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Although the wndular instabilities of a stratified horizontal magnetic field have been
studied in a number of contexis we believe that the physical mechanism responsible
for the instability has not been fully explained. In this paper we present a new
explanation of why these instabilities occur, considering in detail the differing cases of
two-dimensional and three-dimensional motions,
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1. INTRODUCTION

The pressure distribution within an electrically conducting gas is
affected by the presence of a magnetic field. One particular conse-
quence of this is that a horizontal field which increases with depth is
able to support more mass against gravity than would be possible in
its absence. An equilibrium state with such a field is therefore top-
heavy, to some degree, and conseguently may be unstable, the
instability mechanism being known as “magnetic buovancy™. Insta-
bhilities of magnetic fields due to magnetic buovancy are of consi-
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derable importance in astrophysics, being at least partially re-
sponsible for both the structure of the interstellar magnetic ficld
[Parker (1966) and several subsequent papers—see especially Parker
(1979)] and also the escape of magnetic flux from stellar interiors
(Gilman, 1970; Acheson, 1978, 1979; Hughes, 1985a, b). In this paper
we shall study the linear stability of an electrically conducting gas at
rest with a horizontal magnetic field, B(z)% with all diffusivities
taken to be zero. Instability can then occur only via an exchange of
stabilities.

There are two distinct unstable modes. One is the interchange
mode in which the perturbed magnetic field lines remain in the y-
direction, the other is the undular mode in which the perturbed field
lines are wavy. Interchange modes can only be unstable if a flux tube
displaced upwards finds itsell less dense than its surroundings, the
condition for the atmosphere to be so top-heavy being given by
(g/c*)d[In(B/p)]/dz= N*/V3, where gravily is taken to be acting in
the positive z-direction, ¢ is the adiabatic sound speed, N is the
Brunt-Viisdli frequency and V, is the Alfvén speed (see Tayler,
1973; Moffatt, 1978; Acheson, 1979). Thus these modes are directly
analogous to the familiar Rayleigh-Taylor instabilities arising from a
heavy gas overlying a lighter one.

The most interesting feature concerning the undular modes is that
they can be unstable when the interchange modes are stable,
essentially relying on an increase of B (rather than B/p) with depth.
Consequently the instability of these modes cannor be explained
simply as a Rayleigh-Taylor phenomenon—something more subtle is
taking place and it is the aim of this paper to present a new
explanation of the physical processes responsible for the instability.

Undular modes for a layer of magnetic gas were first studied by
Mewcomb (1961), who used the energy principle of Bernstein et al,
(1958) to show that a necessary and sufficient condition for insta-
bility is that dp/dz <p®g/yp somewhere in the gas. Since the static
distribution of pressure and density are affected by the magnetic field
this criterion has an implicit dependence on the magnetic field and,
as shown by Thomas and Nye (1975) and Acheson (1979), may
alternatively be expressed as (g/c?) d[In B]/dz> N*/V3. Gilman (1970)
considered these modes under the assumption of infinite thermal
conductivity, thereby annihilating conventional buoyancy effects,
whilst the more general problem, incorporating magnetic and
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thermal diffusion, together with viscosity, has been studied by
Acheson (1978, 1979), using a local analysis, and by Hughes (1985a),
using the magneto-Boussinesq equations (Spicgel and Weiss, 1982;
see also Corfield, 1984). The stability criteria of Gilman (1970),
Acheson (1978) and Hughes (1985a) depend crucially on the flow
being three-dimensional and are valid for incompressible lows; both
Acheson and Hughes assumed incompressibility from the outset and,
although Gilman did not, his stability criterion is unaltered by this
assumption. For two-dimensional instabilities however, compressi-
bility is essential. and consequently analytic progress can be made
only for certain special atmospheres (Parker, 1966; Zweibel and
Kulsrud, 1974).

