6-43. (a) For
$$x > 0$$
, $\hbar^2 k_2^2 / 2m + V_0 = E = \hbar^2 k_1^2 / 2m = 2V_0$
So, $k_2 = \left(2mV_0\right)^{1/2}/\hbar$. Because $k_1 = \left(4mV_0\right)^{1/2}/\hbar$, then $k_2 = k_1 / \sqrt{2}$

(b)
$$R = (k_1 - k_2)^2 / (k_1 + k_2)^2$$
 (Equation 6-68)
= $(1 - 1/\sqrt{2})^2 / (1 + 1/\sqrt{2})^2 = 0.0294$, or 2.94% of the incident particles

are

reflected.

(c)
$$T = 1 - R = 1 - 0.0294 = 0.971$$

(d) 97.1% of the particles, or $0.971 \times 10^6 = 9.71 \times 10^5$, continue past the step in the +x

direction. Classically, 100% would continue on.

6-44. (a) For
$$x > 0$$
, $\hbar^2 k_2^2 / 2m - V_0 = E = \hbar^2 k_1^2 / 2m = 2V_0$
So, $k_2 = \left(6mV_0\right)^{1/2}/\hbar$. Because $k_1 = \left(4mV_0\right)^{1/2}/\hbar$, then $k_2 = \sqrt{3/2}k_1$

(b)
$$R = (k_1 - k_2)^2 / (k_1 + k_2)^2$$

 $R = (k_1 - k_2)^2 / (k_1 + k_2)^2 = (1 - \sqrt{3/2})^2 / (1 + \sqrt{3/2})^2 = 0.0102$

Or 1.02% are reflected at x = 0.

- (c) T = 1 R = 1 0.0102 = 0.99
- (d) 99% of the particles, or $0.99 \times 10^6 = 9.9 \times 10^5$, continue in the +x direction. Classically, 100% would continue on.

and
$$\alpha a = 0.6nm \times 11.46nm^{-1} = 6.87$$

Since αa is not \square 1, use Equation 6-75:

The transmitted fraction

$$T = \left[1 + \frac{\sinh^2 \alpha a}{4(E/V_0)(1 - E/V_0)}\right]^{-1} = \left[1 + \left(\frac{81}{80}\right)\sinh^2(6.87)\right]^{-1}$$

Recall that $\sinh x = (e^x - e^{-x})/2$,

$$T = \left[1 + \frac{81}{80} \left(\frac{e^{6.87} - e^{-6.87}}{2} \right)^2 \right]^{-1} = 4.3 \times 10^{-6} \text{ is the transmitted}$$

fraction.

(b) Noting that the size of T is controlled by αa through the $\sinh^2 \alpha a$ and increasing T

implies increasing E. Trying a few values, selecting E = 4.5 eV yields $T = 8.7 \times 10^{-6}$

or approximately twice the value in part (a).

6-48. Using Equation 6-76,

$$T \approx 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0} \right) e^{-2\alpha a}$$
 where $E = 2.0eV$, $V_0 = 6.5eV$, and $a = 0.5nm$.
 $T \approx 16 \left(\frac{2.0}{6.5} \right) \left(1 - \frac{2.0}{6.5} \right) e^{-2(10.87)(0.5)} \approx 6.5 \times 10^{-5}$ (Equation 6-75 yields

 $T = 6.6 \times 10^{-5}$.)

6-49.
$$R = \frac{(k_1 - k_2)^2}{(k_1 + k_2)^2}$$
 and $T = 1 - R$ (Equations 6-68 and 6-70)

(a) For protons:

$$k_1 = \sqrt{2mc^2E} / \hbar c = \sqrt{2(938MeV)(40MeV)} / 197.3MeV \Box fm = 1.388$$

$$k_2 = \sqrt{2mc^2(E - V_0)}/\hbar c = \sqrt{2(938MeV)(10MeV)}/197.3MeV \Box fm = 0.694$$

$$R = \left(\frac{1.388 - 0.694}{1.388 + 0.694}\right)^2 = \left(\frac{0.694}{2.082}\right)^2 = 0.111 \quad \text{And } T = 1 - R = 0.889$$

(b) For electrons:

$$k_1 = 1.388 \left(\frac{0.511}{938}\right)^{1/2} = 0.0324$$
 $k_2 = 0.694 \left(\frac{0.511}{938}\right)^{1/2} = 0.0162$ $R = \left(\frac{0.0324 - 0.0162}{0.0324 + 0.0162}\right)^2 = 0.111$ And $T = 1 - R = 0.889$

No, the mass of the particle is not a factor. (We might have noticed that \sqrt{m} could

be canceled from each term.)

7-1.
$$E_{n_1 n_2 n_3} = \frac{\hbar^2 \pi^2}{2mL^2} \left(n_1^2 + n_2^2 + n_3^2 \right) \quad \text{(Equation 7-4)}$$

$$E_{311} = \frac{\hbar^2 \pi^2}{2mL^2} \left(3^2 + 1^2 + 1^2 \right) = 11E_0 \quad \text{where } E_0 = \frac{\hbar^2 \pi^2}{2mL^2}$$

$$E_{222} = E_0 \left(2^2 + 2^2 + 2^2 \right) = 12E_0 \quad \text{and} \quad E_{321} = E_0 \left(3^2 + 2^2 + 1^2 \right) = 14E_0$$

The 1st, 2nd, 3rd, and 5th excited states are degenerate.

