispersion ε(k) = Akα. Changing variables to t =
Akα/k

B
T , we find

dP

dA
= σ T 2+ 2

α ,

where

σ = ζ
(

2 + 2
α

)

Γ
(

2 + 2
α

)

· g k
2+ 2

α

B A− 2

α

8π2~
.

One can check that for g = 2, A = ~c, and α = 1 that this result reduces to Stefan’s Law.

Equating the power incident on the earth to that radiated by the earth,

4πR2
⊙ · σT

2(1+α−1)
⊙ · πR2

e

4πa2
e

= 4πR2
e · σT 2(1+α−1)

e ,

which yields

Te =

(

R⊙

2ae

)
α

α+1

T⊙ .

Plugging in the appropriate constants and setting α = 4, we obtain Te = 45.2K. Brrr!
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PHYSICS 140A : STATISTICAL PHYSICS

MIDTERM EXAMINATION SOLUTIONS

(1) A particle has a g0-fold degenerate ground state with energy ε0 = 0 and a g1-fold de-
generate excited state with energy ε1 = ∆. A collection of N such particles is arranged on
a lattice. Since each particle occupies a distinct position in space, the particles are regarded
as distinguishable.

(a) Find the free energy F (T,N).

(b) Find the entropy S(T,N). Sketch S(T,N) versus T for fixed N , taking care to evaluate
the limiting values S(T = 0, N) and S(T = ∞, N).

Suppose now that the ground state is magnetic, such that in an external field H , the g0

ground state energy levels are split into g0/2 levels with energy ε0,+ = +µ0H and g0/2
levels with energy ε0,− = −µ0H . (We take g0 to be even in this case.) The states with
energy ε1 = ∆ remain g1-fold degenerate.

(c) Find F (T,N,H).

(d) Find the sero field magnetic susceptibility,

χ(T ) =
1

N

(

∂M

∂H

)

H=0

,

where M is the magnetization.

Solution :

(a) We have

Z(T,N) =
(

g0 + g1 e−β∆
)N

,

hence

F (T,N) = −k
B
T lnZ

= −Nk
B
T ln

(

g0 + g1 e−∆/k
B

T
)

.

(b) The entropy is

S = −
(

∂F

∂T

)

N

= Nk
B

[

∆

k
B
T

· g1 e−∆/k
B

T

g0 + g1 e−∆/k
B

T
+ ln

(

g0 + g1 e−∆/k
B

T
)

]

.

From this we see that S(T = 0, N) = Nk
B

ln g0 and S(T = ∞, N) = Nk
B

ln(g0 + g1),
which makes physical sense. The sketch should show a smooth interpolation between
these values as a function of T .

1



(c) Now we have

F (T,N,H) = −Nk
B
T ln

(

g0 cosh(µ0H/k
B
T ) + g1 e−∆/k

B
T
)

.

(d) The magnetization is

M(T,H) = −
(

∂F

∂H

)

T,N

=
Nµ0 g0 sinh(µ0H/k

B
T )

g0 cosh(µ0H/k
B
T ) + g1 e−∆/k

B
T

.

Taking the derivative and setting H = 0, we have

χ(T ) =
1

N

(

∂M

∂H

)

T,N,H=0

=
µ2

0

k
B
T

· g0

g0 + g1 e−∆/k
B

T
.
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PHYSICS 140A : STATISTICAL PHYSICS

FINAL EXAMINATION SOLUTIONS

Instructions: Do problem 4 (34 points) and any two of problems 1, 2, and 3 (33 points each)

(1) A noninteracting system consists of N dimers. Each dimer consists of two spins, S and σ,
where S ∈ {−1, 0,+1} and σ ∈ {−1,+1}. The Hamiltonian is

Ĥ = −J
N
∑

i=1

Si σi − µ0H
N
∑

i=1

Si .

Thus, the individual dimer Hamiltonian is ĥ = −JSσ − µ0HS.

(a) Find the N -dimer free energy F (T,N).

(b) Find the average 〈S〉 and the zero field susceptibility χ
S(T ) = ∂〈S〉

∂H

∣

∣

∣

H=0
.

(c) Find the average 〈σ〉 and the zero field susceptibility χ
σ(T ) = ∂〈σ〉

∂H

∣

∣

∣

H=0
.