The most common explanation of the instability mechanism for
undular modes comes from considering the behaviour of an isolated
magnetic flux tube and applying this behaviour, erroneously we
believe, to the case of a magnetic layer. As explained by Parker
(1955), raising a section of a flux tube will cause a drainage of gas
away from the elevated section, thereby increasing the internal
magnetic pressure relative to the external gas pressure and conse-
quently enhancing the magnetic buoyancy of the raised portions of
the tube, It has been argued that in a magnetic layer an undular
perturbation of the field lines would cause the same effect; namely
that fluid would run away down the wavy field lines from the
“summits” to the “valleys” thereby causing the crests to become
lighter and expand further, the troughs to become heavier and be
depressed downward. We believe this explanation to be unsatis-
factory on two counts. First, we consider it to be a non-linear
explanation of a linear instability. The drainage flow argument states
that the instability succeeds as a consequence of the crests being
lightened by the flow and the troughs being made heavier—success
therefore depends crucially on the alteration of the mean state, a
non-linear effect. Our second, and major, objection though comes
from the fact that the argument makes no mention of either the
magnetic field gradient or the stratification of the atmosphere, two
essential ingredients for determining stability. Since the overall
stratification is not top-heavy (interchange modes stable) then, a
priori, there is no good reason for any runaway flow—surely one
would naively expect displaced gas just to return to its initial
position. Indeed, if the presence of any wavy magnetic field is such
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as to cause a runway flow from crests to troughs, could not any
atmosphere be so destabilised?

We believe that the explanation for the instability mechanism is
somewhat different. For stratifications of the magnetic field such that
the undular modes are unstable, but the interchanges stable, there is
gravitational potential energy available for instability due to the field
increasing downwards, but the atmosphere is not sufficiently top-
heavy that this can be released by a straightforward inversion of the
gas. For undular modes the release of this energy can be accom-
plished by doing work solely against the thermodynamic pressure
whereas for interchange modes work must be done against both the
thermodynamic and the magnetic pressure. In Section 3 we shall
elaborate on this mechanism and shall show how instability is
achieved for both two- and three-dimensional disturbances.

2. MATHEMATICAL FORMULATION

We shall consider a layer of electrically conducting gas confined in
the vertical direction by rigid surfaces at z=0 (top) and z=d
(bottom), with gravity acting in the positive z-direction. In equilib-
rium the magnetic field is horizontal, in the y-direction, the field,
pressure, density and temperature depending only on z. All diffusi-
vities are taken to be zero. The equilibrium field variables therefore
satisfy the well-known equations,

O=—dp/dz+pu; (VxB)xB-2+pg, p=RpT

Elimination of p between these two equations leads to the following
expression for p,

z z B z
p{z}=exp[—i]“{:]dzi|{pu j?d_ HP[£ Tiz) dz:| dz}.

where plz=0)=pg and T'(z)=d{ln T)/dz—g/RT.

To obtain numerical selutions the goverming equations are made
dimensionless by scaling lengths with the layer depth d, density with
g, temperature and magnetic field with some average values, T, and
B, respectively, pressure with the magnetic pressure Bj/u, and
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velocities with a typical Alfvén speed V,=(BZ/uope)''®. We shall
denote the velocity by m=(w, v, w), the magnetic field perturbation by
dB=(b, b, b;) and the perturbations of pressure, density and tem-
perature by dp, dp and 8T respectively. The linearised equations are
separable in x, y and ¢ with all variables proportional to ¢ and with
by proportional to sin{xcosmy; ba, w, dp, dp and §T proportional to
coslxsinmy, by and v proportional to coslxcosmy and u propor-
tional to sin[xsinmy. The dimensionless governing equations may
then be expressed as follows.

The perfect gas equation:
dp/p=20dp/p+6T/T.
The equations of motion:
psu=1{dp+ Bb,) —mBh,, psv=—mdp+b,DB,
psw = —D{dp+ Bb,) —mBh, + idp.
The continuity equalion;
sdp = —lpu+mpv— D{pw).
The energy equation:
(s8T+wDT)+(y— D T{lu—me+ Dw)=0.
The selenocidal consiraint on B;
by +mh, + Db, =0.
The magnetic induction equation:
sh, =mBu, shy;= —1Bu— D{Bw), shy=mBw,

In these equations the perturbation variables are now just functions
of the vertical coordinate z, the operator D denotes d/dz and A=gd/V 3.



