
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) You know that at most one fermion may occupy any given single-particle state. A
parafermion is a particle for which the maximum occupancy of any given single-particle state
is k, where k is an integer greater than zero. (For k = 1, parafermions are regular everyday
fermions; for k = ∞, parafermions are regular everyday bosons.) Consider a system with
one single-particle level whose energy is ε, i.e. the Hamiltonian is simply H = ε n, where n
is the particle number.

(a) Compute the partition function Ξ(µ, T ) in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(µ, T ). What is n when µ = −∞? When µ = ε?
When µ = +∞? Does this make sense? Show that n(µ, T ) reduces to the Fermi and Bose
distributions in the appropriate limits.

(c) Sketch n(µ, T ) as a function of µ for both T = 0 and T > 0.

(d) Can a gas of ideal parafermions condense in the sense of Bose condensation?

Solution : The general expression for Ξ is

Ξ =
∏

α

∑

n
α

(

z e−βεα

)n
α .

Now the sum on n runs from 0 to k, and

k
∑

n=0

xn =
1 − xk+1

1 − x
.

(a) Thus,

Ξ =
1 − e(k+1)β(µ−ε)

1 − eβ(µ−ε)
.

(b) We then have

n = −∂Ω

∂µ
=

1

β

∂ ln Ξ

∂µ

=
1

eβ(ε−µ) − 1
− k + 1

e(k+1)β(ε−µ) − 1

(c) A plot of n(ε, T, µ) for k = 3 is shown in fig. 1. Qualitatively the shape is that of the
Fermi function f(ε − µ). At T = 0, the occupation function is n(ε, T = 0, µ) = k Θ(µ − ε).
This step function smooths out for T finite.

(d) For each k < ∞, the occupation number n(z, T ) is a finite order polynomial in z, and
hence an analytic function of z. Therefore, there is no possibility for Bose condensation
except for k = ∞.
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Figure 1: (3)(c) k = 3 parafermion occupation number versus ε−µ for kBT = 0, kBT = 0.25,
kBT = 0.5, and kBT = 1.

(2) Consider a system of N spin-1
2 particles occupying a volume V at temperature T .

Opposite spin fermions may bind in a singlet state to form a boson:

f ↑ + f ↓ ⇋ b

with a binding energy −∆ < 0. Assume that all the particles are nonrelativistic; the fermion
mass is m and the boson mass is 2m. Assume further that spin-flip processes exist, so that
the ↑ and ↓ fermion species have identical chemical potential µf .

(a) What is the equilibrium value of the boson chemical potential, µb? Hint : the answer
is µb = 2µf .

(b) Let the total mass density be ρ. Derive the equation of state ρ = ρ(µf , T ), assuming
the bosons have not condensed. You may wish to abbreviate

ζp(z) ≡
∞
∑

n=1

zn

np
.

(c) At what value of µf do the bosons condense?

(d) Derive an equation for the Bose condensation temperature Tc. Solve for Tc in the limits

ε0 ≪ ∆ and ε0 ≫ ∆, respectively, where

ε0 ≡ π~
2

m

(

ρ/2m

ζ
(

3
2

)

)2/3

.

(e) What is the equation for the condensate fraction ρ0(T, ρ)/ρ when T < Tc?

Solution :
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(a) The chemical potential is the Gibbs free energy per particle. If the fermion and boson
species are to coexist at the same T and p, the reaction f↑ +f↓ −→ b must result in
∆G = µb − 2µf = 0.

(b) For T > Tc,

ρ = −2m λ−3
T ζ3/2

(

− eµ
f
/k

B
T
)

+ 2
√

8 m λ−3
T ζ3/2

(

e(2µ
f
+∆)/k

B
T
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength for particles of mass m. This for-

mula accounts for both fermion spin polarizations, each with number density nf↑ = nf↓ =

−λ−3
T ζ3/2(−zf) and the bosons with number density

√
8λ−3

T ζ3/2(zb eβ∆), with zb = z2
f due

to chemical equilibrium among the species. The factor of 23/2 =
√

8 arises from the fact
that the boson mass is 2m, hence the boson thermal wavelength is λT /

√
2.

