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1.4.1. Modes of description of a plasma

A plasma is a collection of charged particles. These charged particles generate
clectromagnetic lields through their elementary charges and currents. In order to
evaluate these ficlds it would be necessary to know the position and velocity of every
particle at all times. The motions of the charges themselves must be followed in the
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fields they generate and those externally imposed. This program is beyond what is
possible except in the simplest possible situations.

Fortunately there is a cruder description of the plasma that is often sufficiently
accurate to give gross behavior to the extent desired.

Instead of specifying the plasma in terms of each of its particles a morc
macroscopic description of the plasma can be pursued in which the emphasis is on
its fluid nature. Depending on circumstances that will be discussed below this fluid
description may be a one-fluid, a two-fluid, or a many-fluid approach.

The one-fluid approach will be considered first. Every e’ of plasma must conlain
a definite number p g of plasma. The rate of change of this density is controlled by
mass flow U out of the walls of this cm®. The momentum oU in any cm’ is iself
controlled by the forces acting on it. These are normally electrical, magnetic, and
gravitational forces acting on its volume, and pressure forces acting on its walls.
Because the plasma is a conducting fluid its current can be found from Ohm’s law in
some form, while the direct electrical forces are usually small. The current can be
used to find the magnetic field by the Biot-Savart Jaw and the changing magnetic
field gives the induced part of the clectric field, while the remainder, the electrostatic
part, follows from the condition that the current driven by the electric field be
divergence-free. The determination of the pressure forces is often the weakest part of
this one-fluid description since the pressure is not usually a scalar, particularly if the
plasma is collisionless. In addition the heat flow is often quite large. (Microscopi-
cally, particles together in a small cube remain togcther for only a short time.)
However, many plasma phenomena of interest do not depend on the pressure in any
essential way so that even an inappropriate treatment by an assumed equation of
state for a scalar pressure can give a reasonable description of the phenomena in
their grosser aspects. (The more basic properties of the plasma are governed by its
electrical nature.)

For a more detailed description of plasmas in which interest is centercd on plasma
temperatures and energy densities, the two-fluid description is more appropriaic. In
this description the electron and ion fluids are treated separately. Although the mean
velocities are nearly equal, the electron and ion temperatures are often quite
different due 1o the weak energy exchange rates betwecn ions and clectrons. The
two-fluid approach is also appropriate for a weakly ionized plasma. Here the ion
cyclotron frequency may be less than the ion neutral frequency, while the electron
cyclotron frequency is greater than the electron neutral collision frequency. The
resulting electron and ion flows can be quite different under these circumstances.

Finally, when the plasma is nearly collisionless but the pressure terms play a
central role, an even more detailed, but still approximate, description becomes
appropriate, the guiding center description. In this description the magnetic field is
strong enough that the plasma is still hydromagnetic in a direction perpendicular to
the magnetic field, since the gyration frequency is large for both species. However,
the particle flows along the lines need not be fluid-like, so it is nccessary Lo keep
irack of the distribution of velocities parallel to the Jine by a one-dimensional kinetic
equation. Even in this case the description may be simplified to a fluid description
that preserves the independent plasma behavior along and across the lines. Two
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equations of state for the two independent components of the pressure tensor are
nccde.d, and this is supplied by the Chew—Goldberger-Low or double adiabatic
equations.

In summary, although any real plasma is extremely complicated, some of its main
properties may often be captured by simple macroscopic sets of equations. These can
only descyibe the sfower more macroscopic properties of a plasma that occur on long
enough time and space scales that microscopic processes such as collisions and

gyraFionS can establish sufficient consistency in the plasma to enable it to be
considered as a coherent fluid.

1.4.2. Collisional plasma

As described in the introduction, the fluid picture of a plasma is most appropriate
when the plasma is at least somewhat collisional. Then the electrons and ions
separately relax to a local thermodynamic equilibria on a time short compared with
that in which substantial changes in plasma conditions occur, and in regions small
compared with the size of the plasma, Thus, we may assign a density p, mean
velocity U, and scalar pressure p to each of the plasma components,

In the simplest description of the one-fluid plasma we may ignore the differences

in the_, e1_eclr0n and ion properties and simply lump them together. We consider this
description first.

The one- fluid description

On this level .thc plasma is in many ways like a highly conducting molten metal.
The fluid equations describing its density, velocity and pressure are

dp/dt+ ve(pU)=0, (1)
p(BU/3t)+pU- vU=jx B— vp+pg, (2)
(d/de)(p/p7)=0. (3)

Equation (1) is the equation of continuity. Equation (2) is Euler’s equation for fluid
motion. The left-hand side represents the mass of a cm® of material times its
acce%era_tlon at any instant. The acceleration is produced by the magnetic and
gravitational forces acting on the same ¢m’® and the surface force term represented
by tf_lc pressure gradients. B is the magnetic field, 5 the plasma current, and g a fixed
grawlational ficld. The pressure is the sum of the separate partial pressures of the
ions and electrons whose gradients are assumed to act together on the plasma rather
than on each species separately.

In the third equation d/dt = (d/d¢)+ U- v is the convective desivation and vy is
the ratio of specific heats of the plasma. This last equation is the cquation of state
for t?ach separate fluid element following the motion. [t is only valid under
copdltions where the heat flow is small. Note that p/p" is related to the entropy per
unit mass of a fluid element. If more general conditions prevail, e.g. ionization,
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radiation pressure, etc., are important, then (3) should be rcplaccd by the condmclm
of constant entropy following each fluid element. However, in most cases where the
one-fluid theory is employed the simple power-law assumption 1§ generally adeguate.
Note further that various limiting cases arise by .laking y=1, 1sothe'rmal, ory=
incompressible. It can be easily worded as p/ptisa 50nstam following the motion,
but in general is different for different fluid elements™. _ _ '

It should be noted that the electrical force pg£, where pg is the e_lcctrlcal charge
and E the electric field, has been dropped in (2). This is because, as will soon appcar,
these forces are relativistically small compared willh _m‘ag‘netw forces and must be

I consistency, since our theory is nonrelativisic. ‘
ne%\fle:t::i :ﬁat knowing EBF and g, (1)-(3) form a complf:tc set giving _thc forward time
evolution of the fiuid quantities p, U and p. The velocity U needed in (1) to a.dvance
p in time is determined by (2). The pressure needed in (2), Lo advance U, is given by
(3), etc. , o

The electromagnetic fields are controlled by Maxwell’s equations:

v X B =4nj, (@)
8B/ dt=—cVXE, )
o B =0, (6)
v+ E = 4mpg, (7)

where c is the speed of light. The displacement current in (4) has been Qropped since,
as will appear, its effects are also relativistically smau. Further, tl}erc is no need for
(7) since the charge density pg appears nowhere else in the equat,lons. o

The electromagnetic and fluid equations are coupied by Ohm’s law, which in its
simplest form can be written (Spitzer, 1962)

E+ (U B)/c=ni. (®)

where 7 is the plasma resistivity. The combination E’= E+UX B/ ¢ isb the electﬁc
field seen by the plasma in its moving frame U, and (8) states that in this frame j 18
arallel to and proportional to E’ .

