
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider a d-dimensional ideal gas with dispersion ε(p) = A|p|α, with α > 0. Find the
density of states D(E), the statistical entropy S(E), the equation of state p = p(N,V, T ), the
heat capacity at constant volume CV (N,V, T ), and the heat capacity at constant pressure
Cp(N,V, T ).

Solution: The density of states is

D(E,V,N) =
V N

N !

∫
ddp1

hd
· · ·
∫
ddpN
hd

δ
(
E −Apα1 − . . .−ApαN

)
.

The Laplace transform is

D̂(β, V,N) =
V N

N !

(∫
ddp

hd
e−βAp

α

)N

=
V N

N !

(
Ωd
hd

∞∫

0

dp pd−1 e−βAp
α

)N

=
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N
β−Nd/α .

Now we inverse transform, recalling

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

We then conclude

D(E,V,N) =
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N E
Nd
α

−1

Γ(Nd/α)

and

S(E,V,N) = kB lnD(E,V,N)

= NkB ln

(
V

N

)
+
d

α
NkB ln

(
E

N

)
+Na0 ,

where a0 is a constant, and we take the thermodynamic limit N → ∞ with V/N and E/N
fixed. From this we obtain the differential relation

dS =
NkB

V
dV +

d

α

NkB

E
dE + s0 dN

=
p

T
dV +

1

T
dE − µ

T
dN ,

where s0 is a constant. From the coefficients of dV and dE, we conclude

pV = NkBT

E =
d

α
NkBT .
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Setting dN = 0, we have

d̄Q = dE + p dV

=
d

α
NkB dT + p dV

=
d

α
NkB dT + p d

(
NkBT

p

)
.

Thus,

CV =
d̄Q

dT

∣∣∣∣
V

=
d

α
NkB , Cp =

d̄Q

dT

∣∣∣∣
p

=

(
1 +

d

α

)
NkB .

(2) Find the velocity distribution f(v) for the particles in problem (1). Compute the most
probable speed, mean speed, and root-mean-square velocity.

Solution: The momentum distribution is

g(p) = C e−βAp
α
,

where C is a normalization constant, defined so that
∫
ddp g(p) = 1. Changing variables to

t ≡ βApα, we find

C =
α (βA)

d
α

Ωd Γ
(
d
α

) .

The velocity v is given by

v =
∂ε

∂p
= αApα−1 p̂ .

Thus, the speed distribution is given by

f(v) = C

∫
ddp e−βAp

α
δ
(
v − αApα−1

)
.

Thus,

〈vr〉 = C

∫
ddp e−βAp

α(
αApα−1

)r

Thus,

‖v‖r = 〈vr〉1/r = αAα
−1

(kBT )1−α
−1

(
Γ
(
d−r
α + r

)

Γ
(
d
α

)
)1/α

.

To find the most probable speed, we extremize f(v). We write

δ
(
v − αApα−1

)
=
δ
(
p− (v/αA)1/(α−1)

)

α(α− 1)Apα−2
.

We then find

f(v) =
C

α(α − 1)A
pd−α+1 e−βAp

α

∣∣∣∣
p=(v/αA)1/(α−1)

.
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Extremizing, we obtain

βApα =
d− α+ 1

α
,

which means

v = αA

(
d− α+ 1

αβA

)1−α−1

= (αA)α
−1

(d− α+ 1)1−α
−1

(kBT )1−α
−1
.

(3) A spin-1 Ising magnet is described by the noninteracting Hamiltonian

H = −µ0H

N∑

i=1

σi ,

where σi = −1, 0,+1.

(a) Find the entropy S(H, T,N).

(b) Suppose the system starts off at a temperature T = 10mK and a field H = 20T. The
field is then lowered adiabatically to H = 1T. What is the final temperature of the system?

Solution: The partition function for a single spin is

ζ = 1 + 2 cosh(βµ0H) .

The free energy is therefore

F = −NkBT ln
(
1 + 2 cosh

(
µ0H/kBT

))
.

The entropy is

S = −
(
∂F

∂T

)

V N

= NkB ln
(
1 + 2 cosh

(
µ0H/kBT

))
− N

µ0H

T

2 sinh
(
µ0H/kBT

)

1 + 2 cosh
(
µ0H/kBT

)

Note that S = Ns(H/T ). Thus, an adiabatic process is one which takes place at constant
H/T . If H is lowered by a factor of 20, then T is lowered by a factor of 20. For this problem,
then, the final temperature is 0.5mK.

(4) Consider an adsorption model where each of N sites on a surface can accommodate either
one or two adsorbate molecules. When one molecule is present the energy is ε = −∆, but
when two are present the energy is ε = −2∆+U , where U models the local interaction of two
adsorbate molecules at the same site. You should think of there being two possible binding
locations within each adsorption site, so there are four possible states per site: unoccupied
(1 possibility), singly occupied (2 possibilities), and doubly occupied (1 possibility). The
surface is in equilibrium with a gas at temperature T and number density n.

