- The issue is: Can we use the simpler <u>classical</u> expression $p = (2mK)^{1/2}$ instead of the exact $\frac{K\left(1 + \frac{2mc^2}{K}\right)^{1/2}}{c}$? As the relativistic expression reduces to $p = (2mK)^{1/2}$ for $K << 2mc^2$, we can use the classical expression whenever K << 1 MeV because mc^2 for the electron is 0.511 MeV.
 - (a) Here 50 eV <<1 MeV, so $p = (2mK)^{1/2}$ $\lambda = \frac{h}{p} = \frac{h}{\left[(2) \left(\frac{0.511 \text{ MeV}}{c^2} \right) (50 \text{ eV}) \right]^{1/2}} = \frac{hc}{\left[(2) (0.511 \text{ MeV}) (50 \text{ eV}) \right]^{1/2}}$ $= \frac{1240 \text{ eV nm}}{\left[(2) \left(0.511 \times 10^6 \right) (50) (\text{eV})^2 \right]^{1/2}} = 0.173 \text{ nm}$
 - (b) As 50 eV <<1 MeV, $p = (2mK)^{1/2}$ $\lambda = \frac{hc}{\left[(2) \left(\frac{0.511 \text{ MeV}}{c^2} \right) \left(50 \times 10^3 \text{ eV} \right) \right]^{1/2}} = 5.49 \times 10^{-3} \text{ nm}.$

As this is clearly a worse approximation than in (a) to be on the <u>safe</u> side use the relativistic expression for p: $p = K \frac{\left(1 + \frac{2mc^2}{K}\right)^{1/2}}{c}$ so

$$\lambda = \frac{h}{p} = \frac{hc}{\left(K^2 + 2Kmc^2\right)^{1/2}} = \frac{1240 \text{ eV nm}}{\left[\left(50 \times 10^3\right)^2 + \left(2\right)\left(50 \times 10^3\right)\left(0.511 \times 10^6 \text{ eV}\right)\right]^{1/2}}$$
$$= 5.36 \times 10^{-3} \text{ nm} = 0.005 36 \text{ nm}$$

5-7 A 10 MeV proton has K = 10 MeV $<< 2mc^2 = 1877$ MeV so we can use the classical expression $p = (2mK)^{1/2}$. (See Problem 5-2)

$$\lambda = \frac{h}{p} = \frac{hc}{\left[(2)(938.3 \text{ MeV})(10 \text{ MeV}) \right]^{1/2}} = \frac{1240 \text{ MeV fm}}{\left[(2)(938.3)(10)(\text{MeV})^2 \right]^{1/2}} = 9.05 \text{ fm} = 9.05 \times 10^{-15} \text{ m}$$

5-8
$$\lambda = \frac{h}{p} = \frac{h}{(2mK)^{1/2}} = \frac{h}{(2meV)^{1/2}} = \left[\frac{h}{(2me)^{1/2}}\right] V^{-1/2}$$

$$\lambda = \left[\frac{6.626 \times 10^{-34} \text{ Js}}{\left(2 \times 9.105 \times 10^{-31} \text{ kg} \times 1.602 \times 10^{-19} \text{ C}\right)^{1/2}}\right] V^{-1/2}$$

$$\lambda = \left[\frac{1.226 \times 10^{-9} \text{ kg}^{1/2} \text{m}^2}{\text{sC}^{1/2}}\right] V^{-1/2}$$

5-10 As $\lambda = 2a_0 = 2(0.052 \text{ 9})$ nm = 0.105 8 nm the energy of the electron is nonrelativistic, so we can use

$$p = \frac{h}{\lambda} \text{ with } K = \frac{p^2}{2m};$$

$$K = \frac{h^2}{2m\lambda^2} = \frac{\left(6.626 \times 10^{-34} \text{ J} \cdot \text{s}\right)^2}{2\left(9.11 \times 10^{-31} \text{ kg}\right)\left(1.058 \times 10^{-10} \text{ m}\right)^2} = 21.5 \times 10^{-18} \text{ J} = 134 \text{ eV}$$

This is about ten times as large as the ground-state energy of hydrogen, which is 13.6 eV.

5-11 (a) In this problem, the electron must be treated relativistically because we must use relativity when $pc \approx mc^2$. (See problem 5-5). the momentum of the electron is

$$p = \frac{h}{\lambda} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{10^{-14} \text{ m}} = 6.626 \times 10^{-20} \text{ kg} \cdot \text{m/s}$$

and $pc = 124 \text{ MeV} >> mc^2 = 0.511 \text{ MeV}$. The energy of the electron is

$$E = (p^{2}c^{2} + m^{2}c^{4})^{1/2}$$

$$= \left[(6.626 \times 10^{-20} \text{ kg} \cdot \text{m/s})^{2} (3 \times 10^{8} \text{ m/s})^{2} + (0.511 \times 10^{6} \text{ eV})^{2} (1.602 \times 10^{-19} \text{ J/eV})^{2} \right]^{1/2}$$

$$= 1.99 \times 10^{-11} \text{ J} = 1.24 \times 10^{8} \text{ eV}$$
so that $K = E - mc^{2} \approx 124 \text{ MeV}$.

