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Lecture 10 

Chapter 14 in H&M. 



Chapter 14 Outline 
•  Reminder of Lagrangian formalism 

–  Lagrange density in field theory 
•  Aside on how Feynman rules are derived from 

Lagrange density. 
•  Reminder of Noether’s theorem 
•  Local Phase Symmetry of Lagrange Density leads to 

the interaction terms, and thus a massless boson 
propagator. 
–  Philosophically pleasing … 
– … and require to keep theory renormalizable. 

•  Higgs mechanism to give mass to boson propagator. 



Reminder of Lagrange Formalism 
•  In classical mechanics the particle equations 

of motion can be obtained from the Lagrange 
equation: 

•  The Lagrangian in classical mechanics is 
given by: 

    L = T - V = Ekinetic - Epotential € 

d
dt

∂L
∂ ˙ q 
 

 
 

 

 
 −

∂L
∂q

= 0



Lagrangian in Field Theory 
•  We go from the generalized discrete 

coordinates qi(t) to continuous fields φ(x,t), 
and thus a Lagrange density, and covariant 
derivatives: 

€ 

L(q, ˙ q ,t)→ L(φ,∂µφ,xµ )

d
dt

∂L
∂ ˙ q 
 

 
 

 

 
 −

∂L
∂q

= 0→ ∂
∂xµ

∂L
∂(∂µφ)

 

 
  

 

 
  −

∂L
∂φ

= 0



Let’s look at examples (1) 
•  Klein-Gordon Equation: 

€ 

∂
∂xµ

∂L
∂(∂µφ)

 

 
  

 

 
  −

∂L
∂φ

= 0

L =
1
2
∂µφ∂

µφ −
1
2
m2φ 2

∂µ∂
µφ + m2φ = 0

Note: This works just as well for the Dirac equation. See H&M. 



Let’s look at examples (2) 
Maxwell Equation: 

€ 

∂µ

∂L
∂(∂µAν )

 

 
  

 

 
  −

∂L
∂Aν

= 0

L = −
1
4
F µνFµν − j

µAµ

−
∂L
∂Aν

= jµ

∂L
∂(∂µAν )

=
∂

∂(∂µAν )
−
1
4
∂αAβ −∂βAα( ) ∂αAβ −∂βAα( )

 

 
 

 

 
 =

= −
1
2
gααgββ ∂

∂(∂µAν )
∂αAβ( )

2
− ∂αAβ∂βAα( )( ) = −

1
2
2 ∂µAν −∂ν Aµ( ) =

= −F µν

€ 

∂µF
µν = jµ

=> 



Aside on current conservation 
•  From this result we can conclude that the EM 

current is conserved:  

•  Where I used: 

€ 

∂ν∂µF
µν = ∂ν j

µ

∂ν∂µF
µν = ∂ν∂µ ∂

µAν −∂ν Aµ( ) =

= ∂µ∂
µ∂ν A

ν −∂ν∂
ν∂µA

µ = ∂µ∂
µ (∂ν A

ν −∂µA
µ ) = 0

€ 

∂µ∂
µ = ∂ν∂

ν

∂ν A
ν = ∂µA

µ



Aside on mass term 
•  If we added a mass term to allow for a 

massive photon field, we’d get: 

€ 

(∂µ∂
µ + m2)Aν = jν

This is easily shown from what we have done. 
Leave it to you as an exercise. 



Feynman rules from the Lagrangian 
•  We associate vertex factors and propagators 

with the various terms in the lagrangian. 
– Propagators come from terms that are quadratic in 

the fields. 
– All other terms in lagrangian are interaction terms, 

and are thus associated with vertices. 
•  You learn how to do this rigorously in QFT. 

Here, we’ll be happy enough to simply state 
the Feynman rules as needed. So let’s not 
waste time on this. 



Noether’s theorem 
•  Every symmetry of the lagrangian has a 

corresponding quantity that is conserved by 
the interactions described by the Lagrangian. 

•  Example: Electron and global phase shift. 

€ 

ψ(x)→ eiαψ(x)
∂µψ(x)→ eiα∂µψ(x)
ψ(x)→ e−iαψ(x)

 

 
 

 
 

L = iψγµ∂
µψ −mψψL is invariant under  

this transformation! 

The symmetry group of all  
such transformations is called  
U(1). U(1) is an abelian group. 



Conserved current from L 
•  We will show in a second that symmetry of the 

Lagrangian with respect to a given group 
implies a conserved current for each of the 
generators of the group. 

•  We will show explicitly how to derive the form 
of the current from the Lagrangian by working 
through an infinitesimal tranformation. 

•  We’ll do so for U(1) because that’s easiest 
algebraically. The idea works the same for any 
other symmetry group. 



Infinitesimal U(1) Transformation 

€ 

ψ(x)→ (1+ iα)ψ(x)

€ 

L = iψγµ∂
µψ −mψψ

€ 

0 = δL

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) +

∂L
∂ψ 

δψ +
∂L

∂(∂µψ )
δ(∂µψ )

€ 

0 = iα ∂L
∂ψ

ψ +
∂L

∂(∂µψ)
∂µψ

 

 
 

 

 
 − iα ∂L

∂ψ 
ψ +

∂L
∂(∂µψ )

∂µψ 
 

 
 

 

 
 

Next, we reorder terms to use Lagrange Equation. 



€ 

∂µ

∂L
∂(∂µψ)

ψ
 

 
  

 

 
  = ∂µ

∂L
∂(∂µψ)

 

 
  

 

 
  ψ +

∂L
∂(∂µψ)

 

 
  

 

 
  ∂µψ

∂L
∂(∂µψ)

 

 
  

 

 
  ∂µψ = ∂µ

∂L
∂(∂µψ)

ψ
 

 
  

 

 
  −∂µ

∂L
∂(∂µψ)

 

 
  

 

 
  ψ

Before reordering, consider the following: 

And the same for the  
“anti-spinors”. 

