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full Boussinesq equations for hydromagnetic convection are derived and shown to
e the effects of magnetic buoyancy. Instabilities caused by magnetic buoyancy are
yzed and their roles in double convection are brought oul,

INTRODUCTION

ong magnetic ficlds are generated in the convective zones of the sun
d other late-type stars. This process cannot be properly described
hout an understanding of the interaction between magnetic fields,
vection and rotation (Moffatt, 1978; Parker, 1979; Achcson, 1979a, b).
far, however, the effects of thermal and magnetic buoyancy have been
ated separately. Magnetic inhibition of thermal convection in a
sinesq fluid has been investigated in some detail {e.g. Chandrasekhar,
1; Proctor and Weiss, 1982) but magnetic buoyancy has been less
oughly explored. Parker (1966, 1979) and Gilman (1970) considered
i lincar stability of an jsothermal gas, and Acheson (1978, 1979a) has
ided a local stability analysis for a thermally stratified layer. Most
linear studics have been concerned with the behaviour of isolated flux
s (Parker, 1979).
To simplify the incorporation of magnetic buoyancy into the study of
dromagnetic convection we shall obtain the appropriate gquations in
Boussinesq approximation. This is readily done by following the same
ysical assections as are used to extract the usual Boussinesq equations
m those for a fully compressible gas (Jeffreys, 1930; Spiegel and Veronis,
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1960). An alternative approach is to use formal expansions (Malkus, 1964}': 4
In this way, for a special choice of scaling in linear theory, Roberts and4
Stewartson (1977) have derived a similar set of equations in § &

mathematically systematic, but physically less itluminating, fashion.

Once the Boussinesq equations are available, the competition betweesd
thermal and magnetic buoyancy can take its proper place as an exampe}
of double convection (Spicgel, 1972). Indeed, we show here that in thef
simpiest case, when the field lines remain uncurved, the equations become-'_-
identical to those that govern thermohaline convection (Turner, 197§
Huppert, 1977). We also describe the destabilization of hydromagneti!
waves by magnetic buoyancy (Gilman, 1970; Acheson, 1978, 1979a) within

the Boussinesq approximation.

In the mnext section we obtain the Boussinesq equations for
hydromagnetic convection in a gas. The basic physical idea is that {n§
layer under study is so thin that variations of thermodynamic quantitis}
across it are very slight, and that all relevant time scales are longp
compared to the time for acoustic waves to cross the region. For
horizontal Jayer of depth d, we assume that d is very small compared tof
the temperature scale height, H;, the pressure scale height, H, and thef

density scale height H .

These requirements arc not always sufficient to ensure that the meuf

properties of the fluid do not vary greatly from place to place. If th

horizontal gradients of material properties are small and comparable bf
the vertical gradients, there is a risk of nonBoussinesq behaviour whenevef
large horizontal scales of motion arise. An example of such a breakdowf
of the Boussinesq conditions occurs in convection with flux fixed on the}
boundarics because the critical horizontal wave number for instability i
smail (Depassier and Spiegel, 198t, 1982). For that case, an additiond}

requirement is necded to render the Boussinesq approximatioa
qualitatively valid, namely that the horizontal scale of motion b
sufficiently small. In the case of a polytropic gas, the Boussines

approximation holds for motions of small but finite amplitude when thf

horizontal scale is much less than the gcometric mean of 4 and H, W
assume here that this requirement is met. Also, we consider only th

strong form of the Boussinesq approximation, in which the gas constant
R,, the specific heat at constant pressure, C,, the permeability, g, th

magnetic diffusivity, 5, the thermal conductivity, K, and the viscosity p
are all taken as constant.

A further condition is needed. Let a subscript zero indicatc a typicd
vatue of a quantity in the fluid, so that p, {for instance) is a constant to k

Jjudiciously chosen, equal to the value of the density in the fluid at somf
point in spacc and time. We then require that the fluid velocity u shoul}
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3 emain highly subsonic, so that wj <u? =9p,/p,, and that the magnetic
field B is sufficiently weak for the Alfvén speed to be much less than the
apeed of sound, so that v =B3/up,<v2. Then the fast magnetoacoustic
4 wave, which is purely longitudinal and travels isotropically at the sound
'._-spned vs, remains distinct from the slow wave and the pure Alfvén wave,

pboth of which are purely transverse and travel at the Alfvén speed v,
along uniform fields.

