Physics 222 UCSD/225b UCSB

Lecture 5 Mixing & CP Violation (2 of 3)

Today we walk through the formalism in more detail, and then focus on CP violation

Nomenclature

(These notational conventions are different from Jeff Richman's paper)

We refer to the decays of a "pure" flavor state:

$$\langle f | B^0 \rangle = A$$
 $\langle \bar{f} | B^0 \rangle = 0$ $\langle f_{CP} | B^0 \rangle = A$ $\langle \bar{f} | \overline{B^0} \rangle = \overline{A}$ $\langle f | \overline{B^0} \rangle = \overline{A}$

 The time evolution of a state that was a "pure" flavor state at t=0:

$$\begin{split} \left\langle f\middle|H\middle|B^{0}\right\rangle &=\left\langle f\middle|B^{0}(t)\right\rangle \quad \left\langle \bar{f}\middle|H\middle|B^{0}\right\rangle =\left\langle \bar{f}\middle|B^{0}(t)\right\rangle \quad \left\langle f_{CP}\middle|H\middle|B^{0}\right\rangle =\left\langle f_{CP}\middle|B^{0}(t)\right\rangle \\ \left\langle \bar{f}\middle|H\middle|\overline{B^{0}}\right\rangle &=\left\langle \bar{f}\middle|\overline{B^{0}(t)}\right\rangle \quad \left\langle f\middle|H\middle|\overline{B^{0}}\right\rangle =\left\langle f\middle|\overline{B^{0}(t)}\right\rangle \quad \left\langle f_{CP}\middle|H\middle|\overline{B^{0}}\right\rangle =\left\langle f_{CP}\middle|\overline{B^{0}(t)}\right\rangle \\ \text{Unmixed} \qquad \text{Mixed} \qquad \text{Can't tell because f} \end{split}$$

is not flavor specific

Remember from last week

We have: mass eigenstates = B_H and B_L flavor eigenstates = B^0 and B^0 CP eigenstates = B_+ and B_L

Let's first set $|\Gamma_{12}/M_{12}| = 0$:

Define
$$q, p$$
 via:
$$B_{H} = p |B^{0}\rangle + q |\overline{B^{0}}\rangle$$

$$B_{L} = p |B^{0}\rangle - q |\overline{B^{0}}\rangle$$

$$\Rightarrow \frac{q}{p} = +\frac{M_{12}^{*}}{|M_{12}|}$$

Define CP eigenstates:

Where we have used that B⁰ is a pseudoscalar meson.

Mixing

Probability for meson to keep its flavor:

$$\begin{aligned} |\langle f|H|B^{0}\rangle|^{2} &= |\langle f|B^{0}(t)\rangle|^{2} \\ &= \frac{1}{4|p|^{2}}|\langle f|B_{L}(t)\rangle + \langle f|B_{H}(t)\rangle|^{2} \\ &= \frac{1}{4|p|^{2}}|pAe^{(-im_{L}-\Gamma_{L}/2)t} + pAe^{(-im_{H}-\Gamma_{H}/2)t}|^{2} \\ &= \frac{1}{4}|A|^{2}(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} + 2e^{-(\Gamma_{H}+\Gamma_{L})t/2}\cos\Delta mt) \end{aligned}$$

Probability for meson to switch flavor:

$$\begin{split} |\langle \bar{f}|H|B^{0}\rangle|^{2} &= |\langle \bar{f}|B^{0}(t)\rangle|^{2} \\ &= \frac{1}{4|p|^{2}}|\langle \bar{f}|B_{L}(t)\rangle + \langle \bar{f}|B_{H}(t)\rangle|^{2} \\ &= \frac{1}{4|p|^{2}}|q\bar{A}e^{(-im_{L}-\Gamma_{L}/2)t} - q\bar{A}e^{(-im_{H}-\Gamma_{H}/2)t}|^{2} \\ &= \frac{1}{4}|\frac{q}{p}|^{2}|\bar{A}|^{2}(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{H}+\Gamma_{L})t/2}\cos\Delta mt) \end{split}$$

Anatomie of these Equations (1)

Unmixed:

$$|\langle f|H|B^{0}\rangle|^{2} = \frac{1}{4}|A|^{2}(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} + 2e^{-(\Gamma_{H}+\Gamma_{L})t/2}\cos\Delta mt)$$

Mixed:

$$|\langle \bar{f}|H|B^0\rangle|^2_{=\frac{1}{4}}|\frac{q}{p}|^2|\bar{A}|^2(e^{-\Gamma_L t} + e^{-\Gamma_H t} - 2e^{-(\Gamma_H + \Gamma_L)t/2}\cos\Delta mt)$$

|q/p| = 1 unless there is CP violation in mixing itself.