P Equation (8) is not strictly accurate for a plasma. Because of the anisotropy of the
field there will be Hall currents flowing perpendicular to E and B that may ac}’ually
be larger than that predicted by (8). However, the current in (8) is parallel to E’ and
represents dissipation of energy whereas the Hall currents do not. Thus the secular
effects produced by this term are generally more significant t_han those cluc‘to the
Hall terms. It is customary in the simplest form of the one fluid MHD equations to
employ Ohm’s law in the form (8). . |

quu);ti.ons (4), (5), and (8} represent three vector equations for t.he three vectors E,
B, and j. They may be combined into two equations by solving (8) for E and
substituting from (4) to eliminate j. We get

o8B

_37=vx(u><3)4ﬁvx(nvx3)- (%)
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If 7 is a constant, the last term becomes simply (yc/47) v2B so

B .
—Vat—zvx(UxB)+-2—;- v’B. {%a)

The first tcrm on the right gives the change in magnetic field produced by
convection of lines of force by the plasma. The second term gives the magnetic
diffusion term, which tends to smooth out irregularities in the plasma perhaps
induced by the first term. I there were no plasma motions, the diffuse term would
smooth out any irrcgularities, in a characteristic time of order 47 L?/nc where L is
the irregularity size. (This is essentially the “L /R time” for a plasma considered as a
lumped circuit.} This decay time is of order 1077737212 s where 7' is the temperature
of the plasma in eV. For high temperatures or large plasmas this time may be very
long. The changes in B produced by the convective term often occur on a time so
short compared with this diffusive term that the magnetic diffusion can be ignored
altogether. That is, we may replace (9a) by the “infinite conductivity” equation

dB/6t= v x(UXB). (10)

The subset of the above equations (1), (2), (3), (4), and (10) constitute the so-called
ideal MHD equations. They are clearly an approximation to the true plasma
equations, but they have so many nice properties that they are the preferred set for
describing macroscopic plasma phenomena. Equation (10) gives the evolution of B
as a result of plasma motions. Then making use of (4) j can be determined, and thus
Jj X B, to determine the cvolution of the fluid quantities under the action of the
electromagnetic forces.

The electric field E is no longer needed in this description but it may be obtained
from the infinite-conductivity limit of Ohm’s law:

E+(UXB)/c=0. (11)
Then the electric force on the plasma pg £ can be estimated from (7) to be
Ev-E U?

47 4nLe?

2

El

PEE=

and it is seen, as mentioned earlier, that it is relativistically small compared with the
magnetic force j X B =~ B*/4xL. In the same way we may show that inclusion of the
displacement current (1/¢¥ 3£/ dt) has a relativistically small effect on the equa-
tions. Adding it to (4) will alter § by the small amount 8 and this will produce an
additional contribution to the electromagnetic force term in (2):

2
sixB--L OE p_ a[UxB)XBz us*
4t 47ie?

4qc Ot xe= at
where ¢ is a macroscopic time. Comparing this with the inertia term on the left we
see that it is smaller by B%*/4mpc?. In fact, the addition of this term can be thought
of as adding the “mass” of the magnetic field to the mass of the plasma.
The ideal equations of MHD are best thought of as exactly describing an ideal
infinitely conducting fluid with an adiabatic equation of state whose properties are
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sufficiently close to a plasma to be of interest, rgther‘ than an ap}aroprlalehsystei; sjlfl
equations for a real plasma. For the moment imagine that thcrevlsf_sulr(ci _[z-a.]ncn A
infinitely conducting fluid to study. It is immersed in some magnetic -li-] : L} g 0)}
the condition of flux freezing, the evolution oflthc field may be exprcstz,t, fn (;;m'rbhig
the distribution of magnetic lines of force bpdﬂy transmitted by the \elou;y N : Hui‘.j
means the field depends only on the net displacement Of. each element o t :1:.] i
and not on the history of the fluid displacements. The: X B forcc‘cgn Fca[ 1fy >
thought of as the magnetic tension and pressure contamcq in thesc ?mes',j 0{ ?:;r-
Similarly, p is given purely by the displacement of the fluid glcme.nts:_ aln ,ll 1‘11‘[ )m,:
the pressure is also thus determined. This means that, at !cast in principle, ‘n,d( e
on a fluid ciement is determined holonomically by 1s displacement dl:ll ©
displacement of its neighbors. It is this fact, plus the fact thz'lll t_hc sys ei‘nl'e.s
dynamical (given by a Lagrangian), that leads to the many very s_attlsfymg prl:)pltfr liq
of this ideal system. In fact a considerablc amount of macroscopic plasma pl yS{Zs .1
devoted to determining to what extent a r_eal plasma can differ from 1Es idea
counterpart. Some of these questions, magneuc reconnection for example, are ameng
the most important of modern-day research problems (Petschek, 1964).

The two-fluid description

An alternative and more precise treatment of a fully ionized pla_sma i3 contanll‘ed
in the two-fluid description. The two fluids are the _clcctrons and ions. If lher‘e is a
single species of ions, we can assign a density, v_clocny a_nd pressure to the elculbrronz
and to the ions. Then the three equations for_avsmglc flL_ud_, (1)~(3), must be rep gce
by six equations, three for each fluid, desc'nbmg the SIX independent qt;xntitlca Pis
pe> Ui, U, pis po- NOW the one-fluid equations were writlen dc.va on p enonjlorzlifl-
logical grounds and werc not extremely accurate except in the hn?nl l(;:c_cTc \;ery m:l 1,
where w_, is the electron cyclotron frequency and 7, the electron co sion freque n,yf
On the other hand, considerable work has been devoted to deriving a' set of
equations accurate for any collision rate fasle_r than the dynamic rqtci gfl(;légngfl ?t
p;s Pes €tC. The generally accepted set of equations are those of Braginski ( ), tha
are now taken as standard. We give them here for relerence.

The two continuity equations are

12

an, /0t + ve(n ) =0, (12)

13

3n /8t + ve(n ) =0, {13}
where n, and n, are the electron and ion particle densitics. These equations are

linked by the charge neutrality condition, Zn; = 1. where Z is the lon charge

number. . .
The two vector equations of motion are

UXB
Pi(%*’ui' VUi)=_ vpi— V""’i+ze"i(£+ - )_Rc1+Pi3s (14)

X8
e (aU; +U'VU)=" Vp.— V'We_nce(E+ CC ')+Rci+pcg‘ (15)
€\ ¢ ¢ ©
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Jn these equations p; and p, are the ion and electron scalar pressures, o, and 7, are

the nonscalar parts of the stress tensors, R, is the rate of transfer of momentum

[rom ions to electrons by collisions. They in turn arc linked by the equation defining

the current j = (Zne /c)(U; = U,), where e is the electronic charge. We assume that

Zn; is much closer to n, than U, is to U,. Because, j cannot be too large without

producing electromagnetic effects we can say that U, and U, are also close together.
The two energy equations are:

%”i(ari/at“"ui' VTi)"‘PiV'Ui= - Vg —mivU + Qg (16)
(AT /9t + U VI + p VU, = — Vg, —mi VU, + Q,, (17)

where the tcmperatures are defined by p, = n,T;, p, = n,T, and the units of T are
chosen to make Boltzmann’s constant unity, The second term on the left of each
equation is the pd} work done by compression. ¢; and g, are the heat flows, ,: vy,
and @.: VU, are the frictional heating terms due to nonuniform velocities while Q,
and Q, represent energy exchange between the species and joule heating.

Equations (14)-(17) become more accurate as the collision time 7 goes to zero.
They consist of “fluid” terms and dissipative terms and the latter are smaller than
the former roughly by 7/r. Thus, if 7 were zero, collisions would be sufficient to
maintain an isotropic velocity distribution in the frame moving with the fluid and
the 7 terms would be small. However, because U is inhormogeneous, an isotropic
distribution at one point does not match the isotropic distribution a mean free path
away, and a certain mixing of these distributions leads to anisotropy of the
distribution and to off-diagonal terms in the stress tensor. The other dissipative term
R is produced by unlike particle collisions and is the friction force between
electrons and ions. Since the diffcrence between the electron and ion velocities is the
curren, this friction includes the resistivity as well as thermoelectric effects. In most
cases in practice U is close to U, and can be identilied with the mass flow of the
plasma. If (14) is added to (15), the electron—ion friction force cancels out and
the electron incrtial term and gravitational terms are negligible. Thus, except for the
viscosity terms =, and 7, we recover the onc-fluid equation of motion, (2). On the
other hand. if we express U, in terms of U, and j by solving

f=”izc(Ui_Ue)= (]8)

and neglect inertia in (18), we obtain a form of Ohm's law usually denoted as the
generalized Ohm’s law (Spitzer, 1962)