T

{2 THE BOUSSINESQ APPROXIMATION

:.'The basic equations for a gas in a uniform gravitational field, in the

 magnetohydrodynamic approximation, are

plow/dt+(u Viul = ~ gp2 — Vp+ pv[Vu+3V(V - u)]+ 4 (VxB)x B, (1)

dpfét= —V-(pu), (2}
B2t +(u- V)B=(B- Viu- BV - u+ VB, 3)
V-B=0, {4)
i pC [Tt +(u-V)T]—[ép/ot +(u- V)p]
=KV?T +dissipative heating terms,  (9)
and
p=RypT, (6)

[wherc Z is a unit vector in the upward vertical direction.

- Let us suppose that the imposed magnetic field is horizontal: then
§ equations (1), (3), (4) and (5) admit a static solution p=g(z), p=pz), T
=T(z), B=B(z) with T and B linear in the vertical coordinate, z. Now let
 p=p+0p, p=p+3p, T=T+5T. B=B+ 6B, where p etc. are assumed
small. Then the continuity equation (2) can be written in the form
Vou= -(u-V)(In )+ 0(5p/p,). (7)
3

Substituting from (7} into the induction equation (3). we have

B/t +(u-VIB=(B-Vju—wB/H, + VB,
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approximately, where u={u,v,w)
—(dIng/dz)~ 1.

Since the first term on the right of (7) is O(d/H )
equation of continuity reduces to

¥You=0.

to po. everywhere except in the buoyancy term. Hence we replace (1) by
PolCW/Gt+(u-Viu] = —gpz— VI + poyV2u+ ™ Y(B- V)B,
where the total pressure
O=p+p,=p+B* 2.
We set TI=TT1+6T1 where, in the absence of
total pressure is dl/dz=

[VSTT| ~ g8p. Then

SI/po~(d/ 9p/po),

where the pressure scale height H,=(po/gp,). Thus the variation in totg ¥

pressure remains small. Now the linearized equation of state becomes
(0p/po)=—(6T/ To)+(dp/po).

In the normal Boussinesq approximation, with no magnetic field, we
neglect &p in the equation of stalc but the basic idea of magneti
buoyancy is that dp can no longer be ignored, since it is SIT that i
negligible. Hence dpa —dp,, = —{(B*— B?)/(2u) and

(0p/po) = —(8T/To)—8p,/p,. (14

We shall be concerned with situations where the thermal and magneti
contributions to the density are comparable in magnitude.

This argument can be extended to other e
form p=p{T, p). On expanding about the reference state, we have

P=po+ (Pl T—T)+(,p)olp— D)+ ... (13

and the density scale height H,:;I

compared to V-u, th '.

(1

motion, the gradient o .
-&Po- Next we adopt a scaling such tha¥

o |

]

quations of state having the!
£3. THE INTERCHANGE INSTABILITY
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Since 81T remains small, it follows that
5.9/}00 = l:l:]"':S T — KT(SPM) (] 6)

--:"_where oy is the coefficient of thermal expansion and xr is the isothermal

$meded to make magnetic buoyancy significant.
In the equation of motion the density is regarded as constant, and equst

tompressibility. In a liquid, where x, is small. large gradients in B arc

. Finally, we consider the energy equation (5). The ratio of the viscous

1 _.-_lud ohmic dissipation terms to the thermal diffusion term on the right-
Fhand side of (5) is of order d/H,,
(1§

where the temperature scale height H,
=C,T/g. On the left side of (5) we can write

DpiDt=2apjit+u-Vpx —wgp, —D(dp,) Dt. (17)

 Thus (5) becomes

DT +(Cp0) ™ '0p, 1/ Dt +wB=kVT, (18}

Fobere the thermal diffusivity k=K/(C,py) and the subadiahatic
 temperature gradient

B=Toy™ "dlIn(pp ))/dz, (19)

k'with 7=C,/C,. Finally, we form the scalar product of equation (8) with B
§ o obtain
D(6p,)/Dt = —Biwy 'd[In(Bp~")]/dz+u 'B-[(B- Viu+4V?B]. (20)

:convection in a gas in the magnetoBoussinesq approximation. As is
‘apparent from (14), they describe both thermal and magnetic buoyancy. A
‘herther simplification (cf. Fricke, 1969) leads to the equations commonly
;used to describe couvection in the presence of an initially uniform
‘magnetic ficld (Chandrasekhar, 1961} when |07m| < R 0o]dT], magnetic
buoyancy is gencrally unimportant and the terms involving dp, in (14)
and (18) may be ignored. There is then no need to retain the penultimate
erm in (8).

