
6-20 The Schrödinger equation, after rearrangement, is 
      

! 

d
2"

dx
2

=
2m

h
2

# 

$ % 
& 

' ( 
U x( ) )E{ }" x( ) . In the well 

interior, 
    

! 

U x( ) = 0  and solutions to this equation are     

! 

sin kx  and     

! 

cos kx , where 
      

! 

k
2

=
2mE

h
2

. 

The waves symmetric about the midpoint of the well (    

! 

x = 0 ) are described by  
 

 
    

! 

" x( ) = Acos kx     

! 

"L < x < +L  
 
 In the region outside the well, 

  

! 

U x( ) =U , and the independent solutions to the wave 

equation are   

! 

e
±" x  with 

      

! 

"2
=

2m

h
2

# 

$ % 
& 

' ( 
U )E( ) . 

 
(a) The growing exponentials must be discarded to keep the wave from diverging at 

infinity. Thus, the waves in the exterior region, which are symmetric about the 
midpoint of the well are given by 

 
 

  

! 

" x( ) = Ce
#$ x     

! 

x > L  or   

! 

x < "L . 
 
 At   

! 

x = L  continuity of 

! 

"  requires     

! 

AcoskL = Ce
"# L . For the slope to be 

continuous here, we also must require     

! 

"Ak sin kL = "Ce
"# L . Dividing the two 

equations gives the desired restriction on the allowed energies:     

! 

k tan kL =" . 
 

(b) The dependence on E (or k) is made more explicit by noting that 
      

! 

k
2

+"
2

=
2mU

h
2

, 

which allows the energy condition to be written 
      

! 

k tan kL =
2mU

h
2

" k
2# 

$ 
% 

& 
' 
( 

1 2

. 

Multiplying by L, squaring the result, and using   

! 

tan
2
" + 1 = sec

2
"  gives 

      

! 

kL( )
2

sec
2

kL( ) =
2mUL

2

h
2

 from which the desired form follows immediately, 

      

! 

k sec kL( ) =
2mU

h
. The ground state is the symmetric waveform having the 

lowest energy. For electrons in a well of height     

! 

U = 5 eV  and width     

! 

2L = 0.2  nm , 
we calculate 

 

 
      

! 

2mUL
2

h
2

=
2( ) 511" 10

3
 eV c

2( ) 5 eV( ) 0.1 nm( )
2

197.3 eV #nm c( )
2

= 1.312 7 . 

 
 With this value, the equation for   

! 

" = kL  
 

 
  

! 

"

cos"
= 1.312 7( )

1 2

= 1.145 7  

 
 can be solved numerically employing methods of varying sophistication. The 

simplest of these is trial and error, which gives   

! 

" = 0.799  From this, we find 
    

! 

k = 7.99 nm
"1 , and an energy  

 

 
      

! 

E =
h

2
k

2

2m
=

197.3  eV "nm c( )
2

7.99 nm
#1( )

2

2 511$ 10
3
 eV c

2( )
= 2.432 eV . 



6-24 After rearrangement, the Schrödinger equation is 
      

! 

d
2"

dx
2

=
2m

h
2

# 

$ % 
& 

' ( 
U x( ) )E{ }" x( )  with 

    

! 

U x( ) =
1

2
m"

2
x

2  for the quantum oscillator. Differentiating 
    

! 

" x( ) = Cxe
#$ x

2

 gives  
 

 
    

! 

d"

dx
= #2$ x" x( ) + C

#$ x
2

 
 
 and 
 

 
    

! 

d
2
"

dx
2

= #
2$ xd"

dx
# 2$" x( ) # 2$ x( )Ce

#$ x
2

= 2$ x( )
2

" x( ) # 6$" x( ) . 
 

Therefore, for 
  

! 

" x( )  to be a solution requires 
      

! 

2" x( )2

# 6" =
2m

h
2

U x( ) #E{ } =
m$

h

% 

& ' 
( 

) * 

2

x
2 #

2mE

h
2

. 

Equating coefficients of like terms gives 
      

! 

2" =
m#

h
 and 

      

! 

6" =
2mE

h
2

. Thus, 
      

! 