T0 D. W. HUGHES AND F, CATTANEC
3. THE INSTABILITY

As stated in the introduction, it is our beliel that the undular modes
are destabilised not as a consequence of the pas draining from the
crests to the troughs of the magnetic field lines, but instead by the
release of the gravitational potential energy which is available by
virtue of the magnetic field stratification. In this section we explore
in some detail, for both two- and three-dimensional motions, just
how this energy is released,

3.1 The two-dimensional instability

For these motions [, by and w are all identically zero. Confinement of
the motions to the yz-plane presents a severe obstacle to instability
and one which can be overcome only by compressible motions.
Patker (1966), using a normal-mode analysis, and Zweibel and
Kulsrud (1974), using the energy principle of Bernstein er al. (1958),
have studied such instabilities for the special case of an atmosphere
with constant Alfvén speed; these modes however are not captured
by the approaches of Acheson (1978) or Hughes (1985a), both of
whom assume the flow to be three-dimensional and essentially
incompressible. Indeed, in the Boussinesq limit, it can be shown that
the only possible modes are purely oscillatory Alfvén waves (see
Appendix A).

In order to see how the instability works we shall employ the
energy principle of Bernstein et al. (1938), which is described in
Appendix B. This principle yields the change in potential energy, W,
arising from a small displacement of the gas, the system being stable
if W =0 for all possible displacements and unstable if there exists a
displacement which makes dW<0. From equation {B.6) we know
that the formal minimisation of W for two-dimensional undular
motions is given (in dimensional quantities) by

o
SWoin=1% [ (g0’ — (P2 /yp)]E2 + BPuy ' €2} dz, (1)
(1]

where £, is a displacement in the z-direction and a prime denotes
differentiation with respect to z. The corresponding expression for
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interchanges [equation (B.5)] is
oW . =1? I "_[ 202 e _I_BZ - l”}q]d" 2}
min Eﬂhgp PR .'{.IP _“u §= s [

Obviously instability can arise if p'<(0, which is the case in a non-
magnetic Rayleigh-Taylor instability. However, for the cases we are
considering the density increases with depth and hence the negative
definite terms in expressions (1) and (2) are solely responsible for the
instability. It is therefore crucial to understand the physical nature of
these terms.

For the general class of instabilities that work through the release
of gravitational potential energy the quantity wdp must, on the
whole, be positive (1.e. light gas moving upwards, heavy gas down-
wards). In order to induce density fluctuations obviously a certain
amount of work must be done against pressure forces. Clearly the
most vigorous instability is the one for which the ratio of potential
energy released to the work done against pressure forces is largest.
The negative definite terms in (1) and (2) are a measure of this ratio,
as may be verified by a formal minimisation of equation (B.4).

The reason why undular modes can be more unstable than
interchanges is now apparent. In both cases a magnetic field
increasing with depth provides extra potential energy but the
mechanism by which this is released differs for the two cases.
Inspection of equation (1) shows that for the undular modes density
fluctuations can be attained by doing work against the thermody-
namic pressure alone. Physically this is because compressive motions
are along the magnetic field lines and hence do no work against
magnetic pressure. By contrast, in the case of interchanges, for which
the motions are transverse to the magnetic field, it is impossible to
alter the density without also altering the magnetic field. This is
reflected by the appearance of the total pressure in the denominator
of the second term in the integrand of equation (2).

Since W must be negative for instability, equation (2) yields a
necessary and sufficient condition for instability to interchanges,
namely that p'<p?g/(yp+ B*uy ') somewhere in the gas (Newcomb,
1961). However, due to the presence of the third term, the integrand
of equation (1) gives only a necessary condition for instability to
undular modes (p' =< p’g/yp) (Yu, 1965). The appearance of this term,
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which can be thought of as a result of geometrical constraints,
behoves us to look in more detail at the nature of the motions.

For a general flow only the irrotational part induces density
fluctuations. However, for a magnetic field in the y-direction, only
the part of the flow that is irrotational in the xz-plane does work
against magnetic pressure. Although interchange modes cannot escape
doing such work since the flow is solely in the xz-plane, in the case
of undular modes there are irrotational flows which can in principle
be solenoidal in the xz-planc. In two dimensions however such
flows are very contrived for, in general, they will have structure in
the :z-direction owing to the presence of boundaries or vertical
inhomogeneities. It is in this sense that the third term of equation (1)
results from geometrical constraints since it is not implied by the
dynamics. Indeed. as we shall see presently, this term can be
completely eliminated for three-dimensional motions.