(c) The bosons condense when µb = −∆, the minimum single particle energy. This means
µf = −1

2∆. The equation of state for T < Tc is then

ρ = −2m λ−3
T ζ3/2

(

− e−∆/2k
B

T
)

+ 4
√

2 ζ
(

3
2

)

m λ−3
T + ρ0 ,

where ρ0 is the condensate mass density.

(d) At T = Tc we have ρ0 = 0, hence

ρ

2m

(

2π~
2

mk
B
Tc

)3/2

=
√

8 ζ
(

3
2

)

− ζ3/2

(

− e−∆/2k
B

Tc

)

,

which is a transcendental equation. Om. In the limit where ∆ is very large, we have

Tc(∆ ≫ ε0) =
π~

2

mk
B

(

ρ/2m

ζ
(

3
2

)

)2/3

=
ε0

k
B

.

In the opposite limit, we have ∆ → 0+ and −ζ3/2(−1) = η(3/2), where η(s) is the Dirichlet
η-function,

η(s) =

∞
∑

j=1

(−1)j−1 j−s =
(

1 − 21−s
)

ζ(s) .

Then

Tc(∆ ≪ ε0) =
2ε0/kB

(

1 + 3
2

√
2
)2/3

.

(e) The condensate fraction is

ν =
ρ0

ρ
= 1 −

(

T

Tc

)3/2

·
√

8 ζ
(

3
2

)

− ζ3/2

(

− e−∆/2k
B

T
)

√
8 ζ
(

3
2

)

− ζ3/2

(

− e−∆/2k
B

Tc

) .

Note that as ∆ → −∞ we have −ζ3/2

(

− e−∆/2k
B

T
)

→ 0 and the condensate fraction

approaches the free boson result, ν = 1 − (T/Tc)
3/2. In this limit there are no fermions

present.
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(3) A three-dimensional system of spin-0 bosonic particles obeys the dispersion relation

ε(k) = ∆ +
~

2
k

2

2m
.

The quantity ∆ is the formation energy and m the mass of each particle. These particles are
not conserved – they may be created and destroyed at the boundaries of their environment.
(A possible example: vacancies in a crystalline lattice.) The Hamiltonian for these particles
is

H =
∑

k

ε(k) n̂
k

+
U

2V
N̂2 ,

where n̂
k

is the number operator for particles with wavevector k, N̂ =
∑

k
n̂

k
is the total

number of particles, V is the volume of the system, and U is an interaction potential.

(a) Treat the interaction term within mean field theory. That is, define N̂ = 〈N̂〉+δN̂ , where
〈N̂〉 is the thermodynamic average of N̂ , and derive the mean field self-consistency equation
for the number density ρ = 〈N̂〉/V by neglecting terms quadratic in the fluctuations δN̂ .
Show that the mean field Hamiltonian is

HMF = −1
2V Uρ2 +

∑

k

[

ε(k) + Uρ
]

n̂
k

,

(b) Derive the criterion for Bose condensation. Show that this requires ∆ < 0. Find an

equation relating Tc, U , and ∆.

Solution :

(a) We write

N̂2 =
(

〈N̂〉 + δN̂
)2

= 〈N̂〉2 + 2〈N̂ 〉 δN̂ + (δN̂ )2

= −〈N̂〉2 + 2〈N̂ 〉 N̂ + (δN̂ )2 .

We drop the last term, (δN̂ )2, because it is quadratic in the fluctuations. This is the mean
field assumption. The Hamiltonian now becomes

HMF = −1
2V Uρ2 +

∑

k

[

ε(k) + Uρ
]

n̂
k

,

where ρ = 〈N̂〉/V is the number density. This, the dispersion is effectively changed, to

ε̃(k) =
~

2
k

2

2m
+ ∆ + Uρ .