 $|A| = |\overline{A}|$ unless there is CP violation in the decay.

We will discuss both of these in more detail later!

Anatomie of these Equations (2)

Unmixed:

$$|\langle f|H|B^0\rangle|^2 = \frac{1}{4}|A|^2(e^{-\Gamma_L t} + e^{-\Gamma_H t} + 2e^{-(\Gamma_H + \Gamma_L)t/2}\cos\Delta mt)$$

Mixed:

$$|\langle \bar{f}|H|B^0\rangle|_{=\frac{1}{4}}^2 |\frac{q}{p}|^2 |\bar{A}|^2 (e^{-\Gamma_L t} + e^{-\Gamma_H t} - 2e^{-(\Gamma_H + \Gamma_L)t/2} \cos \Delta mt)$$

cos∆mt enters with different sign for mixed and unmixed!

$$\frac{\text{Unmixed - Mixed}}{\text{Unmixed + Mixed}} = \frac{2e^{-(\Gamma_H + \Gamma_L)t/2}}{e^{-\Gamma_L t} + e^{-\Gamma_H t}} \cos \Delta mt$$

Assuming no CP violation in mixing or decay.

Will explain when this is a reasonable assumption later.

Anatomie of these Equations (3)

Unmixed:

$$|\langle f|H|B^0\rangle|^2 = \frac{1}{4}|A|^2(e^{-\Gamma_L t} + e^{-\Gamma_H t} + 2e^{-(\Gamma_H + \Gamma_L)t/2}\cos\Delta mt)$$

Mixed:

$$|\langle \bar{f} | H | B^0 \rangle|_{=\frac{1}{4}}^2 |_p^q|^2 |\bar{A}|^2 (e^{-\Gamma_L t} + e^{-\Gamma_H t} - 2e^{-(\Gamma_H + \Gamma_L)t/2} \cos \Delta m t)$$

cos∆mt enters with different sign for mixed and unmixed!

Unmixed - Mixed
$$\approx \cos \Delta mt$$
Unmixed + Mixed

Assuming no CP violation in mixing or decay, and

$$\frac{\Delta\Gamma}{\Gamma} << 1$$

Anatomie of these Equations (4)

Unmixed:

$$|\langle f|H|B^0\rangle|^2 = \frac{1}{4}|A|^2(e^{-\Gamma_L t} + e^{-\Gamma_H t} + 2e^{-(\Gamma_H + \Gamma_L)t/2}\cos\Delta mt)$$

Mixed:

$$|\langle \bar{f}|H|B^0\rangle|_{=\frac{1}{4}}^2|_p^q|^2|\bar{A}|^2(e^{-\Gamma_L t}+e^{-\Gamma_H t}-2e^{-(\Gamma_H+\Gamma_L)t/2}\cos\Delta mt)$$

Now assume that you did not tag the flavor at production, and there is no CP violation in mixing or decay, i.e. |q/p|=1 and $|A|=|\overline{A}|$

$$|\langle f|H|B^{0}\rangle|^{2} + |\langle \bar{f}|H|B^{0}\rangle|^{2} = \frac{1}{2}|A|^{2}(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t})$$

All you see is the sum of two exponentials for the two lifetimes.

Summary so far

- We discussed the basic formalism for matter <-> antimatter oscillations.
- We showed how this is intricately related to:
 - Mass difference of the mass eigenstates
 - Lifetime difference of the mass eigenstates
 - CP violation in the decay amplitude
 - CP violation in the mixing amplitude
- We discussed how the formalism simplifies in the B-meson system due to natures choice of M_{12} and Γ_{12} .
- We showed how one can measure cos∆mt.

