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Lecture 11 

Spontaneous Symmetry Breaking 



Discussion of what we’ve done. 
•  We studied a simple scalar field with a potential that 

has mirror symmetry. 
•  We found that this mirror symmetry can be broken by 

the ground state if we choose the traditional mass 
term in the Lagrangian ( µ2 ϕ2) to have a non-
traditional sign ( -|µ|2 ϕ2) . 

•  To be able to do perturbation theory around the 
ground state, we introduce a new field, η, that is zero 
in the ground state. 

•  We find that the field η acquires a traditional mass 
term with the correct sign, and the new Lagragian is 
no longer exhibiting mirror symmetry in +-η. 



Reminder of Lagrangians 
•  Original Lagrangian: 

– We made the minus sign of µ explicit here. 
•  Lagrangian around ground state: 

€ 

L =
1
2
∂µη( )

2
− λν 2η2 − λνη3 −

1
4
λη4 + const

€ 

L =
1
2
∂µφ( )

2
+
1
2

µ
2
φ 2 −

1
4
λφ 4 +O(φ 6)



Repeat the Procedure for U(1) 
global phase symmetry. 

€ 

L = ∂µφ( )
*
∂µφ( ) −µ2φ*φ − λ(φ*φ)2

Complex scalar field for the global phase symmetry: 

€ 

φ =
φ1 + iφ2

2

€ 

L =
1
2
∂µφ1( )

2
+
1
2
∂µφ2( )

2
−
1
2

µ2(φ1
2 + φ2

2) − 1
4
λ(φ1

2 + φ2
2)2

The ground state now describes a circle in the φ1 - φ2 plane. 

€ 

φ1
2 + φ2

2 = v 2 =
−µ2

λ

Next we will again translate the  
field to its minimum energy, and 
rewrite the Lagrangian accordingly. 



Aside on minimum 
•  In this 2d case, the minimum is a circle in the 

complex plane of the fields η and ξ. 
•  We need to pick a concrete point around which to 

write down L in terms of the new fields η and ξ. 
–  For convenience, we pick the point (η , ξ ) = (η , 0) 

•  We expect the circular symmetry to still be present! 
V 3D 2D projection 

η 

ξ 
ξ 

η 



Lagrangian around minimum 

€ 

φ(x) =
1
2
v +η(x) + iξ(x)[ ]

€ 

L =
1
2
∂µξ( )

2
+
1
2
∂µη( )

2
+ µ2η2 +O(ξ 3) +O(η3) + const

Note the presence of an η mass term and the absence one for ξ . 

The origin of this “Goldstone boson” is clearly the flatness  
of the potential in the ξ direction, or generally tangential  
to the circle that defines the minimum. 
I.e. 



Local U(1) Phase Symmetry 
-- The Higgs Mechanism -- 

€ 

L = ∂µ + ieAµ( )φ* ∂µ − ieAµ( )φ −µ2φ*φ − λ(φ*φ)2 − 1
4
FµνF

µν

€ 

φ(x) =
1
2
v +η(x) + iξ(x)[ ]Now do the same as before: 

€ 

L =
1
2
∂µξ( )

2
+
1
2
∂µη( )

2
− λv 2η2 +

1
2
e2v 2AµA

µ − evAµ∂
µξ −

1
4
FµνF

µν + ...

And you get: 

Doing it this way would be a bit tedious. 
Let’s be a little smarter than this. 



Local U(1) Phase Symmetry 
-- The Higgs Mechanism -- 

€ 

L = ∂µ + ieAµ( )φ* ∂µ − ieAµ( )φ −µ2φ*φ − λ(φ*φ)2 − 1
4
FµνF

µν

€ 

φ(x) =
1
2
v + h(x)[ ]eiθ (x ) / v

Now don’t do the same as before, but rather be a little  
bit more clever: 

             are real and positive. 

This is more clever because we know already that the  
Lagrangian with A added obeys local Gauge symmetry, if A is 
transformed accordingly: 

€ 

Aµ → Aµ +
1
ev
∂µθ

We thus know that L is independent of θ !!! 

€ 

v,h(x)



What terms do we expect? 

€ 

−µ2φ*φ →−
1
2

µ2(v + h)2

−λ(φ*φ)2 →−λ
1
4
(v + h)4

 

 
 

 
 
→−λv 2h2 − λvh3 − 1

4
λh4

Higgs self-coupling: 
mass 

Triple & quartic higgs coupling 

€ 

∂µφ*∂µφ →
1
2
∂µh∂µh =

1
2
(∂µh)

2

Kinetic Energy: 

Note: We dropped the 
Gauge terms. 



What terms do we expect? 

