Final solutions

Problem 1
(a) We can write
S;S; = —m? +m(S; + S;) + 8805,

The last term is due to fluctuations. We then have the mean field Hamiltonian
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(b) The partition function is
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from which we get
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In terms of dimensionless quantities we get

f= %m2—01n [1+2cosh <m;—h>} .

Problem 2
The first condition gives
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The second condition gives
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or, equivalently
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Equating the two equations for RT we get v. = 2b. Substituting this result in
anyone of the equations for RT we obtain
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Substituting v, and T, in the equation of state we get
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which is a very low number.

Problem 3
As explained in class, we can assume that the chemical potential is zero in the
region of Bose-Einstein condensation. The number of particles in the excited
state is thus

where 1
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so that
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If we set x = ¢/kpT, we get
Nege = const' x V(kgT)>/.

Therefore, since Ty is determined by the condition N.,. = N we find that
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Finally, we find that
U= / eN.g(e)de oc T3/5+1,
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from which we find
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