Physics 211B : Final Exam

Due 10 am, Wednesday March 17, my office (5671 Mayer Hall)

[1] Consider a tri-junction connecting three identical one-dimensional leads. The leads are each connected to reservoirs described by chemical potentials μ_{α} at a fixed temperature T. The S-matrix relates incoming and outgoing plane wave states, as usual:

$$
\begin{pmatrix} A^{\text{OUT}} \\ B^{\text{OUT}} \\ C^{\text{OUT}} \end{pmatrix} = \begin{pmatrix} r_A & t_{AB} & t_{AC} \\ t_{BA} & r_B & t_{BC} \\ t_{CA} & t_{CB} & r_C \end{pmatrix} \begin{pmatrix} A^{\text{IN}} \\ B^{\text{IN}} \\ C^{\text{IN}} \end{pmatrix} .
$$

(a) Following the arguments in $\S 2.3$ of the lecture notes, derive, *mutatis mutandis*, an equation relating the current I_{α} in terms of the chemical potentials μ_{α} of the reservoirs. Be sure to comment on aspects such as current conservation.

Now consider the tight binding tri-junction model described in fig. 1. The hopping matrix elements along the chains are all identical and are equal to t . The hopping matrix elements on the internal triangle are all identical and equal to t_{\wedge} . The on-site energies for all sites are identical and equal to $\varepsilon_0 = 0$.

(b) Derive an expression for the S -matrix for this system. You should write

$$
A_n = A^{\text{IN}} e^{-ikn} + A^{\text{OUT}} e^{+ikn} ,
$$

with corresponding expressions for the B and C leads. (See the hint at the end of the problem for some mathematical guidance.)

(c) Suppose $\mu_A = eV$ and $\mu_B = \mu_C = 0$. Derive an expression for the current I_B at $T = 0$. Plot the dimensionless conductance $(h/e^2) \times (I_B/V)$ versus the dimensionless incident energy $\varepsilon = E/t$ over the allowed range $\varepsilon \in [-2, 2]$ for several values of the ratio $r \equiv t_{\Delta}/t$.

Hint: At some point, you may find it necessary to invert a matrix of the form

$$
R = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} .
$$

To this end, note that we can write

$$
R = (a - b) \mathbb{I} + 3b \, |\psi\rangle\langle\psi| \ ,
$$

where $\vec{\psi}^T = \frac{1}{\sqrt{2}}$ $\frac{1}{3}(1, 1, 1)$, so $|\psi\rangle\langle\psi|$ is a matrix whose elements are all equal to $\frac{1}{3}$. But then

$$
R = (a - b) Q_{\psi} + (a + 2b) P_{\psi} ,
$$

where $P_{\psi} = |\psi\rangle\langle\psi|$ is the projector onto $|\psi\rangle$, and $Q_{\psi} = \mathbb{I} - P_{\psi}$ is the projector onto the two-dimensional subspace orthogonal to $|\psi\rangle$. But then, clearly

$$
R^{-1} = \frac{1}{a-b} Q_{\psi} + \frac{1}{a+2b} P_{\psi} = \frac{1}{(a-b)(a+2b)} \begin{pmatrix} a+b & -b & -b \\ -b & a+b & -b \\ -b & -b & a+b \end{pmatrix} .
$$

Figure 1: A tri-junction formed from three semi-infinite single-orbital tight-binding chains.

[2] Consider a spin-S quantum Heisenberg model on a bipartite lattice. The A sublattice sites are located at positions **R** and the B sublattice sites at $\mathbf{R} + \delta$, where **R** is an element of some Bravais lattice and δ is the sole basis vector. The Hamiltonian is

$$
\mathcal{H} = -\sum_{\mathbf{R},\mathbf{R}'} \left\{ \frac{1}{2} J_{\text{AA}} \big(|\mathbf{R} - \mathbf{R}'| \big) \, \mathbf{S}_{\text{A}}(\mathbf{R}) \cdot \mathbf{S}_{\text{A}}(\mathbf{R}') + \frac{1}{2} J_{\text{BB}} \big(|\mathbf{R} - \mathbf{R}'| \big) \, \mathbf{S}_{\text{B}}(\mathbf{R}) \cdot \mathbf{S}_{\text{B}}(\mathbf{R}') \right. \\ \left. + J_{\text{AB}} \big(|\mathbf{R} - \mathbf{R}' - \boldsymbol{\delta} | \big) \mathbf{S}_{\text{A}}(\mathbf{R}) \cdot \mathbf{S}_{\text{B}}(\mathbf{R}') \right\} - \gamma \sum_{\mathbf{R}} \left\{ H_{\text{A}}(\mathbf{R}) \, S_{\text{A}}^{z}(\mathbf{R}) + H_{\text{B}}(\mathbf{R}) \, S_{\text{B}}^{z}(\mathbf{R}) \right\}
$$

where $S_{\rm A}(R)$ is the spin operator at the A sublattice site located at R , and $S_{\rm B}(R)$ is the spin operator at the B sublattice site located at $\mathbf{R} + \boldsymbol{\delta}$.

(a) Compute the susceptibility

$$
\chi_{AB}(\boldsymbol{q}) = \frac{\partial M_{\rm A}(\boldsymbol{q})}{\partial H_{\rm B}(\boldsymbol{q})}\bigg|_{H_{\rm A} = H_{\rm B} = 0}
$$

using a mean field approach. Recall the local susceptibility for a single Heisenberg spin is $\chi_0(T) = \gamma^2 p^2 / k_{\rm B} T$, where $p^2 = \frac{1}{3}$ $\frac{1}{3}S(S+1)$. (You should express your answer in terms of χ_0 and other relevant quantities.)

(b) Consider the model on a honeycomb lattice. The AB interactions are between nearest neighbors only, and are given by $J_{NN} < 0$ (antiferromagnetic). The AA interactions are between next-nearest neighbors only, and are given by $J_{NNN} > 0$ (ferromagnetic). Find an $ext{expression}$ for T_c .

Big hint: You should derive an equation of the form $R_{ab}(q) M_b(q) = H_a(q)$, where a and b run over sublattices and $R(q)$ is some matrix. The susceptibility matrix is the inverse of $R(\mathbf{q})$, and χ _{AB}(\mathbf{q}) is the upper right element. To find T_c , set $\det(R) = 0$.

(c) Consider a nearest-neighbor Heisenberg antiferromagnet on the honeycomb lattice with an easy axis anisotropy term. The Hamiltonian is

$$
\mathcal{H} = J \sum_{\langle ij \rangle} \left(S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z \right) ,
$$

where $J > 0$ and $\Delta > 1$. Derive the spin wave spectrum. For 10^{50} quatloos extra credit, plot the spin wave dispersion on a triangle Γ–K–M–Γ in the Brillouin zone.