As noted above, although the energy principle vields a necessary
condition for instability it is only by solving the full equations that
instability to two-dimensional undular modes can be determined for
any given situation. To find the exact nature of the solutions we
have solved the perturbation eguations of Section 2 by a Newton
Raphson—Kantorovich iterative technique and, for simplicity. in our
numerical calculations we have assumed the initial equilibrium state
to be isothermal and the magnetic field to take the form B=
By(1+(z/d)y. Figure 1 shows the eigenfunctions of the perturbations
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Figure 1 The eigenfunctions of the perturbations for a slightly unstable two-
dimensional mode; =53, A= 100, plasma #=10, m=10"2, {=2701, =94 = 10~ %,
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for a slightly unstable undular mode and, as expected from the
arguments given above, the motion is nearly all a compression (or
expansion) in the y-direction, the ratio of w to v being very small
indeed. It can also be seen that w is peaked very close to the top of
the layer in order to minimise the final term on the right-hand side
of equation (1) (ie. the slope of w is greatest where the field is
weakest), In accordance with the requirement that potential energy
be released by the motions, (wdp)> is indeed positive (angular
brackets denoting a volume average), as can be seen from Figure 1.
Furthermore, we notice that {wh,% is negative, implying an upward
flux of magnetic field and thereby showing that the effect of the flow
is to reduce the field gradient responsible for the instability,

3.2 The three-dimensional instability

The three-dimensional instability in a layer of finite depth is much
healthier than its two-dimensional counterpart. We mentioned earlier
that for undular modes density fluctuations can be induced without
doing work against the magnetic pressure. However, whereas in two
dimensions some work against magnetic pressure is, in general,
unavoidable, in three dimensions the extra degree of freedom allows
for motions which do ne work against magnetic pressure whatsoever,
In other words, in three dimensions it is always possible to construct
irrotational flows which are divergence-free in the xz-plane. In fact
isee Appendix B) this criterion can be used to derive an extremum of
W, namely

SW, =1

mn

[ep' —(p*g?/yp)]E: dz. (3)

(=1

The absence of work done against magnetic pressure implies that
once again we oblain a necessary and suofficient condition for
instability. Three-dimensional motions, being more casily destabilised
than those in two dimensions, allow for instability in atmospheres
which are always stable to two-dimensional disturbances—in parti-
cular, in the Boussinesq limit three-dimensional motions are readily
destabilised (see Spiegel and Weiss, 1982; Hughes, 1985a). Figure 2
shows the eigenfunctions of a slightly unstable three-dimensional
mode for both a Boussinesq and a more compressible atmosphere.
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For the Boussinesq case (Figure 2a) the square-bracketed term in
equation (3) is constant throughout the layer and consequently the
eigenfunctions are sines and cosines, as predicted analytically
(Spiegel and Weiss, 1982; Hughes, 1985a). When the atmosphere is
more compressible (Figure 2b) the square-bracketed term in equa-
tion (3) takes a minimum value near the bottom of the layer and
therefore, in order to make dW as small as possible, w is peaked in
this region. In two dimensions this effect is outweighed by the fact
that having w peaked near the top of the layer minimises the work
done against magnetic pressure—in three dimensions, as noted
above, the work done against magnetic pressure can be made
arbitrarily small. It can easily be seen, from inspection of Figures 2a
and 2b, that, as expected, {wh,»<0 and ¢{wdp’ =0 indeed, in the
Boussinesq limit, the stronger condition also holds of wh, being
negative and wdp being positive pointwise,

4. CONCLUSION

Our main aim in this paper has been to present a new explanation
of why a horizontal magnetic field which increases sufficiently
rapidly with depth can become unstable to undular modes even
though it may be stable to interchanges, The key difference between
the two cases is that whereas for interchanges density fluctuations
are related to the total (gas+magnetic) pressure, for the undular
modes they depend on the gas pressure alone. This explanation does
not hinge on a drainage flow from the crests to the troughs of the
magnetic field lines, as is sometimes assumed necessary. In fact, we
believe that the relationship between the flow and the field is purely
geometrical and is not responsible for the instability.
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Appendix A

