

The thin shell called the atmosphere Physics 12 UCSDMost of the atmosphere is below 20,000 feet in elevation - 38% is below Mauna Kea, at about 14,000 ft this is like a layer of paint on a basketball - sums up to one millionth of earth's total mass - follows exponential density, but would all fit in 8 km layer if compressed to sea-level pressure 1.4 atmospheric 1.2 ; box equivalent mass pres<mark>sure has</mark> density (kg/m³) 1.0 Mauna Kea similar shape: 0.8 14.7 psi (10⁵ N/m²) at the half of mass 0.6 ground, falling Mt. Everest; airliner 0.4 exponentially with height 0.2 30 height (km)

Constituency of the Atmosphere

Element	Symbol	percent by volume
Nitrogen	N_2	78.1
Oxygen	O_2	21.0
Argon	Ar	0.93
Carbon Dioxide	CO_2	0.036*
Neon	Ne	0.002

[•]current value: pre-industrial carbon dioxide was 0.028%

[•]Also, Water, H₂O, varies over a wide range, typically < 0.03

Notes on the Temperature Profile

- Near the ground, temperature decreases with altitude
 - typically about 3°F per 1000 feet, or 6°C per km
 - inherently unstable: cold on top of hot→mixing
- At top of troposphere, get a temperature inversion in the stratosphere
 - inherently stable: hot air on top of cold air
 - other crazy things happening at higher altitude

UCSD Physics 12

On Stability

- Hot air is less dense than cold air (at same pressure), and will therefore rise when encapsulated by cooler air
- As this parcel of air rises, it moves into air at lower pressure, meanwhile expanding and cooling
 - cools at 10°C/km if dry, 3.5°C/km if wet; 6.5°C/km is typical
 - Equal to roughly 3°F/1000 ft
 - this is called the *adiabatic lapse rate*, or ALR
- If surrounding air has steeper temperature profile than the ALR, then rising air gets hotter relative to surroundings, and rises faster → unstable air
- If surrounding air has slow profile, rising air cools faster, and will soon cease to climb → stable air

Terrain Interface Example

- Stable air suppresses mixing, interface with terrain undramatic
- Unstable air will promote runaway vertical rise, often to top of troposphere
 - keep your eyes open for tall towers of clouds over mountains

UCSD Physics 12

Towering Cumulonimbus

- Unstable air promotes the formation of towering "thunderheads"
- Top is often anvil-shaped as cloud reaches top of troposphere and gets "pushed over" by the high winds (e.g., jet stream)
- This runaway process often produces lightning/ thunder/rain/hail

Inversion Profiles

- When the temperature profile switches direction, it creates a layer of stable air that traps emissions
- Frequent condition in Los Angeles
- Also source of ground fog ("Thule fog")

UCSD Physics 12

Thermal inversions and smog

- L.A., Denver, Mexico City typically get thermal inversions; this is why they are smoggy
- London, 1952
 - Burned coal sulfur dioxide and particulates trapped within 150 ft of ground
 - After 12 hours people started coughing
 - Over next 4 days, 4000 people died (mostly older people)
- L.A. and Mexico smog is photochemical smog.

Pollutants: CO

- CO: carbon monoxide from incomplete combustion of hydrocarbons
 - blocks oxygen intake of blood; headaches
 - converts to CO₂ in tropopause with "half-life" of 0.2 yr
 - 100 ppm for 10 hours => headaches and reduced ability to think
 - 360 ppm for 10 hours => nausea and loss of consciousness
 - 600 ppm for 10 hours => death
 - 1000 ppm for 1 hour => loss of consciousness, death after 4 hours
 - Why there is SMOG checks on cars!
 - National Ambient air quality standards: < 35ppm for any hour, <
 9ppm for 8 hours; frequently exceeded in L.A., Denver,
 Cincinnati, and Detroit
 - CO is local problem; "easy" to solve: public transportation using electric vehicles, pollution controls, smog checks, electric/ Hydrogen cars, etc.
 - CO also comes from gas appliances:

UCSD Physics 12

Pollutants

- NO_x: nitrous oxides formed in combustion chamber out of atmospheric constituents
 - NO₂ is reddish brown, smelly, eye/lung irritant
 - together with sunlight begets ozone (O₃)
 - ozone is smelly, affects respiratory system, lungs
- Unburned hydrocarbons: eye irritant

More pollutants

• SO₂: Sulfur dioxide

- mainly from coal plants: 0.5% to few-% sulfur, by mass
- lung cancer and bronchitis
- melting ruins and statues of historical importance
- acid rain

Particulates

- Much more from natural causes than humans
- Gives great sunsets, offsets global warming
- Kills people: 4 deaths per year per million people per microgram/m³ (Rural average 25ug/m³, cities 100)
- Similar effects to sulfur dioxide
- Particulates offset global warming!
- Great sunsets

UCSD Physics 12

Table 9.4 U.S. Emissions, 2001

Pollutant	All Sources (10 ⁶ tons/yr)	Transportation (10 ⁶ tons/yr)	Percent
СО	120.76	99.50	82
NO_x	22.35	12.41	55
VOC ^a	17.96	7.50	42
PM2.5b	7.38	0.45	6
PM10 ^b	24.10	0.53	2
SO_2	15.97	0.70	4

^aVolatile organic compounds.

