PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a system of noninteracting spin trimers, each of which is described by the
Hamiltonian
H = —J(0109 4 0905+ 030,) — poH (0 + 05 + 03) .

The individual spin polarizations o, are two-state Ising variables, with o; = £1.
(a) Find the single trimer partition function (.
(b) Find the magnetization per trimer m = p, (o + oy + 03).

(c) Suppose there are N, trimers in a volume V. The magnetization density is M =
N,m/V. Find the zero field susceptibility X(T') = (OM/0H)y_,-

(d) Find the entropy S(T,H, N,).

(e) Interpret your results for parts (b), (c), and (d) physically for the limits J — +oo,
J — 0, and J — —o0.

Solution : The eight trimer configurations and their corresponding energies are listed in
the table below.
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Table 1: Spin configurations and their corresponding energies.

(a) The single trimer partition function is then

¢ = Z e PPa = 239 cosh(381yH) + 6 ¢/ cosh(BugH) .

(b) The magnetization is

_— 190¢ 3 307 sinh(38uyH) + e/ sinh(BuyH)
C BCOH Ho~ | e3p7 cosh(38uyJ) + 3 e cosh(BuyH)

(c¢) Expanding m(7T,H) to lowest order in H, we have
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Thus,
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So the entropy is

S
Setting H = 0 we have
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(e) Note that for J = 0 we have m = 3udH/k,T, corresponding to three independent Ising
spins. The H = 0 entropy is then N,k In8 = 3N, ky; In 2, as expected. As J — +o00 we have
m = 9ud H/k,T = (3u0)?H/k,T, and each trimer acts as a single Z, Ising spin, but with
moment 3u,. The zero field entropy in this limit tends to N, kg In 2, again corresponding to
a single Z, Ising degree of freedom per trimer. For J — —oo, we have m = p2H/k,T and
S = NpkyIn6. This is because the only allowed (i.e. finite energy) states of each trimer
are the three states with magnetization +, and the three states with magnetization —p,
all of which are degenerate at H = 0.

(2) The potential energy density for an isotropic elastic solid is given by
U(x) = pTre? + %)\ (Tre)?
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where 1 and A are the Lamé parameters and
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with u(x) the local displacement field, is the strain tensor. The Cartesian indices « and 3
run over x,y, 2. The kinetic energy density is

T(z) = $pi(z) .

(a) Assume periodic boundary conditions, and Fourier transform to wavevector space,

Aoz zk:c
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Write the Lagrangian L = [d% (T — Z/{) in terms of the generalized coordinates 4j (t) and
generalized velocities ﬂ% (t).

(b) Find the Hamiltonian H in terms of the generalized coordinates g () and generalized
momenta 7y (t).

(c) Find the thermodynamic average (u(0) - u(x)).

(d) Suppose we add in a nonlocal interaction of the strain field of the form

AU = /d3 /d Tre(x) Tre(z') v(xz — o) .
Repeat parts (b) and (c).

Solution : To do the mode counting we are placing the system in a box of dimensions
L, x L, x L, and imposing periodic boundary conditions. The allowed wavevectors k are

of the form
ko — 2mn,, 27my 2mn,
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We shall repeatedly invoke the orthogonality of the plane waves:
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where V' = L, L, L, is the volume. When we Fourier decompose the displacement field, we
must take care to note that g is complex, and furthermore that 4%, = (ag)*, since u®(x)

is a real function.

(a) We then have

o0

T = /d:pzpu (z,t)

—0o0




and
7 ou® ou
U=/dx [ G S 40 ) (V-
éZ(W O+ ) B2 ) K2 ag (1) 0 ()
k

The Lagrangian is of course L =T — U.

(b) The momentum 7} conjugate to the generalized coordinate uf is
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and the Hamiltonian is
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Note that we have added and subtracted a term ul%"‘ kP within the expression for the
potential energy. This is because P, 5 = k% k? and Qup = 6% — k> kP are projection
operators satisfying P? = P and Q% = Q, with P + Q = I, the identity. P projects any

vector onto the direction k, and Q is the projector onto the (two-dimensional) subspace
orthogonal to k.

(c) We can decompose @, into a longitudinal component parallel to k and a transverse
component perpendicular to k, writing

=ikl ||+zek1uk +zek2uk ,

where {€,, , €, k} is a right-handed orthonormal triad for each direction k. A factor of

i is included so that uH = ( ”) , etc. With this decomposition, the potential energy takes

the form
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Equipartition then means each independent degree of freedom which is quadratic in the
potential contributes an average of k T to the total energy. Recalling that uH and u,j’j
(j = 1,2) are complex functions, and that they are each the Fourier transforrn of a real
function (so that k and —k terms in the sum for U are equal), we have
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Thus,
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Recall that in three space dimensions the Fourier transform of 47 /k? is 1/|z|.

(d) The k-space representation of AU is

AU = 15" K2 o(k) ke kP ag o),
k
where (k) is the Fourier transform of the interaction v(x — &'):

o(k) = /d?’m(r)e-ik'r .

We see then that the effect of AU is to replace the Lamé parameter A with the k-dependent
quantity,
A= ANk)=X+0(k) .

With this simple replacement, the results of parts (b) and (c) retain their original forms,
mutatis mutandis.