€ 

e2AµAµφ
*φ →

1
2
e2AµAµ (v + h)2 → 1

2
e2 v 2AµAµ + h2AµAµ[ ] + e2vhAµAµ

€ 

−ieφAµ∂
µφ* + ieφAµ∂µφ → Aµ∂µh terms cancel

Massive Gauge Boson 

Associative production 
And Higgs->WW,ZZ decay. 

Quartic coupling of hh to VV. 

Finally, terms like this cancel: 



Complete Lagrangian 

€ 

L =
1
2
(∂µh)

2 − λv 2h2 − λvh3 − 1
4
λh4

+
1
2
e2v 2AµAµ +

1
2
e2h2AµAµ + e2vhAµAµ

−
1
4
FµνF

µν



Summary so far 
•  We have shown that we can break the U(1) 

local phase symmetry spontaneously such 
that its Gauge boson becomes massive. 

•  This introduces one new massive scalar 
particle, the higgs boson. 

•  It also introduces triple and quartic higgs self 
coupling, as well as h<->VV and hh<->VV 
couplings. 



What’s left to do? 
•  In nature, the photon is massless while the W+ 

W- Z are massive. 
•  We thus need to apply the higgs mechanism to 

SU(2)L instead of U(1).  
•  So let’s repeat the exercise one more time! 



Higgs & SU(2) 

€ 

L = ∂µφ( )
*T
∂µφ( ) −µ2φ*Tφ − λ(φ*Tφ)2

€ 

φ =
φ1 + iφ2
φ3 + iφ4

 

 
 

 

 
 

€ 

φ → eiαa (x )τ a / 2φ

3 Pauli matrices for a=1,2,3 

This is a local phase, coupled with a “rotation” in the space 
SU(2) acts upon. The local symmetry transformation is thus 
significantly more involved.  



SU(2) Gauge Fields 

€ 

∂µ →∂µ + ig τ a
2
Wµ

a

€ 

Wµ
a →Wµ

a −
1
g
∂µα − α ×Wµ

a( )

SU(2) “rotation” 

The W fields are the same fields W+,W-,W3 that  
we encountered earlier in chapter 13. 

€ 

Wµν = ∂µWν −∂νWµ − gWµ ×Wν

The field tensor to build the kinetic energy term is given as: 

Needed because the generators of SU(2) 
don’t commute, i.e. non-Abelian group. 



Gauge invariant Lagrangian  

€ 

L = ∂µφ + ig τ a
2
Wµ

a 

 
 

 

 
 
*T

∂µφ + ig τ a
2
Wµ

a 

 
 

 

 
 

−µ2φ*Tφ − λ(φ*Tφ)2

−
1
4
WµνW

µν

Higgs potential 

Kinetic Energy of gauge fields 

For µ2 > 0 this describes a set of 4 massive scalar fields, 
interacting with 3 massless Gauge fields.  



Taking µ2 < 0  

•  Minima of the higgs potential on the SU(2) 
invariant manifold defined by: 

€ 

φ*Tφ =
1
2
φ1
2 + φ2

2 + φ3
2 + φ4

2( ) =
−µ2

2λ

As usual, we now pick a specific point on this manifold, and  
rewrite the Lagrangian in terms of fields around that minimum. 
For simplicity, we pick a point where φ3 = v ≠ 0. 

€ 

φ(x) =
1
2

0
v + h(x)
 

 
 

 

 
 



Gauge Transformation of Scalar 

€ 

φ(x) =
1
2

0
v + h(x)
 

 
 

 

 
 →

1
2

0
v + h(x)
 

 
 

 

 
 eiτθ (x ) / v

As before, we argue that by construction the Lagrangian  
is independent of local Gauge transformations. 



Masses of Gauge Fields 
•  As before, the masses of the Gauge fields 

come from the product term of Gauge fields 
and scalar field: 

€ 

ig τ a
2
Wµ

aφ
2

=
g2

8
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3 Wµ
1 − iWµ

2
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2 Wµ
3
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 
 
0
v
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 
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2

=
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8
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⇒ MW =
1
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Summary 
•  We have shown how spontaneous symmetry 

breaking gives masses to the Gauge bosons, while 
adding a new scalar particle, the Higgs boson to the 
theory. 

•  As an aside, we get concrete predictions for the existence of 
couplings involving higgs and gauge bosons. 

•  We have not shown that this leads to a 
renormalizable theory in the end. 

•  The proof of this is beyond the scope of this course. 
•  Handwaving, we might find it plausible because at 

high energies, i.e. energies we ran into trouble in our 
loops before, the hidden symmetry ought to reveal 
itself, restoring the massless nature of the Gauge 
bosons, and thus making the theory renormalizable.   