X v ver, R,
UXB_ ¢ ixp- TP V7 R (19)
¢ n.e n.e n.e n.e

C

E+

Equations (12)-(17) are the cquations describing the electron and ion fluids
separately. To complete them, we must add Maxwell’s cquations (4)-(6), where f is
defined by (18). Again, we may consistently neglect the displacement current term in
{4) and take Zn; = n_ 5o (13) is not needed. (This is the case for a low-frequency
phenomenon, Although it is the case that the two-fluid equations may be used to
derive some high-frequency wave phenomena provided thermal effects are small,
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ed the expressions for the various

ivati d.) We also ne
these derivations are not really sound.) s Iox e fon and clectron

dissipation terms. These are given by Braginski
collision times be defined as

3mi/ T3 (20a)
BT 4n 2(InA)eZn;
21 (20b)

T, = s
© 4(27)(lnA)eZn,
the particle masses. The

i i d m, . are
where InA is the Coulomb logarithm an i P ‘
calculation is further limited to the case Z =1 and 1o l'l;le il@t w7, > 1, where 5
indicates the particle species, i or €. Then from Braginski’s article we have

a =n2(be vU, b=V U}, —206b)— 4§, - VU1, +bX VU Xb)
— 2 (bWl + 1, W bb)+ (b X Wrly ~1, "W, xb)

+n:(b>< “ﬂ}bb—bb-w;xb), (21)
where ’ -
(r =1-— bb,
b=B/B, W= vU+(vU)", .
T.l? == 0.96“ iTiTi’ 7?2 = 0-73‘“:?;7';& l
2 l= 22
nli = 0'3niTi/wc2:iTi’ ﬂle = 0.51!1,__?;/0)&1':, Ns 4“;‘ ( )
4 ==
‘ﬁ =0.5n,T, /v, Tf?: = —0.5n.T. /@ T, =27
For R,
b i . - g’._ﬂL X vT.), (23)
R = en:%;b+ i— —0.71nb+ VT,b =5 wcen(b vT,)

where @, = e2n . /., 0,=1960,, and the last two terms of (23) represent thermal
L t'¢ ? .

forces. _
The heat flow terms g, are given by

5 nT,
- : s —=—pxvT
g,=— Kyb*vIb Kt -vIt3 o
3 nT 3 8 (24)
+[0'71nen(Ui_-Uc)+5wce,rebx(Ui Uc) cs?
where
KC“ = 3-16?151;73/”13, K.“ = 3.9niTi1'i/ﬂli,
KEJ. = 4-66"1:7;/’”{:‘*’3:;’7@ Ki_l_ = ZMiT]/miwchi, (25)

and the factor multiplying the bracket indicates that this term (the thermoclectric

term) is present only for g..

1.4, MHD description of plasma ' 123

The internal heating terms @ are given by

Qc=—R;"(U;~U,)- Q.. (26)
where the first term is the joule heating term and the second
=0, =3%le(r T
0,=0u=3 S L= T)), (27)

the energy exchange term.

Equations (12)-(17) arc a complete set of equations for the plasma quantities
n,=n,, U, U, p,, and p_, all the quantities on the right being defined in terms of
them. They allow a much richer set of plasma phenomena to be described than the
one-fluid equations, particularly in the allowance for different electron and ion
temperatures and the inclusion of nonideal effects such as thermal conductivity,
viscositly, resistivity and thermoelectric effects. Thus, they are more useful for
describing long-term phenomena in which nonideal effects play a significant role. 1t
is possible to include such nonideal terms in the one-fluid equation. However,
because ion and electron transport play different roles and because the temperature
scnsitivity of these is important, the modified one-fluid approach is usually highly
inaccurate and misleading. Thus, one could possibly distinguish between the useful-
ness of the one-fluid and two-fluid approaches as follows. The one-fluid approach is
preferable for short-time hydrodynamic effects in which nonideal effects play a
minor role. Its great advantage is that its equations are considerably simpler to
handle than the two-fluid approach. Finally, it can be used in longer-time problems
to get an idea of at least some of the plasma behavior.

The two-fluid equations are more accurate and necessary for any precision in the
discussion of phenomena where plasma transport or dissipation is involved, They are
too complex to solve, however, for any problems except those with simple geome-
tries. They can, of course, be used to form a good idea as to the accuracy of
calculations based on the one-fluid approach.

1.4.3. Collisionless plasma

In Section 1.4.2 plasmas were discussed in which the collision time was the
shortest time in the problem with the possible exception of the gyration period.
Thus, a small element of mass of a plasma will relax quickly to a Maxwellian before
it can change its propertics, and a local description in terms of the parameters
characterizing this Maxwellian is appropriate, This consistency justifies a fluid
description. But in many important plasmas the collision time is so long that
collisions should be ignored. It would appear that for such *“collisionless™ plasmas a
fluid theory is not appropriate. However, cven for wecak magnetic ficlds, the
cyclotron period is still shorter than any macroscopic period, and the plasma does
have a two-dimensional consistency perpendicular to the magnetic field. This
restores the possibility of a fluid theory to a limited extent and is the basis for the
guiding center description of a plasma.
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The guiding center limit of the Viasov equation

A collisionless plasma is completely described by giving its velocity distribution
functions f, [£,(¢, r, v)d’rd’x is the number of particles in an element d?rd’o at
position r and velocity v at time ¢]. Its time behavior is governed by the Viasov
equation with e, the particle charge

3f e vX B
L . vof o 28
TR Vf,+~—S(E+ . ) Vo =0, (28)

where E(r, ) and B(r,?) are the mean clectric and magnetic fields produced by the
smoothed-out plasma distributions f,

4 & [ rpgio s L IE
VXB"“W?cfff"d”*c a0 (2%)
V'E = 4”Eesffsd3v’ (29]3)
9B/ot=—cUXE, (25¢)
B0, (25d)

These equations are more complicated than the fluid equations because they involve
seven independent variables ¢, r, v rather than four, ¢, r. However, by an asymptotic
expansion in the smallness of the gyration radiation p = mcv/eB comparcd with the
scale size of the plasma the effective number of variables in the kinetic equation can
be reduced by two, because the gyration phase variable is irrelevant and the scalar
perpendicular velocity is controlled by a constant of the motion, the adiabatic
invariant (Chew et al., 1955; Kulsrud, 1962).

Further, to lowest order, the motion of the particles consists of an £ X B velocity
perpendicular to the magnetic field common to all particles, regardless of their
peculiar velocities or species, and a parallel motion along the [ield. If the parallel
electric field E,=b*E, where b = B/ B, is small [cf.,, the discussion after (34)], it is
well known that the magnetic lines of force can be assigned the same E X B velocity
perpendicular to themselves (Newcomb, 1958). Thus, ail particles will stay on the
same line and it should be possible to concentrate our attention on a single line and
derive a kinetic equation involving only two particle variables, position along the
line and parallel velocity.

To derive the equations for this reduced sysiem we may Carry out a formal
expansion in the quantity m /e {Kruskal, 1960). (If we regard macroscopic lengths
and times to be fixed, then the small-gyration-radius limit is reached by taking a
sequence of fictitious charged particles with different atomic properties m /e ap-
proaching zero. In this imagined series of experiments one expects results to be near
their asymptotic value when the true values of m /e are reached, il the ratio of
gyration radius to scale size is sufficiently small.) In point of fact, it turns out 10 be
slightly more convenient 10 expand all quantities E, B, f in just the reciprocal charge,
the quantity 1/e (Rosenbluth and Rostoker, 1958).
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Consider first the Vlasov equation (28) and set f = f, + f, where f, = O(1 /e) etc

I rom IlllS pOll'll on lhe SubSCI lp W 1 I]e d] 0ppcd WIeE (lil‘ubll)“ I
11 11O C IeSU]lS. hel‘l

[E+(vxB)/cl v, f,=0. (30)
Introduce the £ X B velocity:

Uz =c¢(EX B)/B?, (31)
and set v = v'+ Ug. Equation (28) then becomes

[(v'x B)/c] Volot Eb-vio=0. (32)
Next introduce cylindrical coordinates v, , ¢ and vy in v space, by

v’ =3v, cos + o, sing + bv,. (33)
Then (32) becomes

“?%{fJfEng—l{TfU- (34)

'If E e 0, Lhcp (34) implies £, is constant along a helix in velocity space extending to
¥nf1n1_te velacities, which is unphysical. Therefore, (30) has reasonable solutions only
if E; 1s expanded in 1/¢ also. That is E, = 0(1/e)E. (If this were not the case, the
grez.nly more effective £, would accelerate particles on a cyclotron period time ;cale
until £, is shorted out to the lowest order.) The resulting greatly reduced £, can then
produce a force comparable with the other forces. [See (19)]. It is simp’ller not to
expand E and B _further, but simply to regard £, as smaller by one power of e.