i Equations (4), (8), (9), (10), (14), (18) and (20) govern hydromagnetic

| ';The significance of magnetic buoyancy in (he Boussinesq equations is best
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grasped by studying simple examples. Consider an unstably stratified
horizontal field such that

B =Byl —(z/d)§,

where { <1, so that the magnctic scale height H,=d/{>d, and ¥ is a ust

vector in the y-direction. We expect that the fluctuating field will be smal
so that dp,~B,b/u, where b=5B-§. In this section, we consider th

simplest possible configuration, with purely two-dimensional motion}
restricted to directions parallel to the xz-plane and purely horizontd} -

magnetic fields with (B- V)B=0.

3.1 Adiabatic interchanges

In the absence of any dissipation, we have, from (18) and (20),

DIOT +(Cppo) '0p,1/Dt+wh=0, D@p)Di+ws—0. (2

(2
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The equations become more complicated in the presence of diffusion.
From {20), we have

| D(6p, )/ Dt + we =nV35p,,, (28)
?"while, from (18) and (28), we find that
D(6T*)/ Dt + wh* =k V5T*, (29)
 where
ST*=8T =28,/ [Copofl — 7)1, B*=F—2/[Cppoll — 1)1, (30)

and T=#n/k. In order to writc the equations in dimensionless form, we
adopt d as the unit of length and, for this section only, we take d?/x as the
it of time. It is convenient to define a modified dimensionless

where temperature @ and a dimensionless magnetic field £ such that
o= B2~ dlIn (B/p~Y)/dz. o} y ~
O =03T*/([p*|d), T = 6p,(|o]d). (31)
We introduce a stream function ¢, with
. We then obtain the dimensionless equations
u=(=2y/02,0, A/2x). of
(0, — oVHIVHY =R 73,0 + R & I+ 0f, V) A(x, 2), (32)
Then the y-component of the curl of (10) gives
: (6= VIO + fa b = 2. ©)/d(x, 2), (33)
D(V3)/Dt—gd (T 8T +p; '8p,)=0. {ZSJFL
: (A, —TVHZ+ &0, = &, 2)/(x, 2), (34)
For perturbations with ¢ ocsin {Ix/d) sin (rz/d) exp (st) it follows that
where
st=—gB(P+ 7% '[(ypo) 'a+ T4 151 {28 -
: d=sgnux, P=sgnpf* (35)
Thus the configuration is unstable if -
‘with o= v/x and
d[In (p/p7) + (B3/ppo) In (Bip)]/dz <O. v 3
' ) R..=3d:|g*| Ro—-t "¢ £1°¢| (36)
This generalized Schwarzschild criterion is a special case of that derive T, T P TP 1= Kypy

by Schubert (1968, equation (32)) and subsequently discussed by Cadaf

(1974), Acheson (197%9a) and Schatten and Sofia (1981). it can also b

obtained by considering simple interchanges (Tayler, 1973; Moffatt, 197%;

Acheson and Gibbons, 1978; Acheson, 1979a).

- Equations (32)34) are now identical in form to those describing two-
- dimensional thermosolutal convection. Hydromagnetic convection with

Emagnetic buoyancy included is thus a paradigm of two-dimensional
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double convection. For convenience, we consider here the ideali df so, from (18), 6T =4p,/(C,p,). To first order in perturbation amplitudes,
boundary conditions that have been extensively empioyed in the litcrat g the dimensionless equations therefore become
(c.g. Chandrasckhar, 1961; Roberts and Stewartson, 1977}. These “ff

boundary conditions permit the introduction of sines and cosines COB=(1 —{2)du+({ ~&)wy, (39)
eigenfunctions of the linear problem. The astrophysically relevant case .
that with stable thermal but unstable magnetic stratification f=-14 o= —VoIl+ 0B - §)i+2,0B— (5B 2)§, (40)

=1, t<l), which corresponds to the production of salt fingers of

experiments on thermohaline convection {Turner, 1973). The statif

 where {=d/H, =d/yH, As before, we assume idealized boundary
configuration is unstable to modes of the form ¥ =, sin(lx)sin(rz) it § conditions at z=0, 1, but now we consider waves propagating along the

| magnetic field, so that woccos (Ix)sin (nz)exp [imy — wr)], for example. It
TIRy> (P 477 2+ R, = (27/4)m* + R, (A turns out that the most unstable modes have 2 very long wavelength and
50 we shall assume that m® <%, 7% (cf. Roberts and Stewartson, 1977). For
- sufficiently small m, that is O(¢), we can then introduce stream and flux

f functions, ¥ and y, such that

&y N Ay . &y
— —_—— U, — = —_— -— |. 1
" ( 8z ox ) oB ( 8z b ax /' (41)