7-2.
$$E_{n_1 n_2 n_3} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_1^2}{L_1^2} + \frac{n_2^2}{L_2^2} + \frac{n_3^2}{L_3^2} \right) = \frac{\hbar^2 \pi^2}{2mL_1^2} \left(n_1^2 + \frac{n_2^2}{4} + \frac{n_3^2}{9} \right)$$
 (Equation 7-5)

 $n_1 = n_2 = n_3 = 1$ is the lowest energy level.

$$E_{111} = E_0 (1 + 1/4 + 1/9) = 1.361E_0$$
 where $E_0 = \frac{\hbar^2 \pi^2}{2mL_1^2}$

The next nine levels are, increasing order,

(Problem 7-2 continued)

n_1	n_2	n_3	$E\left(\times E_{0}\right)$
1	1	2	1.694
1	2	1	2.111
1	1	3	2.250
1	2	2	2.444
1	2	3	3.000
1	1	4	3.028
1	3	1	3.360
1	3	2	3.472
1	2	4	3.778

7-3. (a)
$$\psi_{n_1 n_2 n_3}(x, y, z) = A \cos \frac{n_1 \pi x}{L} \sin \frac{n_2 \pi y}{L} \sin \frac{n_3 \pi z}{L}$$

(b) They are identical. The location of the coordinate origin does not affect the energy

level structure.

7-4.
$$\psi_{111}(x,y,z) = A \sin \frac{\pi x}{L_{1}} \sin \frac{\pi y}{2L_{1}} \sin \frac{\pi z}{3L_{1}}$$

$$\psi_{112}(x,y,z) = A \sin \frac{\pi x}{L_{1}} \sin \frac{\pi y}{2L_{1}} \sin \frac{2\pi z}{3L_{1}}$$

$$\psi_{121}(x,y,z) = A \sin \frac{\pi x}{L_{1}} \sin \frac{\pi y}{L_{1}} \sin \frac{\pi z}{3L_{1}}$$

$$\psi_{122}(x,y,z) = A \sin \frac{\pi x}{L_{1}} \sin \frac{\pi y}{L_{1}} \sin \frac{2\pi z}{3L_{1}}$$

$$\psi_{113}(x,y,z) = A \sin \frac{\pi x}{L_{1}} \sin \frac{\pi y}{2L_{1}} \sin \frac{\pi z}{L_{1}}$$

$$\psi_{113}(x,y,z) = A \sin \frac{\pi x}{L_{1}} \sin \frac{\pi y}{2L_{1}} \sin \frac{\pi z}{L_{1}}$$

$$E_{n_1 n_2 n_3} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_1^2}{L_1^2} + \frac{n_2^2}{\left(2L_1\right)^2} + \frac{n_3^2}{\left(4L_1\right)^2} \right) = \frac{\hbar^2 \pi^2}{2mL_1^2} \left(n_1^2 + \frac{n_2^2}{4} + \frac{n_3^2}{16} \right) \quad \text{(from Equation 7-5)}$$

$$E_0 = \left(n_1^2 + \frac{n_2^2}{4} + \frac{n_3^2}{16} \right) \quad \text{where } E_0 = \frac{\hbar^2 \pi^2}{2mL_1^2}$$

(Problem 7-5 continued)

(a)

n_1	n_2	n_3	$E\left(\times E_{0}\right)$
1	1	1	1.313
1	1	2	1.500
1	1	3	1.813
1	2	1	2.063
1	1	4	2.250
1	2	2	2.250
1	2	3	2.563
1	1	5	2.813
1	2	4	3.000
1	1	6	3.500

(b) 1,1,4 and 1,2,2

7-7.
$$E_0 = \frac{\hbar^2 \pi^2}{2mL^2} = \frac{\left(1.055 \times 10^{-34} J \Box s\right)^2 \pi^2}{2\left(9.11 \times 10^{-31} kg\right) \left(0.10 \times 10^{-9} m\right)^2 \left(1.609 \times 10^{-19} J / eV\right)} = 37.68 eV$$

$$E_{311} - E_{111} = \Delta E = 11 E_0 - 3 E_0 = 8 E_0 = 301 eV$$

(Problem 7-7 continued)

$$E_{222} - E_{111} = \Delta E = 12E_0 - 3E_0 = 9E_0 = 339eV$$

$$E_{321}-E_{111}=\Delta E=14E_0-3E_0=11E_0=415eV$$

7-8. (a) Adapting Equation 7-3 to two dimensions (i.e., setting $k_3 = 0$), we have

$$\psi_{n_1 n_2} = A \sin \frac{n_1 \pi x}{L} \sin \frac{n_2 \pi y}{L}$$

- (b) From Equation 7-5, $E_{n_1 n_2} = \frac{\hbar^2 \pi^2}{2mL^2} (n_1^2 + n_2^2)$
- (c) The lowest energy degenerate states have quantum numbers $n_1 = 1$, $n_2 = 2$, and $n_1 = 2$,

$$n_2 = 1$$
.