‘ If the E, term in (34) is dropped, the lowest order Vlasov equation says that f; is
independent of ¢, but gives no further information on its dependence on 1, r, v ;nd
v Proceeding to first order we have o

o € vX B e . df;
T +v Vf(}-!-;(Eu-i- c ]'va|+—r;l*Ell'f9—t:}”=0. (35)

Transforming to the cylindrical variables v, , v, yields

eB df, ( fy e .. 9y

me 3% = .W+D.Vf0]+~n;f‘llm. (36)
(The terms in parentheses are not yet so transformed but they must be.)) This
transformation 1s somewhat complex since at fixed v, v, , and o are depcnde;lt onr
and ¢, because » and Uy are, through (31). It is easy to sge that actually the
lfansformation of the quantities in parentheses leads to a series of terms that are
sincs and cosines in ¢, Once this transformation is accomplished it is easy to solve
(36? [qr fi- However, any constant term Jeads (o an f; linear in ¢ and therefore not
periodic with period 2#. Thus, in order to have a proper solution for £, a necessa
and sz,ufficienl condition is that the average of the right-hand side of1(36] \.!anisll;y
Imagine the right-hand side transformed to v, . vy variables and averaged over qb‘
The details of this calculation are straightforward and the result is that (36) can be:
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solved for f,, if and only if

o 0 oo
4 +(Up+ ob)* Vo~ zi(‘;,-.UE-z;..vUE..'Hu“v.b)30L
DU  o? e - \afo _
+| b Di + > (V b)'l'mE.“ _3?'_0’ (37}

where DUg /Dt = 0Uy /3t +(Ug + bv))* vUy:. This condition thus gives the time
evolution of f,. Strictly speaking we should go ahead and solve for f, once we are
assured by (37) that this can be done. But it will appear shortly that we do not need
/, for a lowest-order description of a guiding center plasma.

To complete the system we must add the equations for £ and B, Maxwell's
equations (29a)-(29d). They involve [ so that they also must be expanded in our
small “ parameter” 1/e. To lowest order we have

0=4nY %’ff,oﬁdjv, (38a)

0=dxXe,[fod. (38b)

Equation (38b) is the charge neutrality condition which states that to lowest order in
1/e the total charges of each species must be equal. For a Z=1 ion spccies this
reduces to equality of the species densities. (Any finite charge density is produced by
first-order differences in charge density because of the factor 1/¢). Similarly (38a) is
the current neutrality condition. If we transform the velocity integration to cylindri-
cal coordinates, we get for'(38a)

0=4my, e’:’o Ug +4n), % j_,i'otJHZ'.:riJL do, do,

and the first term vanishes by virtue of (38b) so we have
. e-i
0221.;—1'b=2?ff0”||d3‘3- (39)
§ $

Equations (38b) and (39) are related by the continuity equation derivable from (37)
or even from (28),

anﬂ.r n(]s(b.rr.b)
Zs:e’(—é‘r +Bv—p— ] (40)

so that if (39) is satisfied at some initial time ¢, and (38b) is satisfied (and the other
guiding center equations are satisfied), then (39) will be satisfied for all . Alterna-
tively, if the charge neutrality condition is satisficd and (39) is satisfied at one point
on each line at every time it will be satisfied everywhere.

Equations (38b) and (39) are extra conditions imposed on f;, and do not serve to
advance E and B in time. These conditions are essentially thought to be control on
the magnitude of E,, which is usually chosen to ensure that they arc satisfied. To
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complv:ale our equations we must include (29¢) and (29d) and proceed to one higher
order in the expansion of (29a) and (29b). Thus, (29a) and (29b) become
1 dE

eI
VXB=4WE5:?fvf,,d3v+?E—, (41a)

v-E =4w§esff13d3v. (41b)

}L would‘appcar that it is necessary to cvaluate f; from (36) after all. However, full
1nf(.)rm{1t10n on the dependence of f, is not needed. Transformation of (415:1) to
cylindrical coordinates shows we only need ff,d¢, ff singd¢, and [f,cos¢pde.
These may be obtained by multiplying (36) by 1, sin¢ and cos ¢ and integrating over
¢. An cquivalent set of moments can be carried oui on the exact Vlasov equation
(28) and passing to the zeroth-order limit. But these are simply the MHD equations
of Sections 1.4.1 and 1.4.2. Thus, j to zeroth order is determined by

a,
Znsms( 2% +U,-vb;]=—v-P+j><B+pEv-E, (42)

where the mass velocity U, and the stress tensor P are defined by

= ffo,

P=Ym [f(6=U)o-U)). (43)

Note that thg component of U, perpendicular to & is Ug, while by (39) the parallel
mass v_eloc1l1es are the same for both species. Thus U =U,. On transforming to
cylindrical coordinates the stress tensor may be written

P=p, (I-bb)+ pbb, (44a)

where fis the unit dyadic and
) )
v
b =T [ % 0, (4a0)

= gmsffs(vn—Uw)zdjv. (44c¢)

AAs advertised, (42) determines the part of  perpendicular to 4. The parallel part of
J is a different moment of f; but can also be found from Maxwell’s equations. We
may continue this scheme but it is morc efficacious at this point to change the
emphlflsis from E to U, regarding U as the primary variable and £ as a secondary
variable;

E=—-(UxB)/c. (45)

fro_m (31_). This is particularly true since £ is restricted to be perpendicular to b,
while ¥ is not and determines E automatically to satisfy this condition.
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Solving (29a) for j,, substituting into (42) and making use of (45) gives

U _ (vXxB)XB 1 3
o(S+u VU= - P S S S (U X B)X B
+(U><B)V‘(U><B)' (46)

CZ

where p = Zn_m_. Then substituting (45) into (29¢) gives

dB/dt = v xX(UXB). (47)
Equations (46) and (47) are nearly self-contained cxcept we need f,; 1o compute p
and P. p is given by the continuity equation

dp/ar+ ve(plU)=0, (48)

but we cannot obtain P in any other way than from f,. Thus, the equation
determining f, and thus P, (37), may be considered to determinc the “eguation of

state” of the plasma. Finally, inspection of (37} shows it brings in £, which must be |

determined by the charge neutrality condition (38b) or aliernatively the parallel
current condition of (39). It is possible by combining the separatc moment equations
to show that

Ey=Y.(e,/m)b- VP, /T {nel/m,}. (49)

However, this is a little misleading since (49} arises from the second time derivative
of the charge neutrality condition (38a) and in fact if one secks equilibria, £,
actually drops out of (49).

Our complete system of guiding center equations are (45)-(48) with P defined by
(44a)-(44c) and f, and E| deicrmined by (37) and (38a). Again as in the one-fluid
theory we see that the last two terms of (46) may be dropped as relativistically small.
The system then reduces to that of a one-lluid description with the main complica-
tion occurring through the equation of state. This complication can only be removed
by solving an apparently {ive-dimensional cquation for f,. However, these five
variables ¢, r, v, , v, can be reduced to four by replacing v, by the new variable

p=v:/28, (50)
equal to the magnetic moment of the particle. Equation (37) then reduces to

af, DU; e ) afo

W+(UE+1J"5) vf0+(—b D +uBV b+mE” Gu"_{} (51)

where the coefficient of 3f/du vanishes so that the effective number of variables is
reduced by one. The variable y occurs merely as a parameler in (52) and v 18 the
only real variable in addition to r and ¢. Note that

Ug=U =U-bbU. (52}

The guiding center theory demonstrates how in the absence of collisions the
magnetic field acts to give the plasma almost enough consistency for a hydrodynamic
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description. It interferes strongly with motions across itself forcing all particles to
move together so that all particles in one tube of force stay in that one tube of force.