- (b) The kinetic energy is too large to expect that the electron could be confined to a region the size of the nucleus.
- 5-12 Using $p = \frac{h}{\lambda} = mv$, we find that $v = \frac{h}{m\lambda} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{\left(9.11 \times 10^{-31} \text{ kg}\right)\left(1 \times 10^{-10} \text{ m}\right)} = 7.27 \times 10^6 \text{ m/s}$. From the principle of conservation of energy, we get

$$eV = \frac{mv^2}{2} = \frac{(9.11 \times 10^{-31} \text{ kg})(7.27 \times 10^6 \text{ m/s})^2}{2} = 2.41 \times 10^{-17} \text{ J} = 151 \text{ eV}.$$

Therefore V = 151 V.

- For a free, non-relativistic electron $E = \frac{m_{\rm e} v_0^2}{2} = \frac{p^2}{2m_{\rm e}}$. As the wavenumber and angular frequency of the electron's de Broglie wave are given by $p = \hbar k$ and $E = \hbar \omega$, substituting these results gives the dispersion relation $\omega = \frac{\hbar k^2}{2m_{\rm e}}$. So $v_g = \frac{d\omega}{dk} = \frac{\hbar k}{m_{\rm e}} = \frac{p}{m_{\rm e}} = v_0$.
- 5-17 $E^{2} = p^{2}c^{2} + (m_{e}c^{2})^{2}$ $E = \left[p^{2}c^{2} + (m_{e}c^{2})^{2}\right]^{1/2}. \text{ As } E = \hbar\omega \text{ and } p = \hbar k$

$$\hbar\omega = \left[\hbar^{2}k^{2}c^{2} + \left(m_{e}c^{2}\right)^{2}\right]^{1/2} \text{ or }$$

$$\omega(k) = \left[k^{2}c^{2} + \frac{\left(m_{e}c^{2}\right)^{2}}{\hbar^{2}}\right]^{1/2}$$

$$v_{p} = \frac{\omega}{k} = \frac{\left[k^{2}c^{2} + \left(m_{e}c^{2}/\hbar\right)^{2}\right]^{1/2}}{k} = \left[c^{2} + \left(\frac{m_{e}c^{2}}{\hbar k}\right)^{2}\right]^{1/2}$$

$$v_{g} = \frac{d\omega}{dk}\Big|_{k_{0}} = \frac{1}{2}\left[k^{2}c^{2} + \left(\frac{m_{e}c^{2}}{\hbar}\right)^{2}\right]^{-1/2}$$

$$2kc^{2} = \frac{kc^{2}}{\left[k^{2}c^{2} + \left(m_{e}c^{2}/\hbar\right)^{2}\right]^{1/2}}$$

$$v_{p}v_{g} = \left\{\frac{\left[k^{2}c^{2} + \left(m_{e}c^{2}/\hbar\right)^{2}\right]^{1/2}}{k}\right\}\left\{\left[k^{2}c^{2} + \left(m_{e}c^{2}/\hbar\right)^{2}\right]^{1/2}\right\} = c^{2}$$

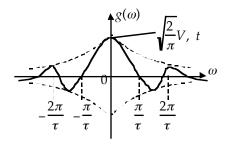
Therefore, $v_g < c$ if $v_p > c$.

5-23 (a)
$$\Delta p \Delta x = m \Delta v \Delta x \ge \frac{\hbar}{2}$$
$$\Delta v \ge \frac{h}{4\pi m \Delta x} = \frac{2\pi J \cdot s}{4\pi (2 \text{ kg})(1 \text{ m})} = 0.25 \text{ m/s}$$

- (b) The duck might move by (0.25 m/s)(5 s) = 1.25 m. With original position uncertainty of 1m, we can think of Δx growing to 1 m + 1.25 m = 2.25 m.
- 5-24 (a) $\Delta x \Delta p = \hbar \text{ so if } \Delta x = r, \ \Delta p \approx \frac{\hbar}{r}$

(b)
$$K = \frac{p^2}{2m_e} \approx \frac{(\Delta p)^2}{2m_e} = \frac{\hbar^2}{2m_e r^2}$$
 $U = -\frac{ke^2}{r}$
 $E = \frac{\hbar^2}{2m_e r^2} - \frac{ke^2}{r}$