" =
m#

2h
 and 

      

! 

E =
3" h

2

m
=

3

2
h# . The normalization integral is 

    

! 

1 = " x( )
2

dx

#$

$

% = 2C
2

x
2
e
#2& x

2

% dx  where 

the second step follows from the symmetry of the integrand about     

! 

x = 0 . Identifying a 

with   

! 

2" in the integral of Problem 6-32 gives 
    

! 

1 = 2C
2 1

8"

# 

$ % 
& 

' ( 
)

2"

# 

$ % 
& 

' ( 

1 2

 or 
    

! 

C =
32"3

#

$ 

% 
& 

' 

( 
) 

1 4

. 

6-25 At its limits of vibration   

! 

x = ±A  the classical oscillator has all its energy in potential form: 

    

! 

E =
1

2
m"

2
A

2  or 
    

! 

A =
2E

m" 2

# 

$ % 
& 

' ( 

1 2

. If the energy is quantized as 
      

! 

En = n +
1

2

" 

# $ 
% 

& ' 
h( , then the 

corresponding amplitudes are 
      

! 

An =
2n + 1( )h

m"

# 

$ 
% 

& 

' 
( 

1 2

. 

6-32 The probability density for this case is 
    

! 

" 0 x( )
2

= C0

2
e
#ax

2

 with 
    

! 

C0 =
a

"

# 

$ % 
& 

' ( 

1 4

 and 
    

! 

a =
m"

h
. 

For the calculation of the average position 
    

! 

x = x" 0 x( )
2

dx

#$

$

%  we note that the integrand 

is an odd function, so that the integral over the negative half-axis     

! 

x < 0  exactly cancels 
that over the positive half-axis (    

! 

x > 0 ), leaving 
    

! 

x = 0 . For the calculation of 
    

! 

x
2 , 

however, the integrand 
    

! 

x
2
" 0

2

 is symmetric, and the two half-axes contribute equally, 
giving 

 

 
    

! 

x
2

= 2C0

2
x

2
e
"ax

2

dx

0

#

$ = 2C0

2 1

4a

% 

& ' 
( 

) * 
+

a

% 

& ' 
( 

) * 

1 2

. 

 

 Substituting for 
    

! 

C0  and a gives 
      

! 

x
2

=
1

2a
=

h

2m"
 and 

      

! 

"x = x
2 # x

2( )
1 2

=
h

2m$

% 

& ' 
( 

) * 

1 2

. 

 



6-33 (a) Since there is no preference for motion in the leftward sense vs. the rightward 
sense, a particle would spend equal time moving left as moving right, suggesting 

    

! 

px = 0 . 
 
(b) To find 

    

! 

px
2  we express the average energy as the sum of its kinetic and 

potential energy contributions: 
    

! 

E =
px

2

2m
+ U =

px
2

2m
+ U . But energy is sharp 

in the oscillator ground state, so that 
      

! 

E = E0 =
1

2
h" . Furthermore, remembering 

that 
    

! 

U x( ) =
1

2
m"

2
x

2  for the quantum oscillator, and using 
      

! 

x
2

=
h

2m"
 from 

Problem 6-32, gives 
      

! 

U =
1

2
m"

2
x

2
=

1

4
h" . Then 

      

! 

px
2

= 2m E0 " U( ) = 2m
h#

4

$ 

% & 
' 

( ) 
=

mh#

2
. 

 

(c) 
      

! 

"px = px
2 # px

2( )
1 2

=
mh$

2

% 

& ' 
( 

) * 

1 2

 

6-34 From Problems 6-32 and 6-33, we have 
      

! 

"x =
h

2m#

$ 

% & 
' 

( ) 

1 2

 and 
      

! 

"px =
mh#

2

$ 

% & 
' 

( ) 

1 2

. Thus, 

      

! 

"x"px =
h

2m#

$ 

% & 
' 

( ) 

1 2
mh#

2

$ 

% & 
' 

( ) 

1 2

=
h

2
 for the oscillator ground state. This is the minimum 

uncertainty product permitted by the uncertainty principle, and is realized only for the 
ground state of the quantum oscillator. 

