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7-1. En1 nyny W(nf + n22 + I’l32 ) (Equation 7-4)
hzﬂ'z 2 5 ) h2ﬂ2
E311 =2m—L2(3 +1° +1 )=11E0 WhereEO =m

B =E, (2 +27+2°)=12E, and Ey, =E, (3 +2" +1°)=14E,

The 1%, 2™, 3", and 5™ excited states are degenerate.
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7-2. E = Lp2 g =
mmi o (Lf L L§) 2mL;

2 2
(nf + %2 + %3) (Equation 7-5)

n, =n, =n, =1 is the lowest energy level.

i’

E, =E,(1+1/4+1/9)=1.361E, where E, = ——
111 0 0 0 2mLf

The next nine levels are, increasing order,



(Problem 7-2 continued)

n n, n, E (x E, )
1 1 2 1.694
1 2 1 2.111
1 1 3 2.250
1 2 2 2.444
1 2 3 3.000
1 1 4 3.028
1 3 1 3.360
1 3 2 3.472
1 2 4 3.778

73. (@ v,,., (xyz)=Acos nlzx sin nzzry sin nifz

(b) They are identical. The location of the coordinate origin does not affect the

energy
level structure.
. X . XY . TZ
7-4. X,9,z )= Asin—sin——sin—
Vi (v22) L 2L 3L
. . .2
¥ (6,3,2) = Asin ™~ sin Y sin ==

L 2L 3L

. TX . WY . TZ
X, ¥,z )= Asin—sin——sin—
QP121( Yy ) L L 3L
. X . mwy . 27mz

X, 9,z )= Asin—sin——sin
Vi (62:2) L, L 3L,

Yo, (x0,2)= Asin?sin;—ysinE

1 1 1



7-5.

22 2 2 2
na” | n n, n;

W’
En P _2+ 2 + 2 =
171113 2m [Ll (2Ll) (4L1)

2mlL}

2 2
PN from Equation 7-5
( 1 4 " 16 ( q )

2 2 22
E, = nf+n—2+n—3 where E,, = hnz
416 2l

(Problem 7-5 continued)

(a)
n, n, n, E (x E, )
1 1 1 1.313
1 1 2 1.500
1 1 3 1.813
1 2 1 2.063
1 1 4 2.250
1 2 2 2.250
1 2 3 2.563
1 1 5 2.813
1 2 4 3.000
1 1 6 3.500

(b) 1,1,4and 1,2,2

ey (1.055x 1070 ) 2

2= 5 =37.68eV
2mL” 2(9.11x10™ kg )(0.10x10”m ) (1.609x107°J / eV’

7-7.  E, =

E, -E, =AE=11E,-3E, =8E, =301leV
(Problem 7-7 continued)
E,,-E, =AE=12E,-3E, =9E, =339V



E, -E, =AE =14E, -3E, = 11E, = 415¢V

7-8.  (a) Adapting Equation 7-3 to two dimensions (i.e., setting k3 = 0), we have

. MITX . MY
1 2
Yy = Asin sin

2.2

(b) From Equation 7-5, E, , = ;lm—an(nf +1; )

2

(c) The lowest energy degenerate states have quantum numbers n; =1, n, = 2,
and n; =2,

I’l2:1.



7-9. (a) Forn=3,/=0,1,2
(b) For /=0,m=0. For / =1,m=-1,0,+1. For /=2,m=-2,-1,0,+1,+2 .

(c) There are nine different m-states, each with two spin states, for a total of 18

states for

7-10. (a) For (=4

L=Jt(t+1)n=J4(5)n=~20n

m, = 4h
4
0 =co8"'— — 0 =26.6°
min \/% min
(b) For /=2

L=vJ6n  m, =2n

2
0 =cos' = — 0. =353°
min \/g min
7-12. (a)
+] [Tttt
f =
IL| =2
0 >
-1 [---—--—--—=-F
(b)




=2

L] = Ven

(©)

(=4

IL| = V207

(d) |L| =y M(ﬁ + l)h (See diagrams above.)

713, D=L+l +L—L+0 =0 -1 =0(0+1)0" - (mh) = (6-m® )’
@ (Z+2) =(6-2")p* =21

b (Z+2 )max = (6-0" > = 61’



(¢) Li+L =(6-1)" =5r" L, and L, cannot be determined separately.

