
PHYSICS 140A : STATISTICAL PHYSICS

MIDTERM EXAM SOLUTIONS

Consider a classical gas of indistinguishable particles in three dimensions with Hamilto-
nian

Ĥ =
N

∑

i=1

{

A |pi|
3 − µ0HSi

}

,

where A is a constant, and where Si ∈ {−1 , 0 , +1} (i.e. there are three possible spin po-
larization states).

(a) Compute the free energy Fgas(T,H, V,N).

(b) Compute the magnetization density mgas = Mgas/V as a function of temperature, pres-
sure, and magnetic field.

The gas is placed in thermal contact with a surface containing Ns adsorption sites, each
with adsorption energy −∆. The surface is metallic and shields the adsorbed particles
from the magnetic field, so the field at the surface may be approximated by H = 0.

(c) Find the Landau free energy for the surface, Ωsurf(T,Ns, µ).

(d) Find the fraction f0(T, µ) of empty adsorption sites.

(e) Find the gas pressure p∗(T,H) at which f0 = 1
2 .

Solution :

(a) The single particle partition function is

ζ(T, V,H) = V

∫

d3p

h3
e−Ap3/k

B
T

1
∑

S=−1

eµ
0
HS/k

B
T =

4πV k
B
T

3Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

.

The N -particle partition function is Zgas(T,H, V,N) = ζN/N ! , hence

Fgas = −Nk
B
T

[

ln

(

4πV k
B
T

3NAh3

)

+ 1

]

− Nk
B
T ln

(

1 + 2 cosh(µ0H/k
B
T )

)

(b) The magnetization density is

mgas(T, p,H) = −
1

V

∂F

∂H
=

pµ0

k
B
T

·
2 sinh(µ0H/k

B
T )

1 + 2 cosh(µ0H/k
B
T )

We have used the ideal gas law, pV = Nk
B
T here.

(c) There are four possible states for an adsorption site: empty, or occupied by a particle
with one of three possible spin polarizations. Thus, Ξsurf(T,Ns, µ) = ξNs , with

ξ(T, µ) = 1 + 3 e(µ+∆)/k
B

T .
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Thus,

Ωsurf(T,Ns, µ) = −NskB
T ln

(

1 + 3 e(µ+∆)/k
B

T
)

(d) The fraction of empty adsorption sites is 1/ξ, i.e.

f0(T, µ) =
1

1 + 3 e(µ+∆)/k
B

T

(e) Setting f0 = 1
2 , we obtain the equation 3 e(µ+∆)/k

B
T = 1, or

eµ/k
B

T = 1
3 e−∆/k

B
T .

We now need the fugacity z = eµ/k
B

T in terms of p, T , and H . To this end, we compute the
Landau free energy of the gas,

Ωgas = −pV = −k
B
T ζ eµ/k

B
T .

Thus,

p∗(T,H) =
k

B
T ζ

V
eµ/k

B
T =

4π(k
B
T )2

9Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

e−∆/k
B

T
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