CKM Convention

(same as Richman's paper)

- Down type quark -> up type quark = V_{ud}
- Anti-down -> anti-up = V_{ud}*
- Up type quark -> down type quark = V_{ud}*
- Anti-up -> anti-down = V_{ud}
- This means for mixing:

Another look at Unitarity of CKM

 $UU^{\dagger} = U^{\dagger}U = 1$ \Longrightarrow 9 constraints.

$$V_{1j}V_{1k}^* + V_{2j}V_{2k}^* + V_{3j}V_{3k}^* = 0$$

$$(j,k) = (1,2), (1,3), (2,3)$$

$$V_{j1}V_{k1}^* + V_{j2}V_{k2}^* + V_{j3}V_{k3}^* = 0$$

$$(j,k) = (1,2), (1,3), (2,3)$$

$$V_{j1}V_{j1}^* + V_{j2}V_{j2}^* + V_{j3}V_{j3}^* = 1$$

$$j = 1, 2, 3$$

Top 6 constraints are triangles in complex plane.

Careful Look at CKM Triangles

Meson	columns to multiply		size of sides
B_d	$\overrightarrow{d}\overrightarrow{b^*}$	=	$O(\lambda^3) + O(\lambda^3) + O(\lambda^3)$
B_s	$\overrightarrow{s}\overrightarrow{b}^*$	=	$O(\lambda^4) + O(\lambda^2) + O(\lambda^2)$
K^0	$\overrightarrow{d}\overrightarrow{s^*}$	=	$O(\lambda) + O(\lambda) + O(\lambda^5)$
Meson	rows to multiply		size of sides
	$\overrightarrow{u}\overrightarrow{t^*}$	=	$O(\lambda^3) + O(\lambda^3) + O(\lambda^3)$
	$\overrightarrow{c}\overrightarrow{t^*}$	=	$O(\lambda^4) + O(\lambda^2) + O(\lambda^2)$
	C 0		O(N) + O(N) + O(N)

Top quark too heavy to produce bound states.

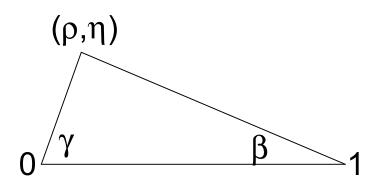
Most favorable aspect ratio is found in Bd triangle.

Standard CKM Conventions

(same as Richman's paper)

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$
$$(1 - \frac{1}{2}\lambda^2)(\rho + i\eta) + (1 - \rho - i\eta) = 1$$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$



$$V_{ub}^* = |V_{ub}| \times e^{i\gamma} ; V_{td}^* = |V_{td}| \times e^{i\beta}$$

Another Useful CKM

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & |V_{ub}| \times e^{-i\gamma} \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & |V_{cb}| \\ \lambda |V_{cb}| - |V_{ub}| \times e^{+i\gamma} & -|V_{cb}| & 1 \end{pmatrix}$$

As we will see on Tuesday, this is a useful way of writing the CKM matrix because it involves only parameters that can be measured via tree-level processes.

To the extend that new physics may show up primarily in loops, this way of looking at CKM is thus "new physics free".

Reminder of CP Asymmetry Basics

- To have a CP asymmetry you need three incredients:
 - Two paths to reach the same fnal state.
 - The two paths differ in CP violating phase.
 - The two paths differ in CP conserving phase.
- Simplest Example: $A + Be^{i\delta}e^{i\phi} \xrightarrow{CP} A + Be^{i\delta}e^{-i\phi}$

$$\frac{\left|A + Be^{i\delta}e^{i\phi}\right|^{2} - \left|A + Be^{i\delta}e^{-i\phi}\right|^{2}}{\left|A + Be^{i\delta}e^{i\phi}\right|^{2} + \left|A + Be^{i\delta}e^{-i\phi}\right|^{2}} = \frac{2AB\sin\delta\sin\phi}{A^{2} + B^{2} + 2AB\cos\delta\cos\phi}$$

Three Types of CP Violation

Direct = CP violation in the decay:

$$\frac{\left|\left\langle f\left|B^{0}\right\rangle\right|^{2}-\left|\left\langle \bar{f}\left|\overline{B^{0}}\right\rangle\right|^{2}}{\left|\left\langle f\left|B^{0}\right\rangle\right|^{2}+\left|\left\langle \bar{f}\left|\overline{B^{0}}\right\rangle\right|^{2}}=\frac{\left|A\right|^{2}-\left|\overline{A}\right|^{2}}{\left|A\right|^{2}+\left|\overline{A}\right|^{2}}\neq0\leftrightarrow\left|\frac{\overline{A}}{A}\right|\neq1$$