 

6-35 Applying the momentum operator 
    

! 

px[ ] =
h

i

" 

# $ 
% 

& ' 
d

dx
 to each of the candidate functions 

yields 
 

(a) 
      

! 

px[ ] Asin kx( ){ } =
h

i

" 

# $ 
% 

& ' 
k Acos kx( ){ }  

 

(b) 
      

! 

px[ ] Asin kx( ) "Acos kx( ){ } =
h

i

# 

$ % 
& 

' ( 
k Acos kx( ) + Asin kx( ){ }  

 

(c) 
      

! 

px[ ] Acos kx( ) + iAsin kx( ){ } =
h

i

" 

# $ 
% 

& ' 
k (Asin kx( ) + iAcos kx( ){ }  

 

(d) 
    

! 

px[ ] e
ik x "a( ){ } =

h

i

# 

$ % 
& 

' ( 
ik e

ik x "a( ){ }  

 
 In case (c), the result is a multiple of the original function, since 
 

    

! 

"Asin kx( ) + iAcos kx( ) = i Acos kx( ) + iAsin kx( ){ } . 
 



 The multiple is 
    

! 

h

i

" 

# $ 
% 

& ' 
ik( ) = hk  and is the eigenvalue. Likewise for (d), the operation 

  

! 

px[ ] 

returns the original function with the multiplier     

! 

hk . Thus, (c) and (d) are eigenfunctions 
of 

  

! 

px[ ] with eigenvalue     

! 

hk , whereas (a) and (b) are not eigenfunctions of this operator. 
 
 
 

7-1 (a) The reflection coefficient is the ratio of the reflected intensity to the incident 

wave intensity, or 

    

! 

R =
1 2( ) 1 " i( )

2

1 2( ) 1 + i( )
2

. But 

    

! 

1 " i
2

= 1 " i( ) 1 " i( )* = 1 " i( ) 1 + i( ) = 1 + i
2

= 2 , so that     

! 

R = 1  in this case. 
 
(b) To the left of the step the particle is free. The solutions to Schrödinger’s equation 

are   

! 

e
±ikx  with wavenumber 

      

! 

k =
2mE

h
2

" 

# $ 
% 

& ' 

1 2

. To the right of the step 
  

! 

U x( ) =U  and 

the equation is 
      

! 

d
2
"

dx
2

=
2m

h
2

U #E( )" x( ) . With 
  

! 

" x( ) = e
#kx , we find 

    

! 

d
2
"

dx
2

= k
2
" x( ) , 

so that 
      

! 

k =
2m U "E( )

h
2

# 

$ 
% 

& 

' 
( 

1 2

. Substituting 
      

! 

k =
2mE

h
2

" 

# $ 
% 

& ' 

1 2

 shows that 
    

! 

E

U "E( )

# 

$ 
% 
% 

& 

' 
( 
( 

1 2

= 1  

or 
    

! 

E

U
=

1

2
. 

 

(c) For 10 MeV protons,     

! 

E = 10 MeV  and 
    

! 

m =
938.28 MeV

c
2

. Using 

      

! 

h = 197.3 MeV fm c 1 fm = 10
"15

 m( ) , we find 

      

! 

" =
1

k
=

h

2mE( )1 2
=

197.3  MeV fm c

2( ) 938.28 MeV c
2( ) 10 MeV( )[ ]

1 2
= 1.44 fm . 

 
7-2 (a) To the left of the step the particle is free with kinetic energy E and corresponding 

wavenumber 
      

! 

k1 =
2mE

h
2

" 

# $ 
% 

& ' 

1 2

: 

 

    

! 

" x( ) = Ae
ik

1
x

+ Be
#ik

1
x      

! 

x " 0  
 
 To the right of the step the kinetic energy is reduced to   

! 

E "U  and the 

wavenumber is now 
      

! 

k2 =
2m E "U( )

h
2

# 

$ 
% 

& 

' 
( 

1 2

 

 

    

! 

" x( ) = Ce
ik

2
x

+ De
#ik

2
x      

! 

x " 0  

 with     

! 

D = 0  for waves incident on the step from the left. At     

! 

x = 0  both 

! 