Equation (51) may be reduced by two more dimensions in linc with the remarks at
the beginning of this section. To do this the Clebsch form is used for any
divergence-free ficld as shown in Section 1.4.4; for any vector field B such that
v+B =0 one can find two scalars a and 8 such that

B=vax vp, (53)

« and B are not uniquely determined, but if they once give B at some initial time 2,
they will continue to represent B by (33) for all ume, provided they sutisly

%%Jru-v.rx:o. %’?+U-V,8=U. (54)
of, in other words, provided they are “frozen™ in the fluid. Since o and 8 are flux
labels, a line of force is always given by a = constant, 8 = constant. This result is a
precise mathematical expression of the fact that lines of [orce are frozen in a plasma.
If we replace the general position variable r by new coordinates «, 8 and /, a
parameter characterizing position along a line of force, then (52) can be reduced to a
“one-dimensional” kinetic equation by transforming to the variables o, 8, I, p, v .
It becomes, with s arc length along B,

3o 3!\ dfy DU
ar ““{ ) al +(‘b' tpBveb+

Dz
provided only that { satisfies {d/ /dt + Ug* v{)=0.
For completeness we collect together the full systems of guiding center equations
for the fundamental variables p, U, B, f,, and E .

eEy\ 3fy
m | doy

ds

-0, (55)

20/t~ v+(pU}=0, (48)
oU UXB)XB
2 o) 5B “
dB/dt= v x{U X B), (47)
P= P;’+(Pu_p¢)bb~ (44a)
0],
PL= gnt.\'ffﬂs_j‘d v, {44]3)
- 2
P||—stff03(”u_U'b) d’v, (44c)
af.r [ afj
Pﬁnt(UE—i-v”b)-vfo_‘—ol(V-Ul ~bvU b+ vnv-b)ju—{l-
_ .. by vl £ Ofos _
( b D¢ v b+mE” do, =90, (37)
e f fos o =0. (38b)
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The double adiabatic theory

As remarked in the previous subscction a collisionless plasma is subject 10
description by {luid equations with the single difficulty involving the determination
of the evolution of the two pressure components p, and p. Chew et al. (1956)
showed that these quantities themselves can be expressed in terms of two equations
of state:

d
a;("% ] =0, .
B2
5 |- .

which apply under the same restrictions as the adiabatic theory of the previous
subsection but with an important additional restriction. The system must vary
sufficiently slowly atong the lines of force that little communication of particles from
points of different behavior along the lines occurs. More explicitly (see Fig. 1.4.1), let
points P; and P, be two points on a line of force at which the plasma properties, p,
T. B, etc., are significantly different. Then in a time ¢ = { /v, particles rom 1 and 2
will mix together and they can no longer be considercd separate units. However, if
significant changes occur at P in a time short comparcd with 7, the behavior at P,
can exert no appreciable affect on P, Particles at P, can be considered to remain
intact and the two-particle adiabatic invariants may be employed to determine the
behavior at P,. p, is proportional to v? averaged over all the particles and to the
density p, while (v? ), by the invariance of g, is proportional to B, s0 we have

py (01 )p X pB.

This, of course, is true following the motion since it is the particles and not their
location that is of importance.

The second invariant is not so familiar. It is v/ where / is the “extension” of a
fluid clement along the line. The quantity / has an amount of uncertainty in its
definition since the particles are dispersing at a considerable rate. However, it is
known that even in free expansion of a one-dimensional gas the mean square
dispersion of velocities decreases as the density does and moreover is inversely
proportional to the length of the element of gas squared. (This can be secn for a gas
initially of finite length, the particles of slowest velocity staying near the initial
position.) For our case the length [ is proportional to B/p since the volume of a tube
of force is inversely proportional to p, while the cross sectional area is inversely

Fig. 1.4.1. A linc of force. B.
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proportional to B. Thus, the parallel pressure goes as
P« P<Lﬁ> X p/1* @ p’/B2.

A more formal derivation is as follows: The condition that points P, and P
;cmalél ll)ﬂlé};:}ll cl‘cz.lrly means that there is no significant heat exchange betwc::n point:
h, anfl 5~ Thus, in the. second moment of the Viasov equation we may neglect @ the

eal flow tensor. Multiply (28) by m (v — U, }(v — U,), integrate over all velocities at

a fixed point r. By charge and cur i i
. . ntr. rent neutrality U is the same for ions
if a single ion species is assumed. Then: ’ and clectrons

d

drP‘+ V-OS+F':V'U+F§'VU+(F;*VU)"+me—3c(B><P3+P:XB)=U,
5

57
where the superscript tr indicates t iadi : . .
Q, is the triad: P ranspose of the diadic, P, is defined as in (43), and

Q.=m,[(v-U)(o-U)o-U,) db. (58)

As before, we regard the last two terms as dominant because of the factor e /mc (the

g n 5 )’ )
S]I[E]H y] atlo ]adlus ex]]an 10N ihl.lS ‘0 lﬂwesl 51 IlIflCle’lt oldel th ¢ssure ‘
g 4 pr 0

BXPy=PyxB. (59)
The most general solution of this equation is
Py=p, (I-bb)+ p,bb, (60)

where the two scalars (so far) are arbitrary functions of time and space.

y

e
LR, == -
0s mer(RelXB BXP,), (61)

:::]eg: P“lts (tihe flrst-qrdcr pressure. The nccessary and sufficient condition that this
e solved for P, is that the trace of this equation vanish and also that it vanish

when dotted with & on the right : i i
' ght and left sides. Performing th ati
dropping Q and summing over s, gives e fese operafions

(d/de)(2p, + py}+{(2p, + py) v-U+2p, (VU - b vU*b)
+2p b VUb =0, (62a)
(d/dt)p,+ pyvU+2p b vU-b=0. (62b)
U can be related to the rate of change of p and B by (48) and (47): |
dp/det=—-pv-l, (63)
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and
4B/d1 = bdB/dt = b v X (U X B)+U- vB] = B(b: vU-b~ v-U), (64)

so that (62b) becomes
dpy _ 3pyde 2Py dB (65)

dt p di B dt’

This reduces immediately to (56b). Subtracting (62b) from (62a) and using (63) and
(64) again yields
2dp, _2p,dp_ 2P 4B _,
d¢ p dt B ds ’
which reduces to (56a). o
Thus, the double adiabatic equations of state result from the gu‘ldmg center
equations and the dropping of the heat flow. We can reduce the_exprcsmon for @ b_y
making use of the special form of f;, derived in the previous section from (34), that is
its independence of gyration phase ¢. Q can be writien

Q=2g] (Ib+ bl +15) +24;bbb, (66)
where
2
qlszmsf%}_(vnﬁu.b)fd%’ {66a)
qf|=2msf(ﬂu‘u‘b)3fd3v, (66Db)

and the symbol tr denotes the third possible transpo;.ition of the triad Ib. ¢ is the
parallel heat flow of perpendicular energy while gj 15 the pa_rallel_ flow _o_f parallel
energy. They are only small if f is nearly symmetric, the situation arising when
macroscopic plasma parameters vary slowly along B. Also

Trv-Q=>5 v{10g, +24;)—(10g] +24;)(* vB)/B, (67a)
and
bo(v+Q)b=b-v{6q +2g;)—2(qi +q;)}(s- VB)/B, (67b)

so the derivative reduces the heat flow term by an additional factor proportional to
the slowness of variation along B. . ' . .