In astrophysically interesting situations, kPN v {oc<t<1) and instabili
ariscs when

— Bi(po) " d[In(Bim)idz > mic ' d[In{ PiaN1/dz & 4

{Schubert, 1968). This agrees well with the criterion obtained by Aches#
(1978, 197%; note that his thermal diffusivity is our 7x). Thus g
interchange instability, in which flux tubes are cxchanged without bendiuf
is described by the Boussinesq approximation. The nonlincar devclopmer
of this instability should lead to the formation of narrow magnetic i
sheets, analogous to salt fingers. However, it turns out that thres
dimensional instabilities, in which magnetic buoyancy is complicated i
curvature of the magnetic field, may be more important in practice, '

where
¥/o=x/xo=sin(Ix)sin (nz) exp [i(my —m6)]. (42)
b/by=v/vy=cos(Ix)sin (nz)exp Lilmy —wt)]. (43)

From Eq. (39) we find that

wxo+mfg=0, wby+mug—ill{ —Enpy=0. (44)
4. THE UNDULAR INSTABILITY : The pressure perturbation oTT can be calculated by forming the divergence
Hydromagnetic waves become unstable owing to magnetic buoyancy. Ti§ of (40). It can easily be verified that A, 0T =0[m*/(I*+ %)} and is therefore
problem is more complicated than the one Just discussed, and it illustrag negligible. Hence the y-component of the equation of motion gives

nicely the advantages of the Boussimesq  approximation i
magnetoconvection. We shall confine ourselves to a linear treatment of #f
stability of a perfect fluid that is adiabatically stratified. The results clo o
resemble those first obtained for an isothermal gas by Gilman (1970) a
subsequently gencralized by Acheson (1978, 1979a).

oo+ mbg +illy, =0, (45)
' while, from the y-component of the curl of (40), we derive

Yo+ myo— [/ +7%) )by =0. (46)
4.1 Nonrotating system

- From Eqs. (44)+{46) we obtain the dispersion relation
We sct all diffusivities equal to zero, and adopt the Alfvén period dif

; . . . . .o . 3 2
={1po)'?diB, as unit of time. The static configuration is identical to (h 5 2 S| £

; . : B ) . —e?| (- ——L =0 47
considered in the previous section. Since the gas is homentropic, =0 @@ em 24 n? (=8¢ fHm m A @7

© GAFD &
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Instability therefore occurs through an exponentially growing mode for
m® <[P+ a0 < 3
Hence the configuration is unstable if
—(gpo/rpodd(in Bidz = (P +nym? (4?1,
(Acheson, 1979a). For sufficiently small m, instability occurs if |I_3] decreases
with height.

Gilman (1970) considered perturbations to an isothermal equilibrium
He assumed x> #,v and restricted his attention 1o modes with 23 72, s

that temperaturce fluctuations could be ignored, but he did not make the‘

Boussinesq approximation. The resulling dispersion relation reduces to
{(47) in the limit when v <v?, supporting the validity of our equations

Note that the most unstable modes arc clongated parallel to the field andg

narrow in the x-direction, with a corkscrew motion such that t*» w?>?
Instability persists as m—0; only for m=0 does (47) give the criterion for
mslability to interchanges.

4.2 Rapidly rotating system

Now consider a system rotating with a fixed angular velocity Q-
(—€,0,0) about the x-axis (like an equatorial portion of a star). In the sun,
rotation is sufficiently rapid to stabilize interchange instabilitics locally,
and undular instabilities are much altered (Acheson and Gibbons, 197
Acheson, 1979a). The wave that becomes unstable is the slox
magnetostrophic mode, with a time scale, Qd%/{m?v2), much longer tha
the rotation period (e.g. Moffatt, 1978). Following Moffatt, in th
magnetostrophic approximation, we replace Eq. (40) by

2Q xu= - VoI +{hi+ 3, 6B-- J(IB-Z)y. (30

Use of (42) and (43) in the y-components of {50} and of its cur! gives

8]

and, from (44) and (51), we obtain the dispersion relation
4Q%w? —4QmEm —m?*[1 P +ndm* —(E]=0.