(d) Examine the J → 0 limits of χ
S(T ) and χ

σ(T ) and interpret your results physically.

Solution :

(a) There are six energy states for each dimer, listed in Tab. 1

S σ ĥ(S, σ) S σ ĥ(S, σ)

+1 +1 −J − µ0H +1 −1 J − µ0H

0 +1 0 0 −1 0

−1 +1 +J + µ0H −1 −1 −J + µ0H

Table 1: Energy table for problem 1.

Thus, the single dimer partition function is

ζ = Tr e−βĥ = eβJeβµ
0
H + 1 + e−βJe−βµ

0
H + e−βJeβµ

0
H + 1 + eβJe−βµ

0
H

= 2 + 4 cosh(βµ0J) cosh(βµ0H) .

For N noninteracting dimers, Z = ζN (the dimers are regarded as distinguishable). Thus,

F (T,N) = −Nk
B
T ln

(

2 + 4 cosh
(

J/k
B
T
)

cosh
(

µ0H/k
B
T
)

)

(b) We have

〈S〉 =
Tr S e−βĥ(S,σ)

Tr e−βĥ(S,σ)
=

eβJeβµ
0
H − e−βJe−βµ

0
H + e−βJeβµ

0
H − eβJe−βµ

0
H

2 + 4 cosh(βJ) cosh(βH)
,

1



so

〈S〉 =
cosh(J/k

B
T ) sinh(µ0H/k

B
T )

cosh(J/k
B
T ) cosh(µ0H/k

B
T ) + 1

2

Expanding to linear order in H and taking the coefficient, we have

χ
S(T ) =

∂〈S〉
∂H

∣

∣

∣

H=0
=

cosh
(

J/k
B
T
)

cosh
(

J/k
B
T
)

+ 1
2

· µ0

k
B
T

Note that usually we define χ = ∂M
∂T with M = µ0 〈S〉, so our result above differs by a factor of µ0.

(c) We have

〈σ〉 =
Tr σ e−βĥ(S,σ)

Tr e−βĥ(S,σ)
=

eβJeβµ
0
H + e−βJe−βµ

0
H − e−βJeβµ

0
H − eβJe−βµ

0
H

2 + 4 cosh(βJ) cosh(βH)
,

so

〈σ〉 =
sinh(J/k

B
T ) sinh(µ0H/k

B
T )

cosh(J/k
B
T ) cosh(µ0H/k

B
T ) + 1

2

Expanding to linear order in H and taking the coefficient, we have

χ
σ(T ) =

∂〈σ〉
∂H

∣

∣

∣

H=0
=

sinh
(

J/k
B
T
)

cosh
(

J/k
B
T
)

+ 1
2

· µ0

k
B
T

(d) As J → 0 we have

χ
S(T, J = 0) =

2µ0

3k
B
T

, χ
σ(T, J = 0) = 0

The physical interpretation of these results is as follows. When J = 0, the individual dimer
Hamiltonian is ĥ = −µ0HS. The factor of 2

3 in χ
S is due to the fact that S = 0 in 1

3 of the states.
The σ spins don’t couple to the field at all in this limit, so χ

σ = 0.

(2) Recall that a van der Waals gas obeys the equation of state

(

p +
a

v2

)

(

v − b
)

= RT ,

where v is the molar volume. We showed that the energy per mole of such a gas is given by

ε(T, v) = 1
2fRT − a

v
,

where T is temperature and f is the number of degrees of freedom per particle.

2



A

B

C
D

Figure 1: The Carnot cycle.

(a) For an ideal gas, the adiabatic equation of state is
v T f/2 = const. Find the adiabatic equation of state (at
fixed particle number) for the van der Waals gas.

(b) One mole of a van der Waals gas is used as the working
substance in a Carnot engine (see Fig. 1). Find the molar
volume at vC in terms of vB , T1 , T2 , and constants.

(c) Find the heat QAB absorbed by the gas from the upper
reservoir.

(d) Find the work done per cycle, Wcyc. Hint: you only need
to know QAB and the cycle efficiency η.