When the layer under consideration is so thin that variations of
thermodynamic quantities are slight, and when the sound speed is
large compared to both the flow speed and the Alfvén speed, then
the dynamics may be described by the magneto-Boussinesq equations
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of Spiegel and Weiss (1982). It is the aim of this appendix to
examine the nature of the linear, two-dimensional undular modes in
this Boussinesq limit. The reader is referred to the papers by Spiegel
and Weiss (19582) and Corfield (1984) for a detailed derivation of all
the equations.

The lowest order approximation to the continuity equation is just
Y.ou=0 ie.,

dvfdv+ dw/dz =0, (A1)
using the notation of Section 2.
Similarly, the solenoidal constraint on the magnetic field is

by/éy + dbyfcz=0. (A.2)
In general, the Boussinesg version of the induction equation is
iB/ét+(u-VIB—(B-Viu—wH_, 'B=0, (A.3)

where H, is the density scale height. If we consider the y component
of this equation then the second and fourth terms are O(wB,/H)
whereas the third term is O{B, duv/dy). Equation (A.1) tells us that
dv/dy~w/d (where d is the layer depth) and consequently, since
d < H, the lowest order version of equation {A.3) is just

dB=(B-Vu,
The linearised y component of this equation is
diby= By i o, (A.4)

with the z component giving ¢,b;=B,d,w, a result consistent with
equations (A.1), (A.2) and (A4).

The linearised equation of motion is
po Cuft =gdpi— VoIl + pg '[(0B-V)B+(B-V)oB], {A.3)

where 411 represents the variation in the total pressure and is scaled
such that 8T1/p,~(d/H)Ndp/po). With this scaling the equation of
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state becomes
dp/po=—0T/Ty—0p./pPo (A.6)

where dp,, is the variation in the magnetic pressure.

Finally, we have the energy equation which, in its linearised form, is

(/[T +{p,/Chpe)] —we=0, (AT)

where x is the subadiabatic temperature gradient,

The y component of equation (A.5) gives
po vjt= —(SIN)/3y + g by dB/dz 4 B, db,/dy). (A-H)

By virtue of the scaling of 81, together with equation (A.6), the first
term on the right-hand side of equation (A.8) is O(d/H) times the
third term. Equation (A.2) shows that the second term is similarly
small. Consequently the lowest order approximation to equation
(A.B) is

Podv=Bopg ' &by (A.9)
Combining equations (A.4) and (A.9) gives
dlo={Bipopte) L-:'f.!?. (ALD)

thus showing the motions to be purely oscillatory Alfvén waves,

In obtaining these results we have not made use of either equation
{A.7) or the z component of equation (A.5). To ensure that our result
{A.10) is sensible it is necessary to check that it is consistent with
these other equations. On making use of equations (A.6) and (A7)
the z component of (A.5) may be expressed as

g% i 1 %11 B, &
S e L ol R
it Ta Jpa Ot po CLdz  lgpg Oty

The first, second and third terms on the right-hand side are
comparable in magnitude. If 8, < O[(dH)™ ] then the fourth term is
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comparable to or smaller than the other terms and equation (A 11)
just gives us an equation for &I If. on the other hand,
-;"ﬁ:-ﬂ[[dH}"-’z] then the fourth term on the right-hand side
dominates, giving the balance

37w =(Bo/Hopa) &, dybs.

This equation gives no new information but does not contradict any
of the earlier results—indeed it can be derived from equations (A1),
{A.2) and {A.Y). Thus, whatever the scaling of the wavelength in the
y-direction, the only possible two-dimensional undular motions are
Alfven waves. If @, <O[(dH) '] it is possible to determine the
system completely, but if 8, O[(dH) ''*] then it appears that the
total pressure perturbation cannot be calculated.