Instability occurs in the form of exponentially growing waves when o

(45E

(2f
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-becomes complex, that is for
E m® <P — AP +72). {83)
: Thus the rotating layer is unstable if
—{g00/ypo)d[In{B/p)}dz >{I* + ¥ ym*{d* 12, (54)

(Acheson  1979a); for sufficiently small m therc is instability if |Bip|
decreases with height. These results are again consistent with those

 derived for an isothermal gas (y=1) if vh<e? (Moffatt, 1978: Acheson
Fand Gibbons, 1978).

5. MAGNETOCONVECTION AND MAGNETIC
BUOYANCY

- We have shown that magnetic buoyancy can be accommodated within the
framework of an extended Boussinesq approximation. In the
 astrophysically relevant limit, when 03 <s2, the results obtained by
' Gilman {1970) and Moffatt (1878} can all be rccovered. Acheson's (1978,
- 1979a) local analysis gocs beyond that in Section 4 to include the cffects of

diffasion and stratification; D. W. Hughes (private communication) has
‘rederived Acheson’s dispersion relation for a plane layer using the

 Boussinesq  approximation. The local approximation and the
magnetoBoussinesq approximation with periodic boundary conditions are
equivalent in  linear thecory. The advantages of the Boussinesy

approximation are that it facilitates the inclusion of other boundary
conditions (Childress and Spiegel, 1981) and yields simplificd equations
“that are valid in the nonlinear regime. We find that it clarifies the physics
Fof magnetic buoyancy. We also anticipate that the introduction of a
ésolenoidal velocity will easc the numerical treatmeni of nonlinear
magnetoconvection and so afford some hope of understanding the effects
: of diffusion on the undular instability of finite amplitudes.

' We need not repeat here the summary of the magnetoBoussinesq
: equations given at the end of Section 2, but we must add one observation
k’un the essential difference between that system and the ordinary
' Boussinesq description of convection. Tn the latter, we simply replace the
statement V-u=0(d/H,) by the condition that u should be solenoidal.
:Since the pressure does not appear in the cquation of state. it is at our
 disposal in the momentum ‘equation to help ensure that V-u=0; indeed
- we need somc condition to determine the pressure. In Boussinesq
 magnetoconvection, the condition V-B=0 enters in a differcnt way. W¢
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can satisfy V-u=0 e¢xactly, even though it is only an approximation, but
we can satisfy V-B=0 only approximately, though it is supposed to be
exact. Tn both cases, we make a slight error and we have to be sure thal

the size of the error does not invalidate the equations affected to the order §

of interest. We know that this works for V-u but we need to verify that al
is well for V-B=0,

The problem of breaking the solenoidal constraint on B arises only
when magnetic buoyancy is important. The divergence of (8) can k&
written

(& —w/HIV-B=H,'B Vw, (53
In the cases considcred in Sections 3 and 4, the right-hand side of this
equation is zero or O(d*/H2). Then the error that is introduced into the
induction equation by the failure of the magnetic field to be exactly
solenoidal is smaller than the crror expected in the magnetoBoussinesq
approximation itself. However, it is clear that there is no guarantee that
this remains true for times much longer than H /v,, and V-B should b
monitored in time dependent problems. When introducing nonBoussinesq

corrections one should take care to ensure that a similar self-consistency |

obtains in each order. If magnetic buoyancy is unimportant, we need not
be concerned with such details, as the ordinary Boussinesq approximation
suffices for most purposes.

The right side of (55) would be significant if the scale of variation of w
in the direction of B -were comparable with the Jayer depth. It turns out,
however, that magnetic buoyancy is not important in such circumstances:

to demonstrate this we have first to clarify the way in which magnetic f
pressure affects the Boussinesq equation of state (13). Let us make 1}

Helmholtz decomposition of the Lorentz force into irrotational and
solenoidal parts:

p l(VxB)xB=-VP+VxQ, V-Q=0. (56
We may impose the boundary conditions
8Pjon=—p {(VxB)xB-n, Q=0, @k

obtained by solving

V2P=— ;" 'V-[(Vx B) x B],

VQ=—u 'Vx[(VxB)xB], (Hf
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subject to (57). Forming the divergence and the curl of the Boussinesq
equation of motion (10) yields

VX(op+8P)= —gd.6p— poV [(u- V],

Vi{6Q) =

(59)