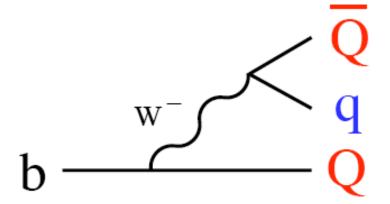
• CP violation in mixing: $\left|\frac{q}{p}\right| \neq 1$

 CP violation in interference of mixing and decay.

$$\frac{|\langle f_{cp}|H|\overline{B^0}\rangle|^2 - |\langle f_{cp}|H|B^0\rangle|^2}{|\langle f_{cp}|H|\overline{B^0}\rangle|^2 + |\langle f_{cp}|H|B^0\rangle|^2} \sim \operatorname{Im}\left(\frac{q}{p}\frac{\overline{A}}{A}\right) \neq 0$$

Example Direct CP Violation

"Tree" Diagram



"Penguin" Diagram

Both can lead to the same final state,

And have different weak & strong phases.

$$T=|T| \stackrel{e^{i}(\delta-\gamma)}{=} \qquad \overline{T}=|T| \stackrel{e^{-i}(\delta+\gamma)}{=} \qquad B^{\circ} \qquad \overline{P}=|P|$$

 $\delta =$ strong phase shift

 γ = difference in weak phase

CP
$$\gamma = -\gamma$$
 CP $\delta = +\delta$

Breaking CP is easy

- ⇒Add complex coupling to Lagrangian.
- ⇒Allow 2 or more channels
- ⇒Add CP symm. Phase, e.g. via dynamics.

T,P are real numbers.

$$A_{cp} = \frac{\mathcal{B}(B^{0} \to K^{+}\pi^{-}) - \mathcal{B}(\bar{B^{0}} \to K^{-}\pi^{+})}{\mathcal{B}(B^{0} \to K^{+}\pi^{-}) + \mathcal{B}(\bar{B^{0}} \to K^{-}\pi^{+})} = \frac{\left| P + Te^{-i(\delta - \gamma)} \right| - \left| P + Te^{-i(\delta + \gamma)} \right|}{\left| P + Te^{-i(\delta - \gamma)} \right| + \left| P + Te^{-i(\delta + \gamma)} \right|}$$

$$= \frac{-2|TP| \sin \gamma \sin \delta}{|T|^2 + |P|^2 + 2|TP| \cos \gamma \cos \delta}$$

The rest is simple algebra.

CP Violation in Mixing

 Pick decay for which there is only one diagram, e.g. semileptonic decay.

$$\frac{\Gamma(\overline{B^0}(t){\to}l^+\nu X){-}\Gamma(B^0(t){\to}l^-\overline{\nu}X)}{\Gamma(\overline{B^0}(t){\to}l^+\nu X){+}\Gamma(B^0(t){\to}l^-\overline{\nu}X)}=$$

$$= \frac{1 - |q/p|^4}{1 + |q/p|^4} = Im \frac{\Gamma_{12}}{M_{12}}$$

Verifying the algebra, incl. the sign, is part of HW.

CP Asymmetry in mixing

$$\frac{\left|\left\langle \bar{f}|H|B^{0}\right\rangle \right|^{2}-\left|\left\langle f|H|\overline{B^{0}}\right\rangle \right|^{2}}{\left|\left\langle \bar{f}|H|B^{0}\right\rangle \right|^{2}+\left|\left\langle f|H|\overline{B^{0}}\right\rangle \right|^{2}} \sim Im \frac{\Gamma_{12}}{M_{12}}$$

Measuring cos∆mt in mixing

$$\frac{\left(\left|\langle f|H|B^{0}\rangle\right|^{2}+\left|\langle \bar{f}|H|\overline{B^{0}}\rangle\right|^{2}\right)-\left(\left|\langle \bar{f}|H|B^{0}\rangle\right|^{2}+\left|\langle f|H|\overline{B^{0}}\rangle\right|^{2}\right)}{\left(\left|\langle f|H|B^{0}\rangle\right|^{2}+\left|\langle \bar{f}|H|\overline{B^{0}}\rangle\right|^{2}\right)+\left(\left|\langle \bar{f}|H|B^{0}\rangle\right|^{2}+\left|\langle f|H|\overline{B^{0}}\rangle\right|^{2}\right)} \propto \cos \Delta mt$$