To summarize the double adiabatic formalism, it is identical with the sul1gle-flu1d
theory, (1)-(4) and (10), with the single change that p is rcplace_d by the divergence
of the tensor pressure P, with the two scalars p,, py determined by the q()ub!e
equations of state, (56a) and (56b). Again it can be seen that the d(‘mb?e adiabatic
formalism is holonomic: all quantities can be expressed in terms of the displacement
vector and can be reduced to a Lagrangian formalism. _

These nice properties plus the apparent generali;anon allowed by a nonscalar
pressure have made the double adiabatic theory quite popular. Unfortunately, the
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stringent conditions of very slow varnation along magnetic lines of force imposed by
the neglect of Q greatly himit its applicability, at least when accurate results are
desired. On the other hand, the equations can be applied to solve problems beyond
their limits of applicability, and the answers obtained are grossly inaccurate. This
will be jllustrated by an example in Section 1.4.5; namely, the computation of the
criteria for stability against the mirror instability when a homogeneous magnetized
plasma has unequal perpendicular and paralle] pressures. This easy applicability of
the formalism beyond the range of its validity makes it somewhat dangerous.

1.4.4. Consequences of the MHD description

The ideal MHD equations and, to a lesser extent, the double adiabatic equations
and the guiding center equations possess some nice properties that often may be
employed to draw some intuitive conclusions concerning plasma behavior without
solving the equations in detail. They consist of some general global relations,
comservation equaltions, and vinal theorems, and also of the flux and line conserva-
tion equations which may be thought of as detailed conservation equations.

Conservation relations

The three quantities conscrved by a plasma are linear momentum, energy, and
angular momentum. To write them down for the ideal one-fluid system the force
equation is first rewritten as:

U XB)XB
p-gr=—pU'VU+%— vp—pVe, (683)

where use has been made of (4) to eliminate j and the gravitational potential ¢ with

g =— v¢ has been introduced. Multiplying the coatinuity equation by U and
adding gives:

(a/80)(pU)= = vT-pvo. (68b)
where
B’ BB
T=+pUU—(E-I-H)—pI (69)

T represents stresses exerted on any surface: the first terms are Reynold stresses; the
second, magnetic stresscs, magnetic pressure and tension; while the third term is the
pressure stress. Integrating (6%9) over a fixed volume V, and employing Gauss’s
theorem gives;

f;; prUd'r = fS'Fds + fypgd*r. (70)

The term on the left is the rate of change of the plasma momentum in the volume,
the first term on the right represents changes in this momentum due to forces
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exerted on the surfaces, and the last, changes in this momentum due to gravitational
forces. If the system: were isolated and g zero, then the total linear momentum would
be conserved. [This is actually impossible (see the virial theorem below) but il the
gravitational force Is self-consistent, produced by the plasma, the gravitational force
can be writlen as a divergence and the linear momentum is actually conserved, as for
example in an isolated star.] In any event the linear momentum density of a plasma
is simply pU and includes no magoetic field contribution. Its change may be
estimated by the forces on the surface. The electromagnetic contribution is relativis-
tically small and not included in our equation.

A more significant conservation relation is that of encrgy. It is obtained by frst
multiplying (68a) by U and making use of the continuity equation to obtain

2 . 2
_a._( '&)=+MM—U‘VP—9U'V¢'V‘(DEFU). (’“)
at 2 4n 2

The left-hand side represents the rate of change of kinetic energy per unit volume.
The kinetic energy is changed as a result of corresponding changes of the magnetic
energy (the first term on the right), pressure energy {the second term) and gravita-
tional energy (the third term). In fact, multiplying (10) by B gives:

3 (B2 . vX(UXB)

a("s?)-"—r : (12)
Equations (3) and (1) give:

d{ p \__Uvp ¥ .

5;(?-—1)* ey pivis 4 (73)
Equation (1) gives: '

(3/0)(p9) =— v+(pU)9, (74)

(¢ is assumed to be independent of time). The quantities on the left of (70)-(74) are
the rates of change of the magnetic, pressure and gravitational energy densities
respectively. Each of these expressions is cqual to a term that corresponds to one of
the terms on the right-hand side of (71}. In other words, any change in these energies
can produce changes in the kinetic energy density.

Adding (71)-(74), integrating over a fixed volume V, and making use of Gauss’s

theorem yields

d&, d pvV? B? P
& -af(Tww*v—l“‘* e

2 UxB8B
=“de.(P_[2}__U+BX( - )+Y11PU+PU¢)- (75)

4m

Thus, we may safely identify the left-hand side with the time rate of change of &,
the total energy inside the volume V, and the integral on the right-hand side with the
loss of energy through the surface S. The energy consists of four types: kinetic
energy, magnetic energy, pressure energy, and gravitational energy. Almost any
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macroscopic plasma process consists of exchange of various forms of energy together
with loss of energy through the surface. From (75} this loss can be seen to coasist of
direct loss of kinctic energy (first term), Poynting flux (second term, since U X B =
— ¢E), thermal energy and pdV work (since ypU/(y — 1) = pU/{y— 1)+ pU], and
finaily of gravitational work represented by fluid entering at one potential and
leaving at anocther. (The Poynting flux can also be thought of as loss of magnetic
energy plus a magnetic PdV work.)

If the system is effectively isolated, say by rigid infinitely conducting walls at
which B+n=0 at some time, then 8 -2 will continue to be zero at all {imes and
U+ a =0 so the right-hand side of (75) will vanish and the energy inside the volume
will be conscrved.

Finally, a conservation relation can be derived for angular momentum, in com-

plete analogy to (70). Take any point O as the origin and let r be the radius vector
from this point. Then

d
afyr X pUdr =fs(r X TydS+ fyprx gdr. (76)

The .zmgular momentum again resides solely in plasma motions. This relation is of
considerable use in discussing outflow of angular momentum from the sun via the
solar wind.

Another important integral relation for a plasma is the virial theorem. Define with

respect Lo an origin O the tensor moment of inertia of a plasma inside a fixed volume
14

i, = prrrd'r. (77)

Differentiate twice with respect to time making use of the ideal MHD cquations and
neglect surface terms and gravity

di, dp
—aﬂrv—ﬁ'ﬁrrd7= —ny'(pU)rrd'r=fp(Ur+rU)d'r, (78)
a1y JlvDr+rv-Tldr=2{Td
= — fr+rv: T= .
% J rds (79)

Then %f the plasma remains in a finite region of space over a long period of time, we
may time-average (79) and drop the left-hand side. There results from (69)

<f[pUU+(gf—%)+pl]dT>=0‘ (80)

This is the vector virial theorem. { ) denotes a time average. Deviations from this
equation can result from surface terms so this cquation applies only to an isolated
system. Taking the trace of (80} yields

<f(pul+8‘1;+3p]d¢>=o. (81)
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Since the integral is clearly positive this then shows the impossibility of an isolated
(without coils) force-free system. On the other hand, if a self-consistent gravitational

term is included,

2
<f[pU2+€;+3p+£§—)dT>=0, (82)
so gravitational energy, which is always negative, can balance the other three types
of energy. {Note that the first term is twice the kinetic crergy, the second term is just
the magnetic energy, and the third term is 3(y — 1) times the thermal energy, equal to
two times for y = 5/3, while the last term is the gravitational energy.]