(a) Find the surface partition function.
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(b) Find the fraction fj which contain j adsorbate molecules, where j = 0, 1, 2.

Solution: The surface partition function is

Ξ =
(
1 + 2 eβ(µ+∆) + e2β(µ+∆) e−βU

)N

,

hence
Ω = −NkBT ln

(
1 + 2 e(µ+∆)/kBT + e2(µ+∆)/kBT e−U/kBT

)
.

In the gas, we have eµ/kBT = nλ3
T . Therefore

f0 =
1

1 + 2nλ3
T e

∆/kBT + n2λ6
T e

2∆/kBT e−U/kBT

f1 =
2nλ3

T e
∆/kBT

1 + 2nλ3
T e

∆/kBT + n2λ6
T e

2∆/kBT e−U/kBT

f2 =
(nλ3

T )2 e2∆/kBT e−U/kBT

1 + 2nλ3
T e

∆/kBT + n2λ6
T e

2∆/kBT e−U/kBT
.

(5) Consider a system of dipoles with the Hamiltonian

H =
∑

i<j

Jαβij mα
i m

β
j − µ0

∑

i

H
α
i m

α
i ,

where

Jαβij =
J

R3
ij

(
δαβ − 3 R̂αij R̂

β
ij

)
.

Here Ri is the spatial position of the dipole mi, and Rij = Ri−Rj with R̂αij ≡ Rαij/Rij the
unit direction vector from j to i. The dipole vectors mα

i are three-dimensional unit vectors.
H
α
i is the local magnetic field.

(a) Find an expression for the free energy F
(
T, {~Hi}

)
valid to order β2, where β = 1/kBT .

(b) Obtain an expression for the uniform field magnetic susceptibility tensor χαβ.

(c) An experimentalist plots the quantity Tχαβ versus T−1 for large temperatures. What
should the data resemble if the dipoles are arranged in a cubic lattice structure? How
about if they are arranged in a square lattice in the (x, y) plane? (You’ll need to separately
consider the various cases for the indices α and β. You will also need to numerically evaluate
certain lattice sums.)

Solution: Since Z = e−βF , we will need to expand Z to order β3 in order to obtain F to
order β2. We have

Z = Tr e−βH

= Tr 1 − β TrH + 1
2β

2
TrH2 − 1

6β
3
TrH3 + O(β4) .
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Taking the logarithm, and recalling ln(1 + ε) =
∑∞

k=1(−1)k−1εk/k, we have

F = TrH − 1
2β
[
Tr
(
H2
)
− (TrH)2

]
+ 1

6β
2
[
Tr
(
H3
)
− 3Tr

(
H2
)
TrH + 2 (TrH)3

]
+O(β3) .

We define the trace as

TrF (m̂1, . . . , m̂N ) =

∫ N∏

j=1

dm̂j

4π
F (m̂1, . . . , m̂N ) ,

so that Tr 1 = 1. Thus,
Tr
(
mµ
im

ν
j

)
= 1

3 δij δ
µν .

Clearly the trace of any product of an odd number of terms mµ
i with the same i, no matter

what the choices of the O(3) indices (e.g. µ), must vanish, since the trace itself is invariant
under m̂i → −m̂i. It isn’t so easy to compute traces of higher order even products, since
the unit vector constraint on m̂i invalidates the application of Wick’s theorem, which can
be invoked when computing the averages of Gaussianly distributed variables. For example,
one finds Tr

(
m̂xm̂xm̂ym̂y

)
= 2

3 while Tr
(
m̂xm̂xm̂xm̂x

)
= 1

5 . No matter; we shall only need
Tr
(
mµ
im

ν
j

)
, computed above.

We now write H = H0 + H1, where H0 =
∑

i<j J
αβ
ij mα

i m
β
j and H1 = −µ0

∑
iH

α
i m

α
i .

Eliminating the odd terms whose traces vanish, we have

TrH = Tr(H0 +H1) = 0

Tr
(
H2
)

= Tr
(
H2

0 + 2H0H1 +H2
1

)
= Tr

(
H2

0

)
+ Tr

(
H2

1

)

Tr
(
H3
)

= Tr
(
H3

0 + 3H2
0 H1 + 3H0H

2
1 +H3

1

)
= Tr

(
H3

0

)
+ Tr

(
H0H

2
1

)
.

Note that TrH0 = 0 since i and j are distinct in the sum. We may now compute

Tr
(
H2

0

)
=
∑

i<j

Jµνij J
µν
ij

Tr
(
H2

1

)
= 1

3µ
2
0

∑

i

H
α
i H

α
i

Tr
(
H3

0

)
= 3

∑

i<j<k

Jµνij J
νλ
jk J

λµ
ki

Tr
(
H0H

2
1

)
= 1

3µ
2
0

∑

i<j

Jµνij H
µ
i H

ν
j .

