Physics 222 UCSD/225b UCSB

Lecture 4

- Weak Interactions (continued)
 - Neutrino scattering
 - Unitarity bound
 - GIM mechanism

Neutrino Electron Scattering

NC is different, e.g. it couples muon neutrinos to electrons, i.e. across flavor.

Historical aside

 If you want to look up the discovery of neutral currents, you might want to start here:

http://cerncourier.com/cws/article/cern/29168

The basic challenge was to distinguish:

$$\nu_{\mu}N \rightarrow \nu_{\mu}X$$

$$\nu_{\mu}N \rightarrow \mu^{-}X$$

Where N = nuclean, and X = hadron.

For neutral current, there is no charged lepton in the final state.

Neutrino vs Antineutrino CC Scattering with Electron

For antineutrino scattering, the spin of the two incoming particles must couple via V-A because they attach at same vertex.

As a result, only one of the three possible spin combinations is

allowed, and we get:

$$\sigma(v_e e^-) = 3\sigma(\overline{v}_e e^-)$$

Neutrino Electron Scattering

Matrix Element for CC neutrino-electron:

$$M = \frac{G}{\sqrt{2}} \left[\overline{u}(k') \gamma^{\mu} \left(1 - \gamma^5 \right) u(p) \right] \left[\overline{u}(p') \gamma_{\mu} \left(1 - \gamma^5 \right) u(k) \right]$$

Cross Section:

$$\sigma(v_e e^-) = \frac{G^2 s}{\pi}$$

What does it mean for a cross section to increase with center of mass energy?

It's a sign of a "low energy effective theory"!

Overview of "Unitarity bound" Discussion

- Use partial wave analysis to derive the largest possible cross section, σ(s), that is compatible with probability conservation.
- Compare this with the calculated cross section.
- Calculate the center of mass energy scale, beyond which the 4-fermion interaction clearly makes no sense because it violates probability conservation.
- Show how the introduction of the W propagator helps to resolve this problem.
- Comment that even with W, issues remain that are related to the longitudinal W polarization.
- Hint that this is fixed only by requiring Gauge Symmetry.

Partial waves

(to review this, see e.g. Sakurai QM Chapter 7.6)

$$\Psi_{i} = e^{ikz} = \frac{i}{2kr} \sum_{l=0}^{\infty} (2l+1) [(-1)^{l} e^{-ikr} - e^{ikr}] P_{l}(\cos\theta)$$

$$\Psi_{total} = \Psi_{scattered} + \Psi_i = \frac{i}{2kr} \sum_{l=0}^{\infty} (2l+1) \left[(-1)^l e^{-ikr} - \eta_l e^{2i\delta_l} e^{ikr} \right] P_l(\cos\theta)$$

Absorption coefficient =1
If no energy is absorbed.

Allow for arbitrary phase shift.

Regroup to get scattered wave:

$$\Psi_{scattered} = \Psi_{total} - \Psi_i = \frac{e^{ikr}}{kr} \sum_{l=0}^{\infty} (2l+1) \frac{\eta_l e^{2i\delta_l} - 1}{2i} P_l(\cos\theta)$$

$$\Psi_{scattered} = \frac{e^{ikr}}{r} F(\theta)$$

Relate to Cross Section

• Scattered outgoing Flux $d\Omega = v_{out} \Psi_{scat} \Psi_{scat}^* r^2 d\Omega$

$$F_{out} = v_{out} |F(\theta)|^2 d\Omega$$

$$F_{in} = \Psi_{in} \Psi_{in}^* V_{in} = V_{in}$$

• Cross section:
$$d\sigma = \frac{F_{out}}{F_{in}} = |F(\theta)|^2 d\Omega$$

$$\sigma = \int \left| F(\theta) \right|^2 d\Omega$$

$$\sigma = \frac{1}{k^2} \sum_{l,m} (2l+1) \left[\frac{\eta_l e^{2i\delta_l} - 1}{2i} \right] (2m+1) \left[\frac{\eta_m e^{2i\delta_m} - 1}{2i} \right]^*$$

$$\times \int P_l(\cos\theta) P_m(\cos\theta) d\Omega$$

$$\sigma = \frac{4\pi}{k^2} \sum_{l} (2l+1) \left[\frac{\eta_l e^{2i\delta_l} - 1}{2i} \right]^2 = \frac{4\pi}{k^2} \sum_{l} (2l+1) \sin^2 \delta_l$$

Conclusion from Partial wave excursion

For our neutrino scattering we had:

$$\frac{d\sigma(v_e e^-)}{d\Omega} = \frac{G^2 s}{4\pi^2}$$

• The angle independence means that only swave (I=0) contributes, and we thus have the general bound: $\sigma \leq \frac{4\pi}{l^2}$

=> Probability conservation is violated at:

$$\sqrt{s} = k \approx 300 GeV$$

Including the W propagator

- The 4-point Fermi theory thus violates s-matrix unitarity at O(100GeV) energy.
- If we include W propagator the point where smatrix unitarity is violated is pushed out to $O(10^{11})\ M_W$.

However, a number of other problems remain!

Example WW production

 If you calculate WW production in neutrino scattering, you find:

$$\sigma(vv \to W_L^+ W_L^-) \xrightarrow{k^2 \to \infty} \left[\frac{g}{M_w} \right]^4 s$$

- While production of transversely polarized W's remains constant.
- Clearly, here's something problematic about longitudinally polarized massive vector bosons.

