Problem1. 

A radar system produces pulses consisting of 100 full cycles of a sinusoidal 70-GHz electromagnetic wave. The average power while the transmitter is on is 45 MW, and the waves are confined to a beam 20 cm in diameter. Find  (a) the peak electric field, (b) the wavelength, (c) the total energy in pulse, and (d) a total momentum in a pulse. (e) If the transmitter produces 1000 pulses per second, what is the averaged power output?

Solution:

(a) The average intensity in a pulse is the average power during the pulse divided by the beam area 
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(b)  (1 point) 
[image: image3.wmf]  

l

=

c

f

=

4

.

29

´

10

-

3

m

.

(c) (2 points)  Duration of 100 full cycles is 
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, so the total energy in a pulse is 
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(d) (2 points) Using the formula 
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(e) (2 points) Since duration of one pulse is 
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, the duration of 1000 pulses will

be 
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. The averaged power output of the transmitter with 1000 pulses is 
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Problem 2.

Two homogeneous isotropic dielectrics have a boundary plane z = 0. For z > 0 the dielectric constant (relative permittivity) is 
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 kV/m exists for z > 0. Find

      (a) 
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(b) The angles 
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(c) The energy densities in 
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 in both dielectrics

(d) The energy within a cube of side 2 m centered at (3, 4, -5).

Solution:

(a) 
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Boundary conditions: (2 points)
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As a result, 
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Thus , 
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(b) 
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(c) 
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(d) The cube centered at (3, 4, -5) is in region 2.  Hence
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Problem 3.

The 50-year-old man uses +2.5-D lenses to read a newspaper 25 cm away. Ten years later, he must hold the paper 32 cm away to see clearly with the same lenses. What power lenses does he need now in order to hold the paper 25 cm away? (Distances are measured from the lenses.)

Solution:

We will use here equation for converging lenses
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First we calculate the near point with 
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Now we can calculate the power that is needed to hold the paper at d02 = 0.25 m:
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Problem 4

Light strikes an equilateral right angle prism in a direction parallel to the prism’s base. The point of incidence is high enough that the refracted ray hits the opposite sloping side. 

(a) Through which side of the prism does the beam emerge? 

(b) Through what angle has it been deflected?

Solution:

(a) The angle of refraction can be found from Snell’s law
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The angle of incidence on the opposite side 
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This angle is larger than the critical angle for total reflection from glass-air surface
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Therefore, the incident light is totally reflected in the glass and hits the base at an incidence angle 
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So the light emerges through the base. (no extra point for this answer without considering total reflection)
(b) Its angle of refraction to the air is 
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A net deflection is 
[image: image39.wmf]  

  

90

o

-

y

2

=

63

.

2

o


Problem 5

In a single-slit diffraction picture find the intensity at the first of secondary maxima in terms of the central peak intensity 
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Solution:

The first minimum angle position is given by 
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The second minimum angle position is given by 
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The position of the first secondary maxima is a midway between them:
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Intensity of this maximum is
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(5 points, the form with a square will get at least 1 point)
Problem 6

Earth and Sun are 8.3 light-minutes apart, as measured in their rest frame. 

(a) What is the speed of a spacecraft that makes the trip in 5 min according to its on-board clock? 

(b) What is the trip time as measured by clocks in the Earth-Sun frame?

Solution:
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Problem 7

A particle of mass 
[image: image51.wmf]  
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 whose total energy is twice its rest energy collides with an identical particle at rest. If they stick together, what is the mass of the resulting composite particle? What is its velocity?

Solution:

Momentum and energy of the system are conserved.

Initial momentum: 
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(2 points for using momentum conservation) 
Initial energy: 
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Mass of the resulting composite particle:
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Velocity of the composite particle:
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