A fina} important theorem concerning ideal MHD systems is that the system is
derivable from a Lagrangian. In order to understand this theorem maost easily it is
necessary to regard each plasma fluid element as an entity. Any flow pattern
between times #, and ¢, should be viewed as a set of time-dependent displacements
£(r,, t) of each of the fluid elements from its initial position r, at { = ¢, to its final
position r,=r,+§ at 1. A possible motion consists of a dependence of the
displacement £(ry, t) on . Then Hamilton’s principle for the ideal MHD equations
states that the motion that makes

L={"fdr, (83
J, )
stationary, where
2 2
hf(-‘ﬁ——"—--ﬂ— dr, (84)

is the true dynamical one that satisfies the ideal MHD equations, and conversely. 1t
is to be understood that for any displacement function £(r, (), dynamical or not, the
quantities p, p, and B are to be determined by solving (1), (3), and (10) respectively.
We know that these quantities are determined holonomically and do not depend on
the detailed time dependence of §(#r, #)-

For the proof of this result let us consider a given motion §(#,, 1) and determine a
neighboring motion by specifying the Eulerian function 8§(r, ¢) which is defined to
be the diffcrence between the position of the {luid clement at time ¢ that would have
been at r under the unperturbed motion, and #. Then it is casy to see that the
perturbations in the quantities p, p, B at position r under the influcnce of the
perturbation of motion are

p;=— v-(p8f), (85a)

pi==1p V+{(86)= 8¢ Vp, (85b)

B, = v X (8¢ X B). (85¢)
It remains to determine U,. The perturbation in the fluid element velocity is

38¢ /3t + U- v 8§,

by definition of 8§. But this perturbation is at r+ 8¢ and is therefore also equal to
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U, + 8¢+ vU. Hence
U =038/t +U-v8§— 8¢ vU. (85d})

aL=j68d:

=fdffdr[pU-(%§+U- Vg — 8¢ VU)

. U2 ypv-8¢ S¢-v 1
v+(pd§) 5+ — + i_IP—EB-vx(ExB)]. (86)
Then integration by parts shows that §L = ¢ ishi i
boundaries, if and only if (2) is satisfied. ¢ for all o vanishing at f, f, and spatial
. The existence of this Hamilton’s principle for the MHD equations is extremel
important, It can be shown to underlic most of the general results on MHD such az
self-adjointness with steady flow, energy principles for stability of static equilibrium
and energy cgnservation (Kulsrud, 1968). Further, it has been shown that small-scalé
hydromagnetlc waves preserve wave action, that is they can be thought of as
(1{; :;{r}l )uzcd, and this also is a direct consequence of this Lagrangian approach (Dewar
This section has so far exclusively discussed the properties of the one-fluid ideal
MHD equations. All of these properties are also possessed by the double adiabatic
formatism if we replace p and y by the appropriate generation. For example
p/(y — 1} should be replaced by p, + p, /2 in (75), (80), and (84) while 3p should be
replaced by 2p, + p| in (82). Similar results appear to hold for the guiding center
theory, although they have so far only been effectively determined in certain limiting

situations. The reader is referred to the litcrature for detail ; , i
Kulsrud, 1962). tails (Bernstein et al,, 1958;

Flux frozen in plasma

Prqbably the most useful of the intuitive concepts implied by the ideal MHD
equations, as well as Lhe guiding center theory and the double adiabatic theory, is
that concerning the magnetic flux lines frozen in the plasma. Precisely stated ;he
flux conserving theorem is as follows: ,

Assume that at some mitial time ¢, magnetic lines ol force are drawn throughout
the plasma volume in such a way that their density is proportional to the ficld
strength B, and they are everywhere tangent to 8. (For simplicity we take a finite
but very large number of such lines so their density is not precisely determined at
cach point but can be defined to any desired precision by taking a sufficiently large
number of such lines.) Then at time {; the magnetic field 8 is completely represented
by lhc::.c lines. Let the plasma flow with velocity U and Jet the magnetic field evolve
according to (10). At the same time let the lines of force be bodily transported by
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this velocity U to some new configuration, just as though they were “{rozen” in the
plasma. Then, at any later time 7, the configuration of the lines at that time will
represent the magnetic field at that time both as to field strength given by line
density, and direction given by the tangents to the lines.

This theorem holds true to the extent that (10) does. That is, if B deviates from the
field given by (10) due to finite resistivity, it will deviate from the field given by the
line configuration to exactly the same extent. Since the displacement of the lines
evolves in a continuous Manner, their topology must be preserved. Closed Lnes
remain closed, ergodic lines remain ergodic, magnetic surfaces existing at time /,
continue to exist, etc. This flux-freezing concept is often a very critical one and it is
important 1o know under what conditions it can be broken. The plasma can
occasionally be kept from reaching a state of much lower magnetic energy by this
constraint alone. A change in topology which may be produccd by a breakdown in
(10) over a very small region, say near an X point, could conceivably lead to a large
conversion of magnetic energy to Kinetic energy in a plasma. This possibility 15
usually termed the reconnection problem and it is a problem of great interest since
its resolution could conceivably lead to an explanation for certain observed violent
plasma behavior such as disruption in tokomaks, solar flares, ¢ic.

There are two mathematical ways to express the theorem of flux freezing. The first
is the Lundgvist identity, while the second makes use of the Clebsch formula
(Lundgvist, 1951).

The Lundqvist identity expresses the magnetic field at time ¢ and position r In
terms of its value at time ¢, and a different position #

B(r,0)/o=[B(r.10)/p) Vor(r. 1)- (87)
In this formula r is understood 1o be a function of r, and ¢ which represents the
position of the fluid element at time ¢ that occupied the position r, at initial time ¢,
The subscript 0 on v, indicates that derivatives are to be taken with respect to r, at
fixed 7. Let By and p, represent B(s, t,) and p(7, 2g) respectively. To establish the
validity of (87) it is first shown that it satisfies {10). Making use of (3r/d1), =U
gives

d (B _ B
where d/d¢=3/9t+tU- v = (9/31),, Also

vx(UxB)=Bovv—UovB-Bv-U,

0
3B dB
-E--VX(UXB)_-‘E-I_—B vU+Bv-U
e ldp, pooy-Bde
__—pG(BD V“U)+pdrB B:vU 5 di
p
=——[Bn'VoU—(Bn'Vnr)'VU]a (89)

Po
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where the first line follows from the definition of d/d¢, the second line from (88)
and (1) and the third from substitution of (87) for B. The bracket in the third lin¢ of
(89) vanishes because of the chain rule for differentiation. Thus, (87) satisfies (10}
for the cv@ution ol the magnetic tield and is valid initially, so it remains valid for all
LIt rc!atlon to flux freezing can be seen geometrically. (B;* v,r)/ B, is the shearing
of a unit line element along the initial line of force by the flow, so (807) states that B
continues to be parallel to the shcared line element. Also the line has been
lengthened by the same shear flow, but factor p/p, represents the decrease in
vc?lumc This combined with the lengthening of the line clement gives the shrinking
of the cross-sectional arca which thus represents the amplification of the density of
the lines of force,

' The other alternative mathematical method for describing flux conservation
involves the Clebsch formula for expressing an arbitrary divergence-{ree vector field
such as B in terms of two scalar functions

b= vex v (90)
If such a and # scalars exist, 8 given by e o ds

: . : y (90) clearly is divergence-free. Furt
dotting (90) with va and with V.B givcs g urther,

B' Vﬂ=0, Bo VBZO, (91)

so a and ,8 arc constants along lines of force and, indeed, a general line of force can
be determined by a=«a,. B =B, where «, and B, arc constants. Lastly becausc
JS= (3- va X VB/B)= B is the Jacobian for a transformation from coordinates » ;0
coordinates «, 8, !, where [ is arc length along the lines, we can sce that dadg
represents the element of flux. That is, if we parametcrize a surface S cutting the
11n_es by @ and § then dadf is the flux through the corresponding element of area
(Fig. 1.4.2). Thus, if we select the lincs of force by a uniform distribution of values of
a and B, their density will be proportional to the magnetic field strength B.

The at?ove'properties of a and 8 show how they can actually be found to satisfy
(90). As in Fig. 1.4.2, choose a and 8 arbitrarily on S and extend them through all

%phacc so as to satisly (91) and B+ ¥’ =0, i.e. by keeping them constant on B lines
en ‘

Bx(vaX vB)=B-vf' va~B-vavyp =0,
$0

B=g(vax vg’),
where g is a scalar, From v+ B =0 we have

(vax vp') vg=(B-vg)/g=0,

so g is constant along B lines, and thus a function of « and 8, g = ’
choose 8 to satisfy B's g = g(a,B’). Now

3B/ = gl B). (92)
Then for this & and B8 (90) is easily verified.
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-
dgedf3=8B-dS

’
5%

Fig. 1.4.2. Clebsch coordinates a and fi.

