Name_Professor S.K. Sinha_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Figure 26.1

36.0 V 4 Ω

The emf and the internal resistance of a battery are as shown.

- 1) In Figure 26.1, when the terminal voltage V_{ab} is equal to 31.6 V, the current through the battery, including direction, is closest to:
 - A) 1.2 A, from a to b
 - B) 1.3 A, from b to a
 - C) 1.1 A, from a to b
 - (D) 1.1 A, from b to a
 - E) 1.2 A, from b to a

assume current goes from B to A -I.452+36,0V=316V

I. 42=4,4V

I=1,1 amps

since it is positive

we chose direction correctly

Three light bulbs, A, B, and C, have electrical ratings as follows:

Bulb A - 96 W, 2.0 A

Bulb B - 200 V, 250 W

Bulb C - 120 V, 0.5 A

The three bulbs are connected in a circuit, which is across a 150-V line, as shown. Assume the filament resistances of the light bulbs are constant and independent of operating conditions.

2) In Figure 27.1, the current through bulb B is closest to:

B) 1.25 A

C) 1.00 A

D) 1.10 A

E) 0.85 A

light bulbs are basically just resistors, and we need to find what they

$$P = T_{CK} = V$$

$$R_A = 240$$

24+1160=120 160 the DVB=120 Ro=160=)]

3) In Figure 27.5, the circuit R is a variable resistance. As R is decreased

A) I ₁ decreases, I ₂ decreases.
B) I) decreases, l2 increases.
C) I ₁ increases, I ₂ decreases.

as R decreases the tesistance of the pieces in parallel decreases thus the total resistance decreases which increases the net current and thus by ohm's law the voltage at point P is decreased (greater I = grown D) I1 remains unchanged, I2 increases. E) I₁ increases, I₂ increases. Vp decreases so I, decreases Voltagedren

Figure 27.10 Note that Since I accross r)

than before by + I tot is higher

The pare incress a supering the supering records the supering reco

Initially, for the circuit shown, the switch S is open and the capacitor voltage is 80 V. The switch S is closed at time t = 0.

4) In Figure 27.10, the charge on the capacitor, when the current in the circuit is 33 μ A, in μ C, is closest to:

$$V(+) = V_0 e^{-\frac{t}{R}C}$$

A) 1,000

$$V(+) = V_0 e^{-\frac{t}{RC}}$$
 =) from (21) - RQ(+) + Q(+) = 0
and $V(+) = Q(+) = RQ(+)$

$$T(t) = \frac{V(t)}{R}$$

and
$$V(t) = Q(t) = RQ(t)$$

33
$$\mu A = 80 e^{-t/RC} = e^{-t/RC} = \frac{33 \times 10^6 \cdot 2 \times 10^6}{80}$$

 $Q(t) = Q_0 e^{-t/RC} = C V_0 e^{-t/RC}$
 $Q(t) = \frac{15}{80} \times 10^{-6} \cdot 80.33 \cdot 2 (\times 10^6) = 990$
 $Q(t) = \frac{15}{80} \times 10^{-6} \cdot 80.33 \cdot 2 (\times 10^6) = 990$