The average number of particles in state
∣

∣k
〉

is given by the Bose function,

〈n̂
k
〉 =

1

exp
[

ε̃(k)/k
B
T
]

− 1
.
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Summing over all k states, and using

1

V

∑

k

−→
∫

d3k

(2π)3
,

we obtain

ρ =
1

V

∑

k

〈n̂
k
〉

= ρ0 +

∫

d3k

(2π)3
1

e~2k2/2mk
B

T e(∆+Uρ)/k
B

T − 1

= ρ0 +

∞
∫

0

dε
g(ε)

e(ε+∆+Uρ)/k
B

T − 1

where ρ0 = 〈n̂
k=0〉/V is the number density of the k = 0 state alone, i.e. the condensate

density. When there is no condensate, ρ0 = 0. The above equation is the mean field
equation. It is equivalent to demanding ∂F/∂ρ = 0, i.e. to extremizing the free energy with
respect to the mean field parameter ρ. Though it is not a required part of the solution, we
have here written this relation in terms of the density of states g(ε), defined according to

g(ε) ≡
∫

d3k

(2π)3
δ

(

ε − ~
2
k

2

2m

)

=
m3/2

√
2 π2~3

√
ε .

(b) Bose condensation requires
∆ + Uρ = 0 ,

which clearly requires ∆ < 0. Writing ∆ = −|∆|, we have, just at T = Tc,

ρ(Tc) =
|∆|
U

=

∫

d3k

(2π)3
1

e~2k2/2mkBTc − 1
,

since ρ0(Tc) = 0. This relation determines Tc. Explicitly, we have

|∆|
U

=

∞
∫

0

dε g(ε)

∞
∑

j=1

e−jε/kBTc

= ζ
(

3
2

)

(

mk
B
Tc

2π~2

)3/2

,

where ζ(ℓ) =
∑∞

n=1 n−ℓ is the Riemann zeta function. Thus,

Tc =
2π~

2

mk
B

( |∆|
ζ
(

3
2

)

U

)2/3

.
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(4) The nth moment of the normalized Gaussian distribution P (x) = (2π)−1/2 exp
(

− 1
2x2
)

is defined by

〈xn〉 =
1√
2π

∞
∫

−∞

dx xn exp
(

− 1
2x2
)

Clearly 〈xn〉 = 0 if n is a nonnegative odd integer. Next consider the generating function

Z(j) =
1√
2π

∞
∫

−∞

dx exp
(

− 1
2x2
)

exp(jx) = exp
(

1
2j2
)

.

(a) Show that

〈xn〉 =
dnZ

djn

∣

∣

∣

∣

∣

j=0

and provide an explicit result for 〈x2k〉 where k ∈ N.

(b) Now consider the following integral:

F (λ) =
1√
2π

∞
∫

−∞

dx exp
(

− 1
2x2 − 1

4 !λx4
)

.

This has no analytic solution but we may express the result as a power series in the pa-
rameter λ by Taylor expanding exp

(

− λ
4 ! x4

)

and then using the result of part (a) for the
moments 〈x4k〉. Find the coefficients in the perturbation expansion,

F (λ) =

∞
∑

k=0

Ck λk .

(c) Define the remainder after N terms as

RN (λ) = F (λ) −
N
∑

k=0

Ck λk .

Compute RN (λ) by evaluating numerically the integral for F (λ) (using Mathematica or
some other numerical package) and subtracting the finite sum. Then define the ratio
SN (λ) = RN (λ)/F (λ), which is the relative error from the N term approximation and
plot the absolute relative error

∣

∣SN (λ)
∣

∣ versus N for several values of λ. (I suggest you plot
the error on a log scale.) What do you find?? Try a few values of λ including λ = 0.01,
λ = 0.05, λ = 0.2, λ = 0.5, λ = 1, λ = 2.

