
PHYSICS 210A : STATISTICAL PHYSICS
HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a system of noninteracting spin trimers, each of which is described by the
Hamiltonian

Ĥ = −J
(
σ1σ2 + σ2σ3 + σ3σ1

)
− µ0H

(
σ1 + σ2 + σ3

)
.

The individual spin polarizations σi are two-state Ising variables, with σi = ±1.

(a) Find the single trimer partition function ζ.

(b) Find the magnetization per trimer m = µ0 〈σ1 + σ2 + σ3〉.

(c) Suppose there are N4 trimers in a volume V . The magnetization density is M =
N4m/V . Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.

(d) Find the entropy S(T,H, N4).

(e) Interpret your results for parts (b), (c), and (d) physically for the limits J → +∞,
J → 0, and J → −∞.

Solution : The eight trimer configurations and their corresponding energies are listed in
the table below.

|σ1σ2σ3 〉 E |σ1σ2σ3 〉 E

|↑↑↑ 〉 −3J − 3µ0H |↓↓↓ 〉 −3J + 3µ0H

|↑↑↓ 〉 +J − µ0H |↓↓↑ 〉 +J + µ0H

|↑↓↑ 〉 +J − µ0H |↓↑↓ 〉 +J + µ0H

|↓↑↑ 〉 +J − µ0H |↑↓↓ 〉 +J + µ0H

Table 1: Spin configurations and their corresponding energies.

(a) The single trimer partition function is then

ζ =
∑
α

e−βEα = 2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H) .

(b) The magnetization is

m =
1
βζ

∂ζ

∂H
= 3µ0 ·

(
e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)
e3βJ cosh(3βµ0J) + 3 e−βJ cosh(βµ0H)

)

(c) Expanding m(T,H) to lowest order in H, we have

m = 3βµ2
0 H ·

(
3 e3βJ + e−βJ

e3βJ + 3 e−βJ

)
+O(H3) .
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Thus,

χ(T ) =
N4
V
· 3µ2

0

kBT
·
(

3 e3J/kBT + e−J/kBT

e3J/kBT + 3 e−J/kBT

)
.

(d) Note that

F =
1
β

lnZ , E =
∂ lnZ
∂β

.

Thus,

S =
E − F
T

= kB

(
lnZ − β ∂ lnZ

∂β

)
= N4kB

(
ln ζ − β ∂ ln ζ

∂β

)
.

So the entropy is

S(T,H, N4) = N4kB ln
(

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)
)

− 6N4βJkB ·
(

e3βJ cosh(3βµ0H)− e−βJ cosh(βµ0H)
2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

− 6N4βµ0HkB ·
(

e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)
2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)
.

Setting H = 0 we have

S(T,H = 0, N4) = N4kB ln 2 +N4kB ln
(
1 + 3 e−4J/kBT

)
+
N4J

T
·
(

12 e−4J/kBT

1 + 3 e−4J/kBT

)

= N4kB ln 6 +N4kB ln
(
1 + 1

3 e
4J/kBT

)
−
N4J

T
·
(

4 e4J/kBT

3 + e4J/kBT

)
.

(e) Note that for J = 0 we have m = 3µ2
0H/kBT , corresponding to three independent Ising

spins. The H = 0 entropy is then N4kB ln 8 = 3N4kB ln 2, as expected. As J → +∞ we have
m = 9µ2

0 H/kBT = (3µ0)2H/kBT , and each trimer acts as a single Z2 Ising spin, but with
moment 3µ0. The zero field entropy in this limit tends to N4kB ln 2, again corresponding to
a single Z2 Ising degree of freedom per trimer. For J → −∞, we have m = µ2

0 H/kBT and
S = N4kB ln 6. This is because the only allowed (i.e. finite energy) states of each trimer
are the three states with magnetization +µ0 and the three states with magnetization −µ0,
all of which are degenerate at H = 0.

(2) The potential energy density for an isotropic elastic solid is given by

U(x) = µTr ε2 + 1
2λ (Tr ε)2

= µ
∑
α,β

ε2αβ(x) + 1
2λ
(∑

α

εαα(x)
)2

,

where µ and λ are the Lamé parameters and

εαβ =
1
2

(
∂uα

∂xβ
+
∂uβ

∂xα

)
,

2



with u(x) the local displacement field, is the strain tensor . The Cartesian indices α and β
run over x, y, z. The kinetic energy density is

T (x) = 1
2ρ u̇2(x) .

(a) Assume periodic boundary conditions, and Fourier transform to wavevector space,

uα(x, t) = 1√
V

∑
k

ûαk(t) eik·x

ûαk(t) = 1√
V

∫
d3x uα(x, t) e−ik·x .

Write the Lagrangian L =
∫
d3x
(
T − U

)
in terms of the generalized coordinates ûαk(t) and

generalized velocities ˙̂uαk(t).

(b) Find the Hamiltonian H in terms of the generalized coordinates ûαk(t) and generalized
momenta π̂αk (t).