^bPM2.5 designates particulate matter smaller than 2.5 microns; PM10 designates particulate matter smaller than 10 microns.

Source: Transportation Energy Data Book, Edition 24, ORNL-6973, December 2004.

Some pollution successes

- 1963 Clean Air Act (CAA), amended in 1970, has held pollution at 1960 levels despite almost 50% population growth
- Lead has been virtually eliminated (unleaded gas)
- Los Angeles much better today than a few decades ago
- See progress, Fig. 9.13 of book, or:
 - www.epa.gov/ttn/chief/trends/trends98/execsum.pdf

Figure 9.13 A century-long record of annual air pollution emissions compared to the population of the United States. (Sources: Trends in National Emissions, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, October 1995, September 2004; U.S. Census Bureau, Statistical Abstracts of the United States, 2003. For NO_x , these three sources do not show exact agreement in the years following 1970, and some averaging is shown here.)

Pollutant	Averaging Time	Concentration
Carbon monoxide (CO) Primary Primary	1 hour ^a 8 hour ^a	35 ppm (40 mg/m ³) 9 ppm (10 mg/m ³)
Nitrogen dioxide (NO ₂), Primary and Secondary	Annual arith, mean	0.053 ppm (100 µg/m³)
Sulfur Oxides Primary Primary Secondary	Annual arith. mean 24-hour ^a 3-hour ^a	0.03 ppm (80 μg/m³) 0.14 ppm (365 μg/m³) 0.5 ppm (1300 μg/m³)
Particulates (PM10) Primary and Secondary	Annual arith. meanb	50 μg/m ³
Primary	24-hour ^a	150 μg/m ³
Particulates (PM2.5) Primary and Secondary	Annual arith. meanc	$15~\mu\mathrm{g/m^3}$
Primary	24-hour ^d	$65 \mu g/m^3$
Ozone (O ₃), Primary and Secondary	1-hour ^e 8-hour ^f	0.12 ppm (245 μg/m ³) 0.08 ppm (163 μg/m ³)
Lead, Primary and Secondary	Calendar quarter	$1.5~\mu\mathrm{g/m^3}$
aNot to be exceeded more than or bFor each monitor within an area. Three-year average from single or Three-year average of 98th perce Not applicable for most areas aft fThree-year average of fourth-high Source: U.S. Environmental Prote	r multiple monitors, entile for each monitor. er June 2004. nest daily maximum 8-hour avera	ge at each monitor.

Table 9.5	National	Average	Emission	Factors
-----------	----------	---------	----------	---------

Fuel Type	Percent of Generation ^a	CO ₂ ^a (lb/MWh _e)	NO _x ^b (lb/MWh _e)	SO ₂ ^b (lb/MWh _e)
Coal	51.0%	2100	8.8	17 ^c
Fuel oil	3.2%	2000	4.2	12
Natural gas	15.2%	1300	4.6	0
Otherd	30.6%	0	0	0

aU.S. Energy Information Administration, July 2000.
bEnergy Efficiency and Renewable Energy—Opportunities, from Title IV of the Clean Air Act, EPA 430-R-94-001, February 1994.
cEmission rate for coal is an average of the 1990 value of 22 lb/MWh_e and a projected value for 2000 of 12 lb/MWh.

of 12 lb/MWh_e.

dOther includes nuclear and hydroelectric and other renewable energy sources.

On Stability

- Hot air is less dense than cold air (at same pressure), and will therefore rise when encapsulated by cooler air
- As this parcel of air rises, it moves into air at lower pressure, meanwhile expanding and cooling
 - both happen: PV = nRT, but $P \cdot V^{5/3}$ is constant
 - V doesn't increase enough to cover decreasing P, so T also must drop
 - cools at 10°C/km if dry, 3.5°C/km if wet; 6.5°C/km is typical
 - this is called the *adiabatic lapse rate*, or ALR
- If surrounding air has steeper temperature profile than the ALR, then rising air gets hotter relative to surroundings, and rises faster → unstable air
- If surrounding air has slow profile, rising air cools faster, and will soon cease to climb → **stable air**