Solution :

(a) Clearly

dn

djn

∣

∣

∣

∣

∣

j=0

ejx = xn ,
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Figure 2: (5)(c) Relative error versus number of terms kept for the asymptotic series for
F (λ). Note that the optimal number of terms to sum is N∗(λ) ≈ 3

2λ .

so 〈xn 〉 =
(

dnZ/djn
)

j=0
. With Z(j) = exp

(

1
2j2
)

, only the kth order term in j2 in the

Taylor series for Z(j) contributes, and we obtain

〈x2k 〉 =
d2k

dj2k

(

j2k

2k k!

)

=
(2k)!

2k k!
.

(b) We have

F (λ) =

∞
∑

n=0

1

n!

(

− λ

4!

)n

〈x4n 〉 =

∞
∑

n=0

(4n)!

4n (4!)n n! (2n)!
(−λ)n .

This series is asymptotic. It has the properties

lim
λ→0

RN (λ)

λN
= 0 (fixed N) , lim

N→∞

RN (λ)

λN
= ∞ (fixed λ) ,

where RN (λ) is the remainder after N terms, defined in part (c). The radius of convergence
is zero. To see this, note that if we reverse the sign of λ, then the integrand of F (λ) diverges
badly as x → ±∞. So F (λ) is infinite for λ < 0, which means that there is no disk of any
finite radius of convergence which encloses the point λ = 0. Note that by Stirling’s rule,

Cn ≡ (4n)!

4n (4!)n n! (2n)!
∼ nn ·

(

2
3

)n
e−n · (πn)−1/2 ,

and we conclude that the magnitude of the summand reaches a minimum value when
n = n∗(λ), with

n∗(λ) ≈ 3

2λ
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for small values of λ. For large n, the coefficient Cn grows as Cn ∼ en ln n+O(n), which
dominates the (−λ)n term, no matter how small λ is.

(c) Results are plotted in fig. 2.

It is worth pointing out that the series for F (λ) and for ln F (λ) have diagrammatic inter-
pretations. For a Gaussian integral, one has

〈x2k 〉 = 〈x2 〉k · A2k

where A2k is the number of contractions. For a proof, see §3.2.2 of the notes. For our
integral, 〈x2 〉 = 1. The number of contractions A2k is computed in the following way.
For each of the 2k powers of x, we assign an index running from 1 to 2k. The indices are
contracted , i.e. paired, with each other. How many pairings are there? Suppose we start
with any from among the 2k indices. Then there are (2k− 1) choices for its mate. We then
choose another index arbitrarily. There are now (2k−3) choices for its mate. Carrying this
out to its completion, we find that the number of contractions is

A2k = (2k − 1)(2k − 3) · · · 3 · 1 =
(2k)!

2k k!
,

exactly as we found in part (a). Now consider the integral F (λ). If we expand the quartic
term in a power series, then each power of λ brings an additional four powers of x. It is
therefore convenient to represent each such quartet with the symbol ×. At order N of the
series expansion, we have N ×’s and 4N indices to contract. Each full contraction of the
indices may be represented as a labeled diagram, which is in general composed of several
disjoint connected subdiagrams. Let us label these subdiagrams, which we will call clusters,
by an index γ. Now suppose we have a diagram consisting of mγ subdiagrams of type γ,
for each γ. If the cluster γ contains nγ vertices (×), then we must have

N =
∑

γ

mγ nγ .

How many ways are there of assigning the labels to such a diagram? One might think
(4!)N · N !, since for each vertex × there are 4! permutations of its four labels, and there
are N ! ways to permute all the vertices. However, this overcounts diagrams which are
invariant under one or more of these permutations. We define the symmetry factor sγ of
the (unlabeled) cluster γ as the number of permutations of the indices of a corresponding
labeled cluster which result in the same contraction. We can also permute among the mγ

identical disjoint clusters of type γ.

