
Electromagnetic waves 

Maxwell equations: 
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By applying derivative 
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 t  to Eq. (1) and 
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 to Eq. (2) we obtain: 
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Vector algebra:  
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By using (6) and (3)  Eq. (5) can be written in the form: 
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The first term in l.-h. side of (7) contains the vector Laplace operator. 

In rectangular (cortesian) coordinates it is given by 
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Outside of the region with sources Eq. (7) is reduced to the wave equation 
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For 1-d case 
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E  0,Ey (x),0  in vacuum (8) is reduced to  
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Let us assume that the solution of Eq. (9) has the form 



Ey (x,t)  f (x Ut)         (10) 

The factor 



v is a constant. The function 



f  can be any function of a single variable. The purpose 

of writing 



Ey (x,t) as we have in (10) is to make the waveform move as a unit in the positive-



x  

direction as time passes. We know that if 



f (x) is any function of 
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x , then 
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f (x  x0) is the 

same function, shifted to the right a distance 
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x0 along the 
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x  axis. If instead of 
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f (x  x0) we 

write 
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f (x Ut), then the function is shifted to the right a distance 
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Ut . This distance increases 

as time increases, so the function is displaced steadily further out the 



x  axis. The displacement is 

by a distance 



Ut , which means that the velocity of motion is 



U . It is easy to see that the entire 

waveform travels as a unit with velocity 



U .  

To show that waves can propagate in vacuum, we need to verify that the wave (10) satisfies the 

wave equation (9). Differentiating (10), we see that 
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second derivative of 
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Substituting into (9) we see that the wave equation is satisfied, provided that  
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A sinusoidal solution of equation (9) describing a traveling wave moving in the positive-



x  

direction can be written as 
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Ey (x,t)  E0 cos[k(x Ut)]         (12) 

The constant k is the wave number. We see that at a fixed position, 
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E y  varies sinusoidally in 

time with an angular frequency  
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  kU.            (13) 



In terms of k and 



  



Ey (x,t)  E0 cos(kxt)         (14) 

By differentiating any phase of sinusoid in (14)  with respect to time, it is easy to see that the 

velocity 



U  is the velocity of motion of constant phase. We will use below the symbol 



vph  

instead of 



U  for the wave phase velocity.  

Thus, solution (14) describes an electromagnetic wave propagating with phase velocity  



vph  k 1 00  c - the speed of light. 

Similarly solution of (9) in the form 



Ey (x,t)  f1(x Ut)          (10’) 

and  



Ey (x,t)  E0 cos(kxt)         (14’) 

describe the wave traveling in the negative-



x  direction.  

The wave equation in a medium that is characterized by 



  and 
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  in 1-d case has a form  
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Sinusoidal solution in this case describes an electromagnetic wave propagating with phase 

velocity 



vph  k 1   c KEKM  c         (16) 

 

Now consider the wave propagation in 3-d case that is described by Eq. (8). 

In our study of sinusoidal EM waves in this case we will use a more general approach by using 

the phasor techniques. 

PHASORS  

Phasor is a complex number that represents a sinusoidal function of time. 

Let us consider a sinusoidal function of time  





B(t)  A0 cos( t)  

It can be represented in the following form 

   titii eBeeAtAtB  ReRe)cos()( 00   

The complex quantity 
ieAB 0  is the phasor of the sinusoidal function B(t).  

Phasors contain information about amplitude and phase of the sinusoids. 

RULE 1: If a sinusoid is described by formula )cos( tkxAE      the phasor representing 

the sinusoid is  
ikxAeE   

Example: )sin()( tkxAtB  . Find B . 

2)2cos()sin()(  iikxeBtkxAtkxAtB   

RULE 2: To obtain the sinusoid corresponding to a given phasor, multiply the phasor by 
tie 
     

and take the real part. Thus the sinusoid corresponding to the phasor E   is  tieE Re  . 

Example: 
305 ieE  . Find E(t). 

  )30cos(5Re)( teEtE ti   
 

RULE 3: If E  is  the phasor of the sinusoid )(tE , then the phasor representing the sinusoid 

ttE  )(  is Ei .  

To prove rule 3 let us consider a sinusoidal function 



B(t)  A0 cos( t)  that is represented 

by a phasor 
ieAB 0 .  Let us find the phasor of the 



B(t) t . 
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B(t) t A0 sin( t) A0 cos( t  2)  

According to Rule 1, the phasor of this sinusoidal function can be written as  



B(t) t  A0 exp[i(   2)] iA0e
i

 

Phasor analysis is used for study of sinusoidal signals in linear approximation when all terms in 

equations have the same frequency. 

It is possible to express any wave as a superposition of harmonics with different frequencies.  



Then for each harmonic the wave equation  
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Can be written in the form of equation for the phasor 

022  EE


   - Helmholtz equation        (18) 

We omitted here the underline symbol in the phasor 



E  that represents  the sinusoidal function of 

time 



E (r ,t),  

Solution for every component of the phasor E


 can be obtained by using the procedure of 

separation of variables.  

In rectangular (Cartesian) coordinates 
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and from Helmholtz equation (18) we obtain 
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It follows from Eq. (20) that each of the first three terms must be constant.  
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where according to (20) 



kx
2
,ky
2
,kz
2
 satisfy the so-called dispersion equation 

22222  zyx kkkk           (22) 

Solution of the first equation in (21) can be written in the form  



ikx
i

ikx
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If only first term is retained in phasor (), the sinusoidal in time domain solution for the field will 

have a form 

  )cos(Re),( )( tkxAeAtxX i
tkxi
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It corresponds to the wave traveling in positive x-direction. 

Second term in (23) corresponds to the wave propagating in –x direction. Such a component 

appears usually due to reflection from some boundary. As a result, (23) describes a standing 

wave solution that is formed in this case. For example in the simplest case when 



Ai  Bi , the 

phasor (23) is equal 



Xi (x)  2Ai coskx x          (25) 

and the sinusoidal in time domain solution of the first of Equations (21) is just a standing wave 



Xi (x,t)  2Ai cos(kx x)cos(t)         (26) 

Solution for a traveling wave can be written in the form 



Ei (t,x,y,z) Re Xi (x)Yi (y)Zi (z)e
it  Ei Re i(kx x  ky y kz z t) 

 Ei cos(k r t)
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Here 



k  kx ,ky ,kz  is the wave vector, its direction defines the direction of the wave 

propagation, plane perpendicular to k


 is the plane of constant phase.  

It follows from the dispersion relation (22) that the phase velocity of EM wave in a medium is 



vph  k c    

that is smaller than light speed in vacuum. 

 

 

 