Summary Thus Far

(It's common for different people to use different definitions of $\Delta\Gamma$, and thus different sign!)

$$\Delta m = 2|M_{12}|$$

$$\Delta \Gamma = -2|\Gamma_{12}| \times \cos\left(Arg\left(\Gamma_{12}^*M_{12}\right)\right)$$

$$\frac{\left|\left\langle \bar{f}|H|B^0\right\rangle\right|^2 - \left|\left\langle f|H|\overline{B^0}\right\rangle\right|^2}{\left|\left\langle \bar{f}|H|B^0\right\rangle\right|^2 + \left|\left\langle f|H|\overline{B^0}\right\rangle\right|^2} \propto \left|\frac{\Gamma_{12}}{M_{12}}\right| \times \sin\left(Arg\left(\Gamma_{12}^*M_{12}\right)\right)$$

It's your homework assignment to sort out algebra and sign.

I was deliberately careless here!

Make sure you are completely clear how you define $\Delta\Gamma$!!!

Aside on rephasing Invariance

- Recall that we are allowed to multiply quark fields with arbitrary phases.
- This is referred to as "rephasing", and directly affects the CKM matrix convention as follows:

$$\frac{\overline{(u, c, t)}_L \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L = \overline{(u, c, t)}_L \begin{pmatrix} V_{ud} e^{-i\phi} & V_{us} & V_{ub} \\ V_{cd} e^{-i\phi} & V_{cs} & V_{cb} \\ V_{td} e^{-i\phi} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d e^{i\phi} \\ s \\ b \end{pmatrix}_L$$

All physical observables must depend on combinations of CKM matrix elements where a quark subscript shows up as part of a V and a V^{*} .

Examples:

Decay rate if the process is dominated by one diagram:

•
$$|A|^2 \propto V_{cb} V_{ud}^* V_{cb}^* V_{ud}$$

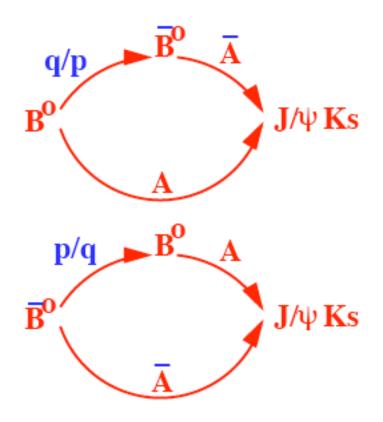
• Mixing:
$$\frac{M_{12}^*}{|M_{12}|} = \frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*} \cdot \frac{\Gamma_{12}^*}{|\Gamma_{12}|} = \frac{V_{cb}^* V_{cs}}{V_{cb} V_{cs}^*}$$

Neither of M_{12} nor Γ_{12} is rephasing invariant by themselves. However, the product $M_{12}\Gamma_{12}^*$ is rephasing invariant.

$$V_{tb} V_{ts}^* V_{cb}^* V_{cs} = rephasing invariant$$

- In principle, these three measurements allow extraction of all the relevant parameters.
- In practice, Γ_{12} for both B_d and B_s is too small to be easily measurable.
- Extraction of the phase involved is thus not easily possible.
- Thankfully, there's another way of determining "the phase of mixing".

Interference of Mixing and Decay



J/psi Ks is a CP eigenstate.

Flavor tag B at production.

Measure rate as a function of proper time between production and decay.

This allows measurement of the relative phase of A and q/p.

$$A_{cp}(t) = \frac{|\langle f_{cp}|H|\overline{B^0}\rangle|^2 - |\langle f_{cp}|H|B^0\rangle|^2}{|\langle f_{cp}|H|\overline{B^0}\rangle|^2 + |\langle f_{cp}|H|B^0\rangle|^2}$$

Simplifying Assumptions and their Justification

- There is no direct CP violation
 - b->c cbar s tree diagram dominates
 - Even if there was a penguin contribution, it would have (close to) the same phase: $Arg(V_{tb}V_{ts}^*) \sim Arg(V_{cb}V_{cs}^*)$
- Lifetime difference in Bd system is vanishingly small -> effects due to Γ_{12} can be ignored.
- Top dominates the box diagram.
 - See HW.