Examples of clusters and their corresponding symmetry factors are provided in fig. 3, for all
diagrams with nγ ≤ 3. There is only one diagram with nγ = 1, resembling ©•©. To obtain
sγ = 8, note that each of the circles can be separately rotated by an angle π about the long
symmetry axis. In addition, the figure can undergo a planar rotation by π about an axis
which runs through the sole vertex and is normal to the plane of the diagram. This results in
sγ = 2 ·2 ·2 = 8. For the cluster ©•©•©, there is one extra circle, so sγ = 24 = 16. The third
diagram in figure shows two vertices connected by four lines. Any of the 4! permutations
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Figure 3: (5)(c) Cluster symmetry factors. A vertex is represented as a black dot (•) with
four ‘legs’.

of these lines results in the same diagram. In addition, we may reflect about the vertical
symmetry axis, interchanging the vertices, to obtain another symmetry operation. Thus
sγ = 2 · 4! = 48. One might ask why we don’t also count the planar rotation by π as a
symmetry operation. The answer is that it is equivalent to a combination of a reflection
and a permutation, so it is not in fact a distinct symmetry operation. (If it were distinct,
then sγ would be 96.) Finally, consider the last diagram in the figure, which resembles a
sausage with three links joined at the ends into a circle. If we keep the vertices fixed, there
are 8 symmetry operations associated with the freedom to exchange the two lines associated
with each of the three sausages. There are an additional 6 symmetry operations associated
with permuting the three vertices, which can be classified as three in-plane rotations by 0,
2π
3 and 4π

3 , each of which can also be combined with a reflection about the y-axis (this is
known as the group C3v). Thus, sγ = 8 · 6 = 48.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible
numbers of clusters at each order:

F (γ) =
∞
∑

N=0

1

N !

∑

{m
γ
}

(4!)NN !
∏

γ s
m

γ

γ mγ !

(

− λ

4!

)N

δN,
P

γ
m

γ
n

γ

= exp

(

∑

γ

(−λ)nγ

sγ

)

.

Thus,

ln F (γ) =
∑

γ

(−λ)nγ

sγ

,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is
instructive to work this out to order λ2. We have, from the results of part (b),

F (λ) = 1 − 1
8 λ + 35

384 λ2 + O(λ3) =⇒ ln F (λ) = −1
8 λ + 1

12 λ2 + O(λ3) .

9



Note that there is one diagram with N = 1 vertex, with symmetry factor s = 8. For N = 2
vertices, there are two diagrams, one with s = 16 and one with s = 48 (see fig. 3). Since
1
16 + 1

48 = 1
12 , the diagrammatic expansion is verified to order λ2.

In quantum field theory (QFT), the vertices themselves carry space-time (or, more com-
monly, momentum-frequency) labels, and the contractions, i.e. the lines connecting legs
of the vertices, are propagators G(pµ

i − pµ
j ), where pµ

i is the 4-momentum associated with
vertex i. We then must integrate over all the internal 4-momenta to obtain the numerical
value for a given diagram. The diagrams, as you know, are associated with Feynman’s
approach to QFT and are known as Feynman diagrams. Our example here is equivalent
to a (0 + 0)-dimensional field theory, i.e. zero space dimensions and zero time dimensions.
There are then no internal 4-momenta to integrate over, and each propagator is simply a
number rather than a function. The discussion above of symmetry factors sγ carries over
to the more general QFT case.

There is an important lesson to be learned here about the behavior of asymptotic series. As
we have seen, if λ is sufficiently small, summing more and more terms in the perturbation
series results in better and better results, until one reaches an optimal order when the error
is minimized. Beyond this point, summing additional terms makes the result worse, and
indeed the perturbation series diverges badly as N → ∞. Typically the optimal order
of perturbation theory is inversely proportional to the coupling constant. For quantum
electrodynamics (QED), where the coupling constant is the fine structure constant α =
e2/~c ≈ 1

137 , we lose the ability to calculate in a reasonable time long before we get to 137
loops, so practically speaking no problems arise from the lack of convergence. In quantum
chromodynamics (QCD), however, the effective coupling constant is about two orders of
magnitude larger, and perturbation theory is a much more subtle affair.
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