Solution :

(a) We have

0 = T ds = dε + p dv

= 1
2fRdT +

(

p +
a

v2

)

dv

= 1
2fRdT +

RT dv

v − b
= 1

2fRT d ln
[

(v − b)T f/2
]

,

where s = NAS/N is the molar entropy. Thus, the adiabatic equation of state for the van der Waals
gas is

ds = 0 ⇒ (v − b)T f/2 = const.

Setting b = 0, we recover the ideal gas result.

(b) Since BC is an adiabat, we have

(vB − b)T
f/2
2 = (vC − b)T

f/2
1 ⇒ vC = b + (vB − b)

(

T2

T1

)f/2

(c) We have, from the First Law,

QAB = EB − EA + WAB

= ν

(

a

vA

− a

vB

)

+ ν

v
B
∫

v
A

dv p

= ν

(

a

vA

− a

vB

)

+ ν

v
B
∫

v
A

dv

[

RT2

v − b
− a

v2

]

,
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hence

QAB = νRT2 ln

(

vB − b

vA − b

)

with ν = 1.

(d) Since the cycle is reversible, we must have

η =
Wcyc

QAB

⇒ Wcyc = νR(T2 − T1) ln

(

vB − b

vA − b

)

(3) In homework assignment #9, you showed that the grand partition function for a gas of q-state
parafermions is

Ξ(T, V, µ) =
∏

α

(

1 − e(q+1)(µ−εα)/k
B

T

1 − e(µ−εα)/k
B

T

)

,

where the product is over all single particle states. Consider now the case where the number of
parafermions is not conserved, hence µ = 0. We call such particles paraphotons.

(a) What is the occupancy n(ε, T ) of q-state paraphotons of energy ε?

(b) Suppose the dispersion is the usual ε(k) = ~ck. Assuming g = 1, find the single particle
density of states g(ε) in three space dimensions.

(c) Find the pressure p(T ). You may find the following useful:

∞
∫

0

dt
tr−1

et − 1
= Γ(r) ζ(r) ,

∞
∫

0

dt tr−1 ln

(

1

1 − e−t

)

= Γ(r) ζ(r + 1) .

(d) Show that p = Cq nk
B
T , where n is the number density, and Cq is a dimensionless constant

which depends only on q.

Solution :

(a) For µ 6= 0, for a single parafermion state, we have

n = −∂Ω

∂µ
=

1

β

∂ lnΞ

∂µ

=
1

eβ(ε−µ) − 1
− q + 1

e(q+1)β(ε−µ) − 1
.

Setting µ = 0, we find

n(ε, T ) =
1

eε/k
B

T − 1
− q + 1

e(q+1) ε/k
B

T − 1
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(b) With g = 1, we have

g(ε) dε =
d3k

(2π)3
=

k2 dk

2π2
⇒ g(ε) =

k2

2π2

dk

dε
=

ε2

2π2(~c)3

(c) The pressure is

p = −Ω

V
= k

B
T

∞
∫

0

dε g(ε)
{

ln
(

1 − e−(q+1)ε/k
B

T
)

− ln
(

1 − e−ε/k
B

T
)

}

=
k

B
T

2π2(~c)3

∞
∫

0

dε ε2
{

ln
(

1 − e−(q+1)ε/k
B

T
)

− ln
(

1 − e−ε/k
B

T
)

}

=
ζ(4) (k

B
T )4

π2(~c)3
·
(

1 − 1

(q + 1)3

)

.

Thus,

p(T ) =
(

1 − (q + 1)−3
)

· ζ(4) (k
B
T )4

π2(~c)3

(d) We need to evaluate

n =

∞
∫

0

dε g(ε)

{

1

eε/k
B

T − 1
− q + 1

e(q+1) ε/k
B

T − 1

}

=
1

2π2(~c)3

∞
∫

0

dε ε2

{

1

eε/k
B

T − 1
− q + 1

e(q+1) ε/k
B

T − 1

}

=
(

1 − (q + 1)−2
)

· ζ(3) (k
B
T )3

π2(~c)3

From this we derive

Cq =
p

nk
B
T

=
ζ(4)

ζ(3)
· q2 + 3q + 3

q2 + 3q + 2

(4) Provide brief but substantial answers to the following:

(a) A particle in d = 3 dimensions has the dispersion ε(k) = ε0 exp(ka). Find the density of states
per unit volume g(ε). Sketch your result.