—8Vop x i+ p[yWo—ao+Vxuxa)], (60)

- where the vorticity @ =V xwu. At the upper and lower boundaries, where w

=0, the vertical component of the equation of motion reduces to

CAOp+3P)=—gdp. (61)

Now the right-hand sides of (59} and (61) are both of order 4y 'H, so, to

leading order in d/H ,

Vi(dp+6P)= (62)
and
0,(0p+0P)=0 on z=04d. {63)
Hence ép+ 6P =constant and we may take
dp=—4P. (64)

In Section 2, we adopted a different decomposition of the Lorentz force:

# {VxB)xB=—Vp, +(B:V)B. {65)
From (58) and (57) it follows that the magnetic pressure Pn=P only if
V-[(B:V)B]=0. (66)
and
(B-V)B-z=0 on :2=0,4. (67)

For certain simple boundary conditions, for example if B,=0orif B,=8B,

_ _ =0, condition (67) is met. For the two-dimensional mterchanges dlqcussed
where n is a unit vector normal to the boundary. Then P and Q ar}

in Section 3, (B-V)B=0 and (66) is trivially satisfied so that P= Pw. For

- the undular instabilities of Section 4

{(B-V)B//|V3p,|= O(d/H ). (68)
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Hence 3P =4dp,+O{d/H,). Now magnetic buoyancy becomes importar:
when dp = — 0P =0{pydp,/po). but from (60) we would expect that

16Ql/po = OL(d/H Y3p/po)].
Equation {60) can be rewritten as

PoDw/DL = pola - Viu+ povVie ~gVép x 2—V2(5Q). (g

Within the Boussincsq approximation we can recognize three differen
regimes, depending on the importance of the magnetic torque, — V*(6Q}}
in {70). (1) In the first regime, the magnetic torque cannot be neglected. |
there is a balance between the magnetic torque and the buoyant torquf
then

|6P|~|6Q| = OL[Wd/H Jpodpipo]. (1
It follows from (59) that |dp/po|<|dpipo|. This is the regime i
magnetoconvection where motion is driven by thermal buoyancy aof
magnetic buoyancy is unimportant. (2) H, on the othe.r hand, we seek
regime in which magnetic buoyancy is important .then it follows from (¥§
that |8Q|/|0P|=0(d/H ) and the magnetic torque in (70) can be neglect'
In practice, this mcans that (68) is satisfied and so dp~ fﬁpm. M.agn
buoyancy is significant if the wavelength of disturbances in the directiog
parallel to thc imposed field is comparable to the scale hclgh.t. Thus L !
right-hand side of (55) is indeed O(d*/H}). (3) Finally, there is a regim

magnetic torque is balanced by p,Pw/Dt in (70). Then 6P ~| _.
=0(podp/po) and the waves may be either damped or destabilized by i
effects of thermal and magnetic stratification.

magnetic fields on motion driven by buovancy in stars. In g
approximation, instabilities driven by thermal and magncpc buo.yl'
provide problems that are complementary to each other; in particulzg
solutions describing convection in a vertical magnetic field will hardly i§
affected by the addition of magnetic buoyancy. In a stt?llar c.onvecti.'
zone, with d/H, of the order of unity, this distinction dlS?a]JpCﬂI:_
Furthermore. at the surface of a star like the sun, where magnetic ﬂux:
confined to isolated tubes with p,~ p, (Parker, 1979), convection cannf
be adequately represented in the Boussinesq approximation.
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The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of
the induced magnetic field. Two sources of instability are found 1o occur in the intermediate
field regime M ~ T7/!2 where M and T are the Hartmann and Taylor numbers. On the time
scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of
the convection by the magnetic field. On a faster time scale a dynamic instability related to
MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure
of this dynamo is unstable to virtual increases in the magnetic field energy.

in an attempt to model stabilization of the dynamo in a strong-field regime we consider
two approximations. In the first, a truncated expansion in three-dimensional plane waves is
studied numerically. A second approach utilizes an ad hoc set of ordinary differential
equations which contains many of the features of convection dynamos at all field energies.
Both of these models exhibit temporal intermittency of the dvnamo effect.

1. INTRODUCTION

Recent attempts to provide a dynamical basis for the geodynamo have
focused on systems which involve both convection and rapid rotation.
Childress and Soward (1972) suggested that classical Benard convection in
a rotating plane layer would, in the conducting case, lead to dynamo

~action, and noted that the relevant asymptotic structure of a stable
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