Name_Professor 5.K. 5mna____

 $\mu = 4$, π , $10^{-7} = 1.26$, 10^{-6} N/A2

A) 500

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

Situation 31.1

An 18 mH solenoid inductor is wound on a form 0.80 m in length and 0.10 m in diameter. A coil is tightly wound around the solenoid at its center. The coil resistance is 5.0 ohms. The mutual inductance of the coil and solenoid is 60 µH. At a given instant, the current in the solenoid is 300 mA, and is decreasing at the rate of 2.5 A/s.

1) In Situation 31.1, at the given instant, the magnetic energy of the solenoid, in , is closest to

2) In Situation 31.1, at the given instant, the induced current in the coil is closest to

A)
$$40 \, \mu A$$

B) $25 \, \mu A$

C) $30 \, \mu A$

D) $35 \, \mu A$

E) $45 \, \mu A$

E)

An R-L circuit has a 60 V battery, a 30 H inductor, a 12 ohm resistor, and a switch S, in series, as shown. Initially, the switch is open, and there is no magnetic flux in the inductor. At time t=0 s, the switch is closed.

3) In Figure 31.1, when the resistor voltage is equal to the inductor voltage, the current in the circuit is closest to

$$V_{R} = I(+)R \qquad = \underbrace{Ee^{-k/+}}_{\text{lighte 31.2}} I(+) = I(-) = I$$

An R-1, circuit is shown, with a 10 ohm resistor and an ideal 40 H inductor, that has zero resistance. At time t=0 s, there is a 12A current in the circuit.

4) In Figure 31.2, when the current is decreasing at the rate of 2.0 Δ /s, the time t is closest to

$$T(+) = T_{0}e^{-R/L} + T_{0}$$