Now « and 8 are clearly not unique. However, once they are chosen to rep resent B
at some initial time f,, they can be chosen at any later time by demanding they stay

constant on any fluid element; that is, they satisfy
(92a)

(92b)

da/dt +U-va=0,

ag/ot+UvB=0. .
Then B as given by (90) satisfies (10) and thus continues 1o give the magnetic field.
For

%(Vax vB)- v x[Ux{vax vB)]

= V%‘ix vB+ vaX VEE— vx[U- VﬁVH‘U‘V“V:B]
{

Bt
=— y(U: va)X vB— vax v{U- vB)
- v(U-vB)X va+ v(U- va)x v =0,

where the second line fotlows from expanding out of the triple vector product n thi
bracket in the first Jine, while the third line follows from (92) and 1aking the curl o
the bracket in the second line.

The properties of a and clearly correspon

conservation theorem. . ‘ N
A constant of the motion of considerable recent interest is the “B A invariant” of

| Taylor (1974). It is closely related to the linkage of magnetic flux. Consider the

d to those of magnetic lines in the flux
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integral

K= {a-Bdr (93)

where the integral is taken over a bounded fixed volume V at which B is tangential.
This integral is gauge invariant, If 4 is replaced by 4+ ¥y, then the change
induced in K 18

61{=vaxd'r=fv-(Bx)d'r=fB'nde=U (94)

since B-n = 0 on the surface. (This argument assumes the vector potential and gauge
are changed throughout all space, not just in V, so that we can be certain that x is
single-valued.) Select a gauge with E = —(1/¢)dA /d1). Then the rate of change of
K with time is given by

dK
=l
oA JB JB
—f[_ V'(?XA)+E'A+A'W}(17

dA
—den-(WxA)+f2A-vx(UxB)dr

a4 B
o (vXxXA)+4- o )dq-

+.:fds(an)-A —2fv-[A X(UXB)]d'r+2fB-(U><B]d—r

f

_{ds-(nxA)-(UxB)=0 (95)

where (10) has been employed in the third line; the surface term vanishes in the
fourth line because the tangential component of £ vanishes on an infinite conducting
surface. Thus, K is a constant of the motion for an ideal plasma,

The physical significance of X is that it represents the amount of flux linkage of a
field, for example the amount of linkage of toroidal and poloidal flux in toroidal
geometry {Kruskal and Kulsrud, 1958). Thus, it s not really an independent
constant of the motion but cxpresses a topological quantity related to line and flux
conservation. However, Taylor {1974) has pointed out that X is actually not changed
by certain resistive instabilities and reconnection phenomena so that it is actually a
more general constant, of considerable importance.

1.4.5. An example

The guiding center formalism will be illustrated by an example which will also
bring out the limitations of the double adiabatic formalism.

Consider a homogeneous, magnetized, ion—electron plasma with unequal per-
pendicular and parallel temperatures. Take the uniform field B, in the = direction.
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For simplicity take the equilibrium distribution 1o be a bi-Maxwellian with unequal
perpendicular and parallel temperatures:

2 2\
" ( mor MY

=S e -
(2am, )3,2 T, 1, v

I, : (96)

] LT, e,

Consider a sinusoidal perturbation of this plasma proportional t0 exp(—lw! +1k X
+ik,z). Under what conditions is this perturbation unstable?

If the plasma displacement £, with U= —iwé is introduced into the fluid equa-
tions (46) and (47), then these become

1 By,yvB
—pwit=— VP — e V(B B)+ _0'4?—!1

B, =ik £ By —ik, £, Byt (98)

where the subscript or superscript | indicates perturbed quantities. From (44a) the
perturbed pressure is given by:

(97)

Pa=Pl'+(Ph“pl)bb+(P”—pL)(blb+bb.)- (99)
Now from (98)

B, =—ik,£, By, (100a)

b, =ik ¢, £, (100b)
S0

v-p, = [ik,py —(py = puKIE) 2+ [k py— oy = s Ve k£, (101)

Substituting (101) in the equation of motion (97} and taking the x and z components
gives two equations:

- pwzéx = _lkxpl + k?(p”-' PJ.)Exv_(ki + kzz)(B(i/‘hT)gx, (1023)
—pw2£z=_ikzp;|+kxkz(p'|1—-pJL)‘gx* (102b)

for £, and &,. In order to complete the syslem equations of state for p} and pj are
needed.

Up to this point the double adiabatic theory and the guiding center theory
coincide. They differ as to the determination of p) and pj, however. First the
equations are completed by invoking the (wo equations of state, (56a) and (56b), of
the double adiabatic theory, 1O ¢Xpress p, and pj in terms of £, and £,. Since from
the continuity equation (48) p, = —i(k, £, + k£, then from (100a)

7y o0 B . :

£ DV =20k —ik.£_, 103¢
PL P By ek L ( Y
Pil 3p, 2B, . .

Fuo_-Av_ 270 o 'lkx'fx"31k"‘5-- 103b
Py e B, o { )

Substitution of (103a) and (103b) in {102a) and (102b) yields two equations for §,

1.4. MHD description of plasma 143

and £, alone. Setting the determinant of these equations i i
squation for a quations to zcro gives the eigenvalue
2p2
2_ .2 2 k BU
2k —= —k?
[P‘-‘-‘ (( x +k:)PJ_ + 4o kzp“)](pwz—3k12p“)=k§kfpi. (104)

It 15 easy to sec that the roots of w? are real. We have instability if one of the roots
for w? is negative and the condition for this is

B; P B2
— 4 1_,. £ .2 i —
87 ‘n*( 6;1“] +A:(4-n-+pl p“)~<0.

This is negative if k., =0 and

2k?

X

py> P, + Bi/4m, (105)
the “fire hose instahility”, or k. — 0 (it must not vanish) and
pl/6p,> B /87 + p, (106)

the “mirror instability”. Equations (105) and (106) are the stability results derived

. from double adiabatic theory.

The guiding center theory is now uscd to find p] !

, : p, and pj and to complete (102a)
and .(102b). Act_uaily p, can be determined from £, alone émcl only (102a} need be
considered. p| is f‘ound f_rorn /' which is given by solving (51), for example. Let
f = fo+ f,. Then, since B is the Jacobian of the transformation to g, v, variables,

Py = stffsluB( de)dv“dqb,
and
2B
[ 2 3 I
P gm,fmadw—ﬁ.jpl- (107)
Perturbing (51) and using (96) gives

[_ kxkzéx(vi /2)+ (es/ms)EII] -"?I_‘_U”
—iw +ik T fe (108)

Slis

Iy

NLdI‘ lhe Il‘largli’lal p b 1llt 5‘ bc nc ICLted in the deliOIl lndt()[
01Nt I(}I ")[ab )‘ w ma
W«JC,('J/J]T)‘/ ]‘lIld g 1 [lf

fis=1k,E, ?;;f L= ;;i”f, (109)
Now from charge ncutrality E, can be determined to be
£ = %{kxé—x) (7, /7)), — (T, /Tu)c‘
(/7,0 = (1/T) (110)
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For simplicity, (T, /T}); is taken 10 equal (T, /7)), so that E,=0. Substituting
(109) (with E, = Q) into (107) and making use of (100a) gives

T2 .
eI Lo EECTENR (1)
s 0/s
and if, further, 7. ; is taken to equal T,
2
p1=2ikx£x(£**—m)- (112)
Py

Then for sufficiently small w (see above), from (102a}.

BZ pl B?.
2 92 -0 _ £ 2 0
pw ?'kx(pL+8ﬂ p11)+k:(p'1'+4'?j' P”)‘
Again we have the fire hose instability if &, = 0 and (105) is satisfied. However, the
condition for the mirror instability is changed to k, —» 0 and

(22 /py) > ps +(Bg/87),

a criterion differing substantially from {(106) (by a factor of 6).

The reason for the different criteria for the guiding center theory of the mirror
instability and the double adiabatic theory is that w must pass through zero so that
particle communication sets in over a distance k™' along the lines in a time short
compared with w™', so the condition necessary for the validity of the latter theory
fails.

This example illustrates the dangers inherent in the double adiabatic theory, since
the failure of the validity conditions to hold really only becomes evident after the
more accurate guiding center theory is carried out. The fire hose instability theory
remains valid since, as can be seen from intnitive picture of the instability, parallel
heat flow plays no role.
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