This is part of the current. This is part of lagrange equation. 

€ 

0 = iα ∂L
∂ψ

−∂µ

∂L
∂(∂µψ)

 

 
  

 

 
  

 

 
 
 

 

 
 
 
ψ + iα∂µ

∂L
∂(∂µψ)

ψ
 

 
  

 

 
  + ...

0 = iα ∂µ

∂L
∂(∂µψ)

ψ
 

 
  

 

 
  −∂µ

∂L
∂(∂µψ )

ψ 
 

 
  

 

 
  

 

 
 
 

 

 
 
 
⇒∂µ j

µ = 0

jµ =
ie
2
∂µ

∂L
∂(∂µψ)

ψ
 

 
  

 

 
  −∂µ

∂L
∂(∂µψ )

ψ 
 

 
  

 

 
  

 

 
 
 

 

 
 
 

= −eψ γ µψ

=0 because of Lagrange Equation 

Only current piece left 

Conserved current as result  
of global phase invariance! 



Conserved charge and current 

€ 

∂µ j
µ = 0

jµ =
ie
2
∂µ

∂L
∂(∂µψ)

ψ
 

 
  

 

 
  −∂µ

∂L
∂(∂µψ )

ψ 
 

 
  

 

 
  

 

 
 
 

 

 
 
 

= −eψ γ µψ

Q = d3x j 0∫

Conserved current 

Conserved charge 



Other Lagrangians of interest 
•  We have now shown that the lagrangian that 

gives us Dirac Equation has a U(1) symmetry 
that gives us charge conservation, as well as 
a conserved currrent. 

•  We can do the same for a Lagragian for a 
complex scalar field: 

€ 

L = ∂µφ( )
*
∂µφ( ) −m2φ*φ

€ 

jµ = −ie φ*∂µφ − φ∂µφ*( )Conserved current: 



Local Phase Invariance 
•  Next, we look at what happens when we impose 

local phase invariance, rather than global phase 
invariance. 

•  We will find that this leads us to the interaction terms 
for the bosonic field that provides the propagator of 
the interaction. 

€ 

ψ(x)→ eiα(x )ψ(x)
∂µψ(x)→ eiα(x )∂µψ(x) + ieiα(x )ψ∂µα(x)

ψ(x)→ e− iα(x )ψ(x)

 

 
 

 
 

Local Gauge  
transformation 



Let’s work this through: 

€ 

L(ψ) = iψγµ∂
µψ −mψψ

L(eiα(x )ψ) = L(ψ) −ψγµψ∂
µα

If we add to the Lagrangian a piece that transforms  
appropriately, then we may regain the desired symmetry.  

€ 

Aµ → Aµ +
1
e
∂µα

€ 

L(ψ) =ψ(iγµ∂
µ −m)ψ + eψγµψA

µ

L(eiα(x )ψ) = L(ψ) −ψγµψ∂
µα +ψγµψ∂

µα = L(ψ)



Reminder of E&M 
•  You probably recall from E&M, that the vector 

potential A is not fully determined by the E&B 
fields. Instead, we have exactly the desired 
invariance: 

•  Where α(x) is an arbitrary scalar field. 
•  What seemed at best obscure in E&M is now 

a necessary condition for local phase 
symmetry, or local U(1) symmetry. 

€ 

Aµ → Aµ +
1
e
∂µα



Complete QED Lagrangian 
•  Once we consider A as the physical photon 

field, it becomes obvious that we ought to add 
its kinetic energy to complete the Lagrangian: 

€ 

L(ψ) =ψ(iγµ∂
µ −m)ψ + eψγµψA

µ −
1
4
F µνFµν



Massive Gauge Fields 
•  In principle, we might want to add a mass term 

as well. However, it’s easy to see that this 
destroys local phase invariance: 

€ 

Aµ → Aµ +
1
e
∂µα

€ 

m2AµA
µ → m2 Aµ +

1
e
∂µα

 

 
 

 

 
 Aµ +

1
e
∂µα

 

 
 

 

 
 ≠ m2AµA

µ

There are clearly lot’s of terms that don’t cancel! 



Summary on local U(1) Symmetry 
•  By imposing local phase invariance on the 

free fermion Lagrangian we are led to the 
interacting field theory of QED. 

•  Gauge symmetry of the 4-vector potential, 
which seemed at best a curiosity in classical 
E&M, has become one of the most basic and 
essential ingredients to allow local U(1) in 
QED. 



Non-Abelian Case -> QCD 
•  I will skip chapter 14.4 in the interest of time. 

It’s just tedious, and doesn’t add much 
fundamentally new. 

•  I encourage you to at least read through the 
chapter 14.4 carefully! 



Massive Gauge Bosons 
•  We saw that adding a mass term for the 

gauge bosons violates the U(1) symmetry. 
•  However, it moreover spoils renormalizability 

of the theory.  
•  While this is beyond the scope of this course, 

it’s worth contrasting the propagators for a 
massive vs massless field, and show how loop 
integrals diverge, and perturbation theory thus 
makes no sense. 



Massless vs Massive 

€ 

gµν

q2

€ 

−gµν +
qµqν
M 2

q2 −M 2

Loop integrals are of the general form: 

€ 

d4q∫ (propagators)

The 1/q2 behavior of the massless propagator keeps such  
integrals finite. The massive propagator has a “ 1/M2 ” behaviour,  
thus leading to divergent loop integrals. 