- (c) To minimize E take $\frac{dE}{dr} = -\frac{\hbar^2}{m_{\rm e}r^3} + \frac{ke^2}{r^2} = 0 \Rightarrow r = \frac{\hbar^2}{m_{\rm e}ke^2} = \text{Bohr radius} = a_0$. Then $E = \left(\frac{\hbar}{2m_{\rm e}}\right) \left(\frac{m_{\rm e}ke^2}{\hbar^2}\right)^2 ke^2 \left(\frac{m_{\rm e}ke^2}{\hbar^2}\right) = \frac{m_{\rm e}k^2e^4}{2\hbar^2} = -13.6 \text{ eV}.$
- 5-34 (a) $g(\omega) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} V(t) (\cos \omega \ t i \sin \omega \ t) dt$, $V(t) \sin \omega \ t$ is an odd function so this integral vanishes leaving $g(\omega) = 2(2\pi)^{-1/2} \int_{0}^{\tau} V_0 \cos \omega \ t dt = \left(\frac{2}{\pi}\right)^{1/2} V_0 \frac{\sin \omega \ \tau}{\omega}$. A sketch of $g(\omega)$ is given below.



(b) As the major contribution to this pulse comes from ω 's between $-\frac{\pi}{\tau}$ and $\frac{\pi}{\tau}$, let $\Delta\omega\approx\frac{\pi}{\tau}$ and since $\Delta t=\tau$.

$$\Delta\omega\Delta t = \left(\frac{\pi}{\tau}\right)\tau = \pi$$

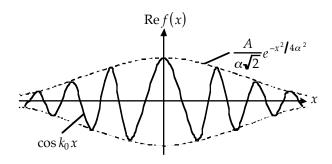
(c) Substituting $\Delta t = 0.5 \,\mu\text{s}$ in $\Delta \omega = \frac{\pi}{\Delta t}$ we find $\frac{\Delta 1}{2\Delta t} = \frac{1}{2(0.5 \times 10^{-6} \text{ s})} = 1 \times 10^6 \text{ Hz}$. As the range is $2\Delta f$, the range is $2 \times 10^6 \text{ Hz}$. For $\Delta t = 0.5 \text{ ns}$, the range is $2\Delta f = 2 \times 10^9 \text{ Hz}$.

5-35 (a)

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} a(k)e^{ikx} dk = \frac{A}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\alpha^2(k-k_0)^2} e^{ikx} dk = \frac{A}{\sqrt{2\pi}} e^{-\alpha^2k_0^2} \int_{-\infty}^{+\infty} e^{-\alpha^2(k^2-(2k_0+ix)/\alpha^2)k}) dk$$
. Now complete the square in order to get the integral into the standard form
$$\int_{-\infty}^{+\infty} e^{-az^2} dz$$
:

$$\begin{split} e^{-\alpha^2 \left(k^2 - \left(2k_0 + ix / \alpha^2\right)k\right)} &= e^{+\alpha^2 \left(k_0 + ix / 2\alpha^2\right)^2} e^{-\alpha^2 \left(k - \left(k_0 + ix / 2\alpha^2\right)\right)^2} \\ f(x) &= \frac{A}{\sqrt{2\pi}} e^{-\alpha^2 k_0^2} e^{\alpha^2 \left(k_0 + ix / 2\alpha^2\right)^2} \int\limits_{k = -\infty}^{+\infty} e^{-\alpha^2 \left(k - \left(k_0 + ix / 2\alpha^2\right)\right)^2} dk \\ &= \frac{A}{\sqrt{2\pi}} e^{-x^2 / 4\alpha^2} e^{ik_0 x} \int\limits_{z = -\infty}^{+\infty} e^{-\alpha^2 z^2} dz \end{split}$$

where
$$z = k - \left(k_0 + \frac{ix}{2\alpha^2}\right)$$
. Since $\int_{z=-\infty}^{+\infty} e^{-\alpha^2 z^2} dz = \frac{\pi^{1/2}}{\alpha}$, $f(x) = \frac{A}{\alpha\sqrt{2}}e^{-x^2/4\alpha^2}e^{ik_0x}$. The real part of $f(x)$, $\operatorname{Re} f(x)$ is $\operatorname{Re} f(x) = \frac{A}{\alpha\sqrt{2}}e^{-x^24\alpha^2}\cos k_0x$ and is a gaussian envelope multiplying a harmonic wave with wave number k_0 . A plot of $\operatorname{Re} f(x)$ is shown below:



Comparing $\frac{A}{\alpha\sqrt{2}}e^{-x^2 4\alpha^2}$ to $Ae^{-(x/2\Delta x)^2}$ implies $\Delta x = \alpha$.

- (c) By same reasoning because $\alpha^2 = \frac{1}{4\Delta k^2}$, $\Delta k = \frac{1}{2\alpha}$. Finally $\Delta x \Delta k = \alpha \left(\frac{1}{2\alpha}\right) = \frac{1}{2}$.
- 5-36 $E = K = \frac{1}{2}mu^2 = hf$ and $\lambda = \frac{h}{mu}$. $v_{\text{phase}} = f\lambda = \frac{mu^2}{2h}\frac{h}{mu} = \frac{u}{2} = v_{\text{phase}}$. This is different from the speed u at which the particle transports mass, energy, and momentum.