"  and 
  

! 

d"

dx
 

must be continuous: 
    

! 

" 0( ) = A + B = C  
 

    

! 

d"

dx
0

= ik1 A #B( ) = ik2C . 

 



(b) Eliminating C gives 
    

! 

A + B =
k1

k2

A "B( )  or 
    

! 

A
k1

k2

" 1
# 

$ % 
& 

' ( 
= B

k1

k2

+ 1
# 

$ % 
& 

' ( 
. Thus, 

 

    

! 

R =
B

A

2

=
k1 k2 "1( )

2

k
1

k
2

+ 1( )
2

=
k1 " k2( )2

k1 + k2( )2

T = 1 " R =
4k

1
k

2

k1 + k2( )2

 

 
(c) As   

! 

E "U , 
    

! 

k2 " 0 , and     

! 

R "1 ,     

! 

T " 0  (no transmission), in agreement with the 
result for any energy   

! 

E < U . For   

! 

E "# , 
    

! 

k1 " k2  and     

! 

R " 0 ,     

! 

T " 1  (perfect 
transmission) suggesting correctly that very energetic particles do not see the step 
and so are unaffected by it. 

 
7-3 With     

! 

E = 25 MeV  and     

! 

U = 20 MeV , the ratio of wavenumber is 

    

! 

k1

k2

=
E

E "U

# 

$ % 
& 

' ( 

1 2

=
25

25 " 20

# 

$ % 
& 

' ( 

1 2

= 5 = 2.236 . Then from Problem 7-2 

    

! 

R =
5 " 1( )

2

5 + 1( )
2

= 0.146  

and     

! 

T = 1 " R = 0.854 . Thus, 14.6% of the incoming particles would be reflected and 85.4% 
would be transmitted. For electrons with the same energy, the transparency and 
reflectivity of the step are unchanged. 

 
7-4 The reflection coefficient for this case is given in Problem 7-2 as 
 

    

! 

R =
B

A

2

=
k1 k2 "1( )

2

k
1

k
2

+ 1( )
2

=
k

1
" k

2( )
2

k
1

+ k
2( )

2
. 

 
 The wavenumbers are those for electrons with kinetic energies     

! 

E = 54.0 eV  and 
    

! 

E "U = 54.0 eV + 10.0 eV = 64.0 eV : 
 

    

! 

k1

k2

=
E

E "U

# 

$ % 
& 

' ( 

1 2

=
54 eV

64 eV

# 

$ % 
& 

' ( 

1 2

= 0.918 6 . 

 

 Then, 
    

! 

R =
0.918 6 "1( )

2

0.918 6 + 1( )
2

= 1.80 # 10
"3  is the fraction of the incident beam that is reflected 

at the boundary. 
 
7-5 (a) The transmission probability according to Equation 7.9 is 

    

! 

1

T E( )
= 1 +

U
2

4E U "E( )

# 

$ 
% 
% 

& 

' 
( 
( 
sinh

2)L  with 
      

! 

" =
2m U #E( )[ ]

1 2

h
. For   

! 

E <<U , we find 

      

! 

" L( )
2

#
2mUL

2

h
2

>> 1  by hypothesis. Thus, we may write 
    

! 

sinh" L #
1

2
e
" L . Also 

  

! 

U "E #U , giving 
    

! 

1

T E( )
" 1 +

U

16E

# 

$ % 
& 

' ( 
e

2) L "
U

16E

# 

$ % 
& 

' ( 
e

2) L  and a probability for 

transmission 
    

! 

P = T E( ) =
16E

U

" 

# $ 
% 

& ' 
e
(2) L . 

 
(b) Numerical Estimates: 

    

! 

h = 1.055" 10
#34

 Js( )  



1) For     

! 

m = 9.11" 10#31  kg ,     

! 

U "E = 1.60 # 10
"21

 J ,     

! 

L = 10
"10

 m ; 

      

! 

" =
2m U #E( )[ ]

1 2

h
= 5.12 $ 10

8
 m

#1  and     

! 

e
"2# L

= 0.90  

2) For     

! 

m = 9.11" 10#31  kg ,     

! 