Finally, a brief remark about why the magneto-Boussinesq equa-
tions admit unstable solutions in three dimensions but not in two,
For three-dimensional motions there are two distinct scalings, In the
first, all the terms in the solenoidal constraint on u (and also on B)
are of comparable magnitude and, as for the case of two dimensions
described above, the ensuing motions are Alfvén waves. In the
second ordering, under which instability is possible, v, v and w are
assumed to be of comparable magnitude (as are by, b, and b,), but
the wavelength in the y-direction is O(H/d) times that in the x- or z-
directions. Consequently the solenoidal constraints on u and B are
satisfied principally in the xz-plane, thereby showing the necessity of
the third dimension,

Appendix B

This appendix describes how the energy principle of Bernstein er al.
{1958) may be used to determine the stability of a vertically stratified
horizontal magnetic field, following the approach of Newcomb
(1961).

By adopting a Lagrangian description of the fluid motion and
considering the cffect of a small displacement &(ry. () of a plasma
element initially at r; it can be shown (Bernstein et al., 1958) that to
lowest order the equation of motion takes the form

pé=F(&). (B.1)
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where
F(&)=V{ypV-E+ & V) +jx Q— g 'Bx (Vx Q)+ V. (pl)Ve,
Q=Vxi(fxB),

a dot denotes differentiation with respect to time, p, p and B assume
their equilibrium values and ¢ is the external potential. Fi£) is a self-
adjoint operator, as may be verified by a vast number of integrations
by parts together with repeated use of the initial conditions.

MNow the change in potential energy due to the displacement £ is
just

W= 4] & F(@av. (B.2)

It is intuitively clear that if W is positive for all displacements &
then the system is stable. Somewhat less obvious is the more
powerful result that if W is negative for some displacement (not
necessarily one satisfying the equation of motion) then the system is
unstable, If the operator F(&) only allows discrete eigenvalues then
its cigenfunctions form a complete basis in the space of square-
integrable functions and it then follows easily that if there is a
square-integrable displacement which makes W negative then there
exists an exponentially growing physical perturbation (Bernstein
et al., 1958). In general though, idealised magnetohydrodynamic
systems possess a continuous spectrum of eigenvalues and in such
cases the proof is more difficult—this was given by Laval et al
(1965) who made use only of the self-adjointness of the operator F(&)
with no assumptions about the nature of its eigenvalues,
Equation (B.2) may be expressed as

W =1 giug L2 —j (Q x &) +yp(V-EF +(V-E)(E-Vp)
+(E-g)V - (pd)} dV. (B.3)

With the particular equilibrium of Section 2, and with £, assumed to
vary as sinlxsinmy, £, as coslxcosmy and £, as coslxsinmy,
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equation {B.3) becomes

dW =4

oy i,

{io ' B m™(E2 + S +(EL+IEP ] +yp(E —mE, +1E)

+2pgE (& —mé +1E)+gElp'} dz, (B.4)

where all the variables are now functions of z only and a prime
denotes differentiation with respect to =,

For the interchange modes both m and £, are identically zero. A
formal minimisation of the integrand with respect to £, yields

d
5Wm.,=%£Hgﬂ'—[p’ng{:'pﬂu"lel}éf}d-’- (B.5)

For the two-dimensional undular modes [ is identically zero.
Minimising (B.4) with respect to £, and letting m—0, thereby
eliminating the work done against magnetic tension, gives

o
W=1 i {[gp' —(p?g*/yp)IE2 + g ' B*ER ) dz. (B.6)

For the three-dimensional undular modes minimising (B.4) with
respect to £, and £, gives

d Bi plgl mz Hz
AW =1 {(m3—+ g LR [ —)— 2L dz. (B.7
2£ Uil Cimron] i e il g 4 (B.7)

Clearly in (B.7) W is lecast as m—0 and |— oo, giving

o
Woin=1% £ [gp' — (0’8 /vp)]E3 dz. (B.E)

Another perhaps more physically intuitive way of obtaining ex-
pression (B.B) is to set ({1+/1£,) equal to zero in (B.4). After
minimising over £, expression (B.4) becomes

d
W=7 i {Lep’ —(p?2%/yp)EE + po ' BPm?[£2 + (£} dz.

Expression (B.8) is now recovered by letting m—0 and [—aoo.