(c) Find the thermodynamic average 〈u(0) · u(x)〉.

(d) Suppose we add in a nonlocal interaction of the strain field of the form

∆U = 1
2

∫
d3x

∫
d3x′ Tr ε(x) Tr ε(x′) v(x− x′) .

Repeat parts (b) and (c).

Solution : To do the mode counting we are placing the system in a box of dimensions
Lx × Ly × Lz and imposing periodic boundary conditions. The allowed wavevectors k are
of the form

k =
(

2πnx
Lx

,
2πny
Ly

,
2πnz
Lz

)
.

We shall repeatedly invoke the orthogonality of the plane waves:

Lx∫
0

dx

Ly∫
0

dy

Lz∫
0

dz ei(k−k′)·x = V δk,k′ ,

where V = LxLyLz is the volume. When we Fourier decompose the displacement field, we
must take care to note that ûαk is complex, and furthermore that ûα−k =

(
ûαk
)∗, since uα(x)

is a real function.

(a) We then have

T =

∞∫
−∞

dx 1
2ρ u̇2(x, t) = 1

2ρ
∑

k

∣∣ ˙̂uαk(t)
∣∣2
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and

U =

∞∫
−∞

dx

[
1
2µ

∂uα

∂xβ
∂uα

∂xβ
+ 1

2(λ+ µ) (∇·u)2
]

= 1
2

∑
k

(
µ δαβ + (λ+ µ) k̂α k̂β

)
k2 ûαk(t) ûβ−k(t) .

The Lagrangian is of course L = T − U .

(b) The momentum π̂αk conjugate to the generalized coordinate ûαk is

π̂αk =
∂L

∂ ˙̂u
α
k

= ρ ˙̂uα−k ,

and the Hamiltonian is

H =
∑

k

π̂αk
˙̂uαk − L

=
∑

k

{∣∣π̂αk ∣∣2
2ρ

+ 1
2

[
µ
(
δαβ − k̂α k̂β

)
+ (λ+ 2µ) k̂α k̂β

]
k2 ûαk û

β
−k

}
.

Note that we have added and subtracted a term µ k̂α k̂β within the expression for the
potential energy. This is because Pαβ = k̂α k̂β and Qαβ = δαβ − k̂α k̂β are projection
operators satisfying P2 = P and Q2 = Q, with P + Q = I, the identity. P projects any
vector onto the direction k̂, and Q is the projector onto the (two-dimensional) subspace
orthogonal to k̂.

(c) We can decompose ûk into a longitudinal component parallel to k̂ and a transverse
component perpendicular to k̂, writing

ûk = ik̂ û
‖
k + iêk,1 û

⊥,1
k + iêk,2 û

⊥,2
k ,

where {êk,1 , êk,2 , k̂} is a right-handed orthonormal triad for each direction k̂. A factor of

i is included so that û‖−k =
(
û
‖
k

)∗, etc. With this decomposition, the potential energy takes
the form

U = 1
2

∑
k

[
µk2

(∣∣û⊥,1k

∣∣2 +
∣∣û⊥,2k

∣∣2)+ (λ+ 2µ) k2
∣∣û‖k∣∣2] .

Equipartition then means each independent degree of freedom which is quadratic in the
potential contributes an average of 1

2kBT to the total energy. Recalling that u‖k and u⊥,jk

(j = 1, 2) are complex functions, and that they are each the Fourier transform of a real
function (so that k and −k terms in the sum for U are equal), we have〈

µk2
∣∣û⊥,1k

∣∣2〉 =
〈
µk2

∣∣û⊥,2k

∣∣2〉 = 2× 1
2kBT〈

(λ+ 2µ) k2
∣∣û‖k∣∣2〉 = 2× 1

2kBT .
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Thus, 〈
|ûk|2

〉
= 4× 1

2kBT ×
1
µk2

+ 2× 1
2kBT ×

1
(λ+ 2µ) k2

=
(

2
µ

+
1

λ+ 2µ

)
kBT

k2
.

Then 〈
u(0) · u(x)

〉
=

1
V

∑
k

〈
|ûk|2

〉
eik·x

=
∫

d3k

(2π)3

(
2
µ

+
1

λ+ 2µ

)
kBT

k2
eik·x

=
(

2
µ

+
1

λ+ 2µ

)
kBT

4π|x|
.

Recall that in three space dimensions the Fourier transform of 4π/k2 is 1/|x|.

(d) The k-space representation of ∆U is

∆U = 1
2

∑
k

k2 v̂(k) k̂α k̂β ûαk û
β
−k ,

where v̂(k) is the Fourier transform of the interaction v(x− x′):

v̂(k) =
∫
d3r v(r) e−ik·r .

We see then that the effect of ∆U is to replace the Lamé parameter λ with the k-dependent
quantity,

λ→ λ(k) ≡ λ+ v̂(k) .

With this simple replacement, the results of parts (b) and (c) retain their original forms,
mutatis mutandis.
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