(b) Find the information entropy in the distribution pn = C e−λn, where n ∈ {0, 1, 2, . . .}. Choose
C so as to normalize the distribution.
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(c) An ideal gas at temperature T = 300K undergoes an adiabatic free expansion which results in
a doubling of its volume. What is the final temperature?

(d) For an N -particle noninteracting system, sketch the contributions ∆CV to the heat capacity
versus temperature for (i) a vibrational mode at energy ~ω0, and (ii) a two-level (Schottky) defect
with energy splitting ∆ = ε1 − ε0. Take care to identify any relevant characteristic temperatures,
as well as the limiting values of ∆CV .

Solution :

Figure 2: DOS for problem 4.a.

(a) Inverting the dispersion relation, we obtain the expres-
sion k(ε) = a−1 ln

(

ε/ε0

)

Θ(ε − ε0). We then have

g(ε) =
k2

2π

dk

dε
=

k2

2π
· 1

aε0e
ak

.

Thus,

g(ε) =
1

2π2a3

1

ε
ln2

(

ε

ε0

)

Θ(ε − ε0)

The result is plotted in Fig. 2.

(b) Normalizing the distribution,

1 =
∞
∑

n=0

pn = C
∞
∑

n=0

e−nλ =
C

1 − e−λ
,

hence C = 1 − e−λ. The information entropy is

S = −
∞
∑

n=0

pn ln pn = − ln
(

1 − e−λ
)

+ Cλ
∞
∑

n=0

n e−λn .

Now

f(λ) =

∞
∑

n=0

e−nλ =
1

1 − e−λ
⇒

∞
∑

n=0

n e−nλ = − df

dλ
=

1

(eλ − 1)(1 − e−λ)
.

Thus, the information entropy is

S(λ) =
λ

eλ − 1
− ln

(

1 − e−λ
)

.

Note that S(λ → 0) ∼ 1 − ln λ which diverges logarithmically with 1/λ. This is approaching the
uniform distribution. For λ → ∞, we have pn = δn,0, and S(λ → ∞) = 0.

(c) Under an adiabatic free expansion, ∆E = Q = W = 0 with N conserved. Since E = 1
2fNk

B
T

is independent of volume for the ideal gas, there is no change in temperature, i.e.

Tfinal = Tinitial = 100K
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Figure 3: Heat capacities for a N identical vibrational modes (left) and Schottky defects (right).

(d) The characteristic temperatures for the vibrational mode (vibron) and Schottky defect are given
by Θ = ~ω0/kB

and Θ = ∆/k
B

, respectively. A detailed derivation of the heat capacity for these
systems is provided in §§ 4.10.5-6 of the Lecture Notes. One finds

∆CV = Nk
B

(

Θ

T

)2 eΘ/T

(eΘ/T ∓ 1)2
,

where the top sign is for the vibron and the bottom sign for the Schottky defect. All you were
asked to do, however, was to provide a sketch (see Fig. 3). The T → ∞ limit of the vibron result is
given by the Dulong-Petit value of k

B
per oscillator mode. For the Schottky defect, ∆CV vanishes

in both the T → 0 and T → ∞ limits.

(5) Write a well-defined expression for the greatest possible number expressible using only five
symbols. Examples: 1 + 2 + 3 , 10100 , Γ(99). [50 quatloos extra credit]

Solution :

Using conventional notation, my best shot would be

999
9
9

This is a very big number indeed: 99 ≈ 3.7 × 108, so 999 ∼ 103.7×108

, and 999
9
9

∼ 101010
3.7×10

8

.
But in the world of big numbers, this is still tiny. For a fun diversion, use teh google to learn
about the Ackermann sequence and Knuth’s up-arrow notation. Using Knuth’s notation (see
http://en.wikipedia.org/wiki/Knuth’s up-arrow notation), one could write 9 ↑99 9, which
is vastly larger. But even these numbers are modest compared with something called the ”Busy
Beaver sequence”, which is a concept from computer science and Turing machines. For a very en-
gaging essay on large numbers, see http://www.scottaaronson.com/writings/bignumbers.html.
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