Resolving this in QED

- As an aside, the same problem does not arise for virtual photons in QED because of gauge invariance.
 - For more detailed discussion see Leader & Predazzi, Chapter 2.1

Aside on Gauge Invariance

- If we were to try and figure out a way to impose gauge invariance to weak interactions, we'd be tempted to postulate that g ~ e.
- It turns out that this works out quantitatively surprisingly well:

$$M_W = \left(\frac{\sqrt{2}g^2}{G}\right)^{\frac{1}{2}} \approx \left(\frac{\sqrt{2}e^2}{G}\right)^{\frac{1}{2}} \approx 106GeV$$

We'll see later how to work this out correctly.

Conclusions

- Fermi Theory breaks down at high energies
 - This is a general feature of theories with dimensionful couplings.
- Including W by hand improves high energy behaviour, but does still leave problems, e.g. with vv
 -> WW for longitudinally polarized Ws.
- Problem with W seems to be related to longitudinal polarization.
- Might be fixed if we could construct a gauge theory of weak interactions.
- We find the EM & Weak almost unify in the most naïve way by setting e = g, and calculating the W mass correctly to within 10%.

Sounds like we are on to something!

GIM Mechanism

Problem:

$$\Gamma(K^{+} \to \mu^{+} \nu) = 5.1 \times 10^{7} \text{ sec}$$

$$\Gamma(K^{0} \to \mu^{+} \mu^{-}) = 1.4 \times 10^{-3} \text{ sec}$$

First obvious conclusion:

This diagram doesn't work -> Z couples to same flavor.

GIM Mechanism (2)

2nd order diagram is not sufficiently small

$$\frac{1}{s}$$
 $\frac{W}{u}$ $\frac{v}{v}$ e^+

 Glashow-Illiapolous-Maiani suggested that a c-quark exists, providing another 2nd order diagram to destructively interfere with first.

$$\frac{1}{s}$$
 $\frac{W}{d}$ $\frac{v}{e^+}$

GIM Mechanism (3)

How do we arrange the destructive interference?

Old current:

$$J^{\mu} = \cos\theta \ \overline{u} \gamma^{\mu} (1 - \gamma^5) d + \sin\theta \ \overline{u} \gamma^{\mu} (1 - \gamma^5) s$$

New current:

$$J^{\mu} = \cos\theta \ \overline{u}\gamma^{\mu}(1-\gamma^{5})d + \sin\theta \ \overline{u}\gamma^{\mu}(1-\gamma^{5})s$$
$$+\cos\theta \ \overline{c}\gamma^{\mu}(1-\gamma^{5})d - \sin\theta \ \overline{c}\gamma^{\mu}(1-\gamma^{5})s$$

GIM Mechanism (4)

 To make this less ad-hoc, propose weak doublets, and a current that is diagonal, with a unitary mixing matrix between doublets to translate from weak to mass eigenstates:

$$J_{\mu}^{+} = (\bar{\nu}_{eL}\bar{\nu}_{\mu L}\bar{\nu}_{\tau L})\gamma_{\mu} \begin{pmatrix} e_{L}^{-} \\ \mu_{L}^{-} \\ \tau_{L}^{-} \end{pmatrix} + (\bar{u}_{L}\bar{c}_{L}\bar{t}_{L})\gamma_{\mu}\mathbf{V_{CKM}} \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix}$$

Concise statement of GIM

$$\sum_{i=1,2,3} \overline{d}'_{i} d'_{i} = \sum_{i,j,k=1,2,3} \overline{d}_{i} U_{ij}^{T*} U_{jk} d_{k} = \sum_{i=1,2,3} \overline{d}_{i} d_{i}$$

- The neutral current couples to the q' (weak eigenstates) not the q (mass eigenstates).
- The matrix U is unitary because the weak coupling is universal, i.e. same for all weak eigenstates.
- As a result, only flavor conserving neutral currents are allowed.

Historic Aside

- From this we then find that the K0 to mu+mu- decay is absolutely forbidden if c and s masses are identical.
- In the literature, you sometimes find claims like: "From the observed rate, one could predict the charm quark mass to be 1-3GeV before its discovery."
- Not sure this is true, and if true, then they were plain lucky because depending on V_{cs} V_{cd} and m_c versus V_{ts} V_{td} and m_{top} , they could have been way off!

Outlook on next few lectures

- Next 3 lectures are on heavy flavor physics and CP violation.
 - Mixing phenomenology
 - 2-state formalism in its entirety, maybe as a homework.
 - CP violation in B-system
 - Categorize CP phenomenology
 - CP violation in decay, mixing, and interference between decay and mixing.
 - Experimental aspects of this subject
 - Measuring sin2beta @ Y4S
 - Measuring Bs mixing @ Tevatron
 - The future of this field: LHC-B and SuperBelle

After that we have choices:

- We can do the topics in two orders. Either way we will cover both:
 - Move on to SUSY for 2-3 lectures, and finish quarter off with EWK symmetry, higgs, et al.
 - Continue with EWK symmetry, higgs, et al., and do SUSY last.
- I don't have much of a preference myself.
 - It makes more sense to do Standard Model first.
 - However, to start preparing for your seminar talk, it might be useful for me to talk about SUSY first to orient you.