$$A_{cp}(t) = \frac{|\langle f_{cp}|H|\overline{B^0}\rangle|^2 - |\langle f_{cp}|H|B^0\rangle|^2}{|\langle f_{cp}|H|\overline{B^0}\rangle|^2 + |\langle f_{cp}|H|B^0\rangle|^2}$$

$$= \eta_{cp} Im(\frac{q}{p}\overline{A}) \cdot sin\Delta mt$$

Let's look at this in some detail!

$$J^{PC}(J/\psi) = 1^{--} \Rightarrow CP \text{ even}$$

 $J^{PC}(K_s) = 0^{--} \Rightarrow CP \text{ even}$

J/psi Ks must be P-wave => overall CP of the final state = -1

$$\begin{array}{lcl} A_{cp}(t) & = & -Im(\frac{M_{12}^*}{|M_{12}|}\frac{\overline{A}}{A}) \cdot \sin \Delta mt \\ & = & -Im(\frac{V_{tb}^*V_{td}}{V_{tb}V_{td}^*} \cdot \frac{V_{cb}V_{cs}^*}{V_{cb}^*V_{cs}} \cdot \frac{V_{cs}V_{cd}^*}{V_{cs}^*V_{cd}}) \sin \Delta mt \\ & = & -Im(\frac{V_{tb}^*V_{td}}{V_{tb}V_{td}^*} \cdot \frac{V_{cb}V_{cd}^*}{V_{cb}^*V_{cd}}) \sin \Delta mt \end{array}$$

Some comments are in order here:

The extra CKM matrix elements enter because of Kaon mixing. We produce s dbar or sbar d and observe K_s .

They are crucial to guarantee rephasing invariant observable: $V_{tb}^* V_{td} V_{cb} V_{cd}^*$

Connection To Triangle

$$\begin{array}{rcl} V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* & = & 0 \\ \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} & = & 0 \end{array}$$

$$Arg(\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*}) = Arg(\frac{V_{td}}{-\lambda|V_{cb}|})$$

$$= \pi - Arg(V_{td}^*)$$

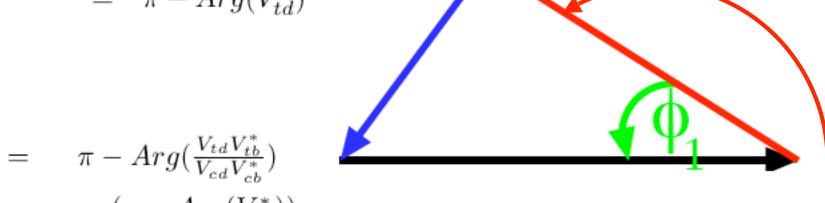
$$\frac{V_{td}}{-\lambda |V_{cb}|} = e^{i(\pi - Arg(V_{td}^*))} \times \frac{V_{td}}{\lambda V_{cb}}$$

Connection To Triangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0$$

$$Arg(\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*}) = Arg(\frac{V_{td}}{-\lambda|V_{cb}|})$$
$$= \pi - Arg(V_{td}^*)$$



$$\phi_1 = \pi - Arg(\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*})$$

$$= \pi - (\pi - Arg(V_{td}^*))$$

$$= Arg(V_{td}^*)$$

$$= \beta$$

Putting the pieces together

$$\begin{split} A_{CP}(t) &= \eta_{CP} \operatorname{Im}(\frac{q}{p} \frac{\overline{A}}{A}) \sin \Delta mt \\ &= -\operatorname{Im}\left(\frac{V_{td}V_{tb}^*}{V_{td}^*V_{tb}} \frac{V_{cb}V_{cd}^*}{V_{cb}^*V_{cd}}\right) \sin \Delta mt \\ &= -\sin(2Arg(V_{td})) \sin \Delta mt \\ A_{CP}(t) &= \sin 2\beta \sin \Delta mt \quad \textit{For B->J/psi Ks} \end{split}$$

Note: I do not use the same sign conventions as Jeff Richman !!! Accordingly, I get the opposite sign for A_{CP} .

In HW, you are asked to do this yourself. Make sure you state clearly how you define A_{CP} !!!