() n=3

ﬂ><p=vxmv=mv><v=0 and rx%=er. Since for V =W(r), i.e., central

dt
forces,

F is parallel to r, then rx F =0 and ar =0

dt
7-16. (a) For /=3, n=4,5,6,...andm=-3,-2,-1,0,1,2,3
(b) For /=4, n=5,6,7,...andm=-4,-3,-2,-1,0,1,2,,3 4

(c) For /=0, n=1andm=0
(d) The energy depends only on n. The minimum in each case is:

E, =-13.6eV [n* = -13.6eV [ 4* = -0.85¢V
E, =-13.6eV |5* = -0.54eV

E, =-13.6eV

7-17. (a) 6f state:n=06,(=3

(b) E, =-13.6eV [n*> =-13.6eV 6’ = -0.38eV

(© L=Jt(t+1)h=3(3+1)h =127 =3.65x10"JT}

d) L =mh L =-3h—2h -1k 0,14,2% 3k

2
7-20. (a) For the ground state, P (r)Ar =y’ (4Jrr2 )Ar = 4L3e‘2” “Ar
a

0

4 2
For Ar = 0.03a,, at r = a, we have P (r)Ar = —22¢ (0.03a, ) = 0.0162
a,

(b) For

4(2% )2 -4
Ar =0.03a,, at r = 2a, we have P(r)Ar = ——">-¢™*(0.034, ) = 0.0088

3
0



7-21. P(r)=Cr’e™”’® For P(r) to be a maximum,

r (—2—Z)e_22’/”° + 2re 27! ] =0 — Cxﬁ(%— r)e_zz”% =0

4

dp
dt

This condition is satisfied with » = 0 or » = ay/Z. For r=10, P(r) =0 so the
maximum

P(r) occurs for r =ay/Z.

oo 1 27

7-22. fq;zdr ={{.0f1p2r2 sinfdrdOdg =1

2

2 7l
ree” M dr =1

= 4JT}1/} ridr = 4JTC2210}
0

0

zr

0

o er4
= 4'7[C2210f(—2

0 0

Letting x = Zr/a,, we have that r = a,x/Z and dr = a,dx/Z and

substituting

these above,

3,2
ft/) ‘dr = %fx“e‘xdx
0

Integrating on the right side
f x'e ™ dx =6
0
1/2

Z3
24J‘5a3

3
Solving for C;,, yields: C;, = Z—3 —C,, =
24may

7-26. For the most likely value of », P(r) is a maximum, which requires that (see

Problem 7-24)

d—P=A00328
»

a

}"4 (_E)e—Zr/ao + 4r36—Zr/a0] — O




For hydrogen Z=1 and Acos’ 6 (r’/a, )(4a0 ~r)e”"'* = 0. This is satisfied for

and r = 4ay. For r= 10, P(r) = 0 so the maximum P(r) occurs for » = 4ay.

7-33. (a) There should be four lines corresponding to the four m, values —3/2, —1/2,
+1/2, +3/2.

(b) There should be three lines corresponding to the three m, values —1, 0, +1.
423 2 =2Zrla
7-68. P(r) =—-r1e *  (See Problem 7-63)
4a,

For hydrogen, Z = 1 and at the edge of the proton » = R, =10"""m. At that point,

the

exponential factor in P(r) has decreased to:

o2l _ 6—2(10"5)/(0.529x10'1°m) _ e—(3.78x10'5) Z1-3.78x10 =1

Thus, the probability of the electron in the hydrogen ground state being inside the
nucleus,

to better than four figures, is:

2 7 R, 2 R, L
()= P[Py = U= e S
0 0 0 00

3
0 a, 3

0

i(R—g) 4(10_15’”)3 =9.0x107"

a | 3 =3(0.529x10"10m)3

7-70. (a) Substituting (r,@ )into Equation 7-9 and carrying out the indicated

operations

yields (eventually):
—;l—‘ul/) (n0)[2/7" ~1/4a; ] -f—qu (r.0)(=2/r* )+ v (r.0)= Ey (r.0)

Canceling v (r,@ )and recalling that * = 4a; (because y given is for n = 2)

we



have —75—2(—1/4(12 )+ v=F
2u 0

The circumference of the n = 2 orbit is:

C=2n(4a,)=24 —a, = A/ 4w =1/2k.

2 272
Thus, -h—(- 1 )+V=E LR Ly ik
2u
(b) or 2’; +v = F and Equation 7-9 is satisfied.
m

- 2
fwzdx =fA2 (L) e cos® Or* sinOdrdfdg =1
0 a,

<] 2 T 2w
AZI(L) ety coszesinedefdfp =1
0 aO 0 0

Integrating (see Problem 7-22),
A (6a) )(213)(27) =1

A =118a;m — A =\1/8a;m