U "E = 1.60 # 10
"19

 J ,     

! 

L = 10
"10

 m ; 
  

! 

" = 5.12 # 10
9

 m
$1  and     

! 

e
"2# L

= 0.36  
3) For     

! 

m = 6.7 " 10#27  kg ,     

! 

U "E = 1.60 # 10
"13

 J ,     

! 

L = 10
"15

 m ; 
  

! 

" = 4.4 # 10
14

 m
$1  and     

! 

e
"2# L

= 0.41  
4) For     

! 

m = 8 kg ,     

! 

U "E = 1 J ,     

! 

L = 0.02 m ;   

! 

" = 3.8 # 10
34

 m
$1  and 

    

! 

e
"2# L

= e
"1.5$10

33

% 0  
 
7-16 Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or about 

    

! 

3 755.8 MeV c
2 , the first approximation to the decay length 

! 

"  is 
 

      

! 

" #
h

2mU( )1 2
=

197.3 MeV fm c

2 3 755.8 MeV c
2( ) 30 MeV( )[ ]

1 2
= 0.415 6 fm . 

 
 This gives an effective width for the (infinite) well of 

    

! 

R + " = 9.415 6 fm , and a ground 

state energy 
    

! 

E1 =
"

2
197.3 MeV fm c( )

2

2 3 755.8 MeV c
2( ) 9.415 6 fm( )

2
= 0.577  MeV . From this E we calculate 

    

! 

U "E = 29.42 MeV  and a new decay length  
 

    

! 

" =
197.3 MeV fm c

2 3 755.8  MeV c
2( ) 29.42 MeV( )[ ]

1 2
= 0.419 7  fm . 

 
 This, in turn, increases the effective well width to 9.419 7 fm and lowers the ground state 

energy to 
    

! 

E1 = 0.576 MeV . Since our estimate for E has changed by only 0.001 MeV, we 
may be content with this value. With a kinetic energy of 

    

! 

E1 , the alpha particle in the 

ground state has speed 
    

! 

v1 =
2E1

m

" 

# $ 
% 

& ' 

1 2

=
2 0.576 MeV( )

3 755.8 MeV c
2( )

( 

) 

* 
* 

+ 

, 

- 
- 

1 2

= 0.017 5c . In order to be 

ejected with a kinetic energy of 4.05 MeV, the alpha particle must have been preformed 
in an excited state of the nuclear well, not the ground state. 

 
7-17 The collision frequency f is the reciprocal of the transit time for the alpha particle crossing 

the nucleus, or 
    

! 

f =
v

2R
, where v is the speed of the alpha. Now v is found from the 

kinetic energy which, inside the nucleus, is not the total energy E but the difference   

! 

E "U  
between the total energy and the potential energy representing the bottom of the nuclear 
well. At the nuclear radius     

! 

R = 9 fm , the Coulomb energy is 
 

 
    

! 

k Ze( ) 2e( )
R

= 2Z
ke

2

a0

" 

# 
$ 

% 

& 
' 

a0

R

" 

# $ 
% 

& ' 
= 2 88( ) 27.2 eV( )

5.29 ( 10
4

 fm

9 fm

" 

# 
$ 

% 

& 
' = 28.14 MeV . 

 
 From this we conclude that     

! 

U = "1.86 MeV  to give a nuclear barrier of   

! 

30 MeV  overall. 
Thus an alpha with     

! 

E = 4.05 MeV has kinetic energy   

! 

4.05 + 1.86 = 5.91 MeV  inside the 
nucleus. Since the alpha particle has the combined mass of 2 protons and 2 neutrons, or 
about 

    

! 

3 755.8 MeV c
2  this kinetic energy represents a speed 



 

    

! 

v =
2Ek

m

" 

# $ 
% 

& ' 

1 2

=
2 5.91( )

3 755.8 MeV c
2

( 

) 
* 
* 

+ 

, 
- 
- 

1 2

= 0.056c . 

 

 Thus, we find for the collision frequency 
    

! 

f =
v

2R
=

0.056c

2 9 fm( )
= 9.35" 10

20
 Hz . 

 
 

 
 
 

 
 