Next we must contract the O(3) indices. We find

Jµνij J
µν
ij =

6J2

R6
ij

Jµνij J
νλ
jk J

λµ
ki =

[
− 6 + 9 (R̂ij · R̂jk)2 + 9 (R̂jk · R̂ki)2 + 9 (R̂ki · R̂ij)2

− 27 (R̂ij · R̂jk)(R̂jk · R̂ki)(R̂ki · R̂ij)
]
· J3

R3
ijR

3
jkR

3
ki

.
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(a) Thus, the free energy is

F = − 3J2

kBT

∑

i<j

1

R6
ij

− µ2
0

6 kBT

∑

i

H
α
i H

α
i +

µ2
0J

18 (kBT )2

∑

i<j

(
δµν − 3R̂µijR̂

ν
ij

R3
ij

)
H
µ
i H

ν
j

+
J3

(kBT )2

∑

i<j<k

−2 + 3 R̂ij · R̂jk + 3 R̂jk · R̂ki + 3 R̂ki · R̂ij − 9 (R̂ij · R̂jk)(R̂jk · R̂ki)(R̂ki · R̂ij)
R3
ijR

3
jkR

3
ki

to order β2.

(b) We have

χµν
ij =

∂ 〈µ0m
µ
i 〉

∂H
ν
j

= − ∂2F

∂H
µ
i ∂H

ν
j

=
µ2

0

3kBT
δµν δij −

µ2
0 J

9 (kBT )2

(
δµν − 3R̂µijR̂

ν
ij

R3
ij

)

(1 − δij) + O(T−3) .

The second term is here multiplied by (1 − δij) since i and j must be distinct in the
corresponding term from the free energy. χµν

ij tells us how the moment at site i changes
in response to a change in the magnetic field at site j. To get the uniform magnetic
susceptibility, we differentiate the total moment Mµ = µ0

∑
i〈m

µ
i 〉 with respect to a uniform

field Hν , and we then divide by the system volume. Thus,

χµν =
1

V

∑

i,j

χµν
ij =

N

V
· µ2

0

3kBT
δµν − µ2

0 J

9 (kBT )2
· 1

V

∑

i6=j

(
δµν − 3R̂µijR̂

ν
ij

R3
ij

)
+ O(T−3) .

The above expression is valid for any spatial arrangement of the dipoles. They don’t have
to be in a regular lattice, for example.

(c) If the dipoles are located at the sites of a Bravais lattice, then we may write

χµν =
1

V

∑

i,j

χµν
ij =

N

V
· µ2

0

3kBT
δµν − N

V
· µ2

0 J

9 (kBT )2

∑

R 6=0

(
δµν − 3R̂µR̂ν

R3

)
+ O(T−3) ,

where the sum is over all Bravais lattice vectors (i.e. all lattice points) other than R = 0.
Now let’s do the lattice sum in the second term for the case of a cubic lattice. We write
R = (l x̂ +m ŷ + n ẑ)a, where a is the lattice constant and (l,m, n) are integers. We sum
over all triples of integers (l,m, n) other than (0, 0, 0). We then have

R =
(
l2 + n2 + n2)1/2 a , R̂ =

R

R
=

l x̂ +m ŷ + n ẑ

(l2 +m2 + n2)1/2
.

It is clear that the off-diagonal terms in χµν must vanish due to the cubic symmetry. For
example, when µ = x and ν = y we have to compute

∑

l,m,n

′ lm

(l2 +m2 + n2)5/2
= 0 ,
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since the summand is odd separately in both l and m. The prime on the sum indicates that
the term (0, 0, 0) is to be excluded.

Next, consider the diagonal elements. For a cubic lattice, we must have χxx = χyy = χzz,
so we need only compute the xx term:

∑

R 6=0

(
1 − 3R̂xR̂x

R3

)
=

1

a3

∑

l,m,n

′ m2 + n2 − 2l2

(l2 +m2 + n2)5/2
= 0 .

To see why this term vanishes, note that any permutation of the triple (l,m, n) is also a
Bravais lattice site. Summing over all permutations, we see that the above sum must vanish.
We therefore conclude that all components of the O(T−2) term in the susceptibility vanish
for a cubic lattice. In fact, it is clear from the outset that

Tr
(
δµν − 3R̂µR̂ν

)
= 0 ,

so this result coupled with the cubic symmetry immediately tells us that the O(T−2) must
vanish for all components.

For a square lattice, we set n = 0. The off-diagonal component χxy still vanishes due to the
square symmetry, but now we have χxx = χyy = −1

2
χzz. The lattice sum for the xx term is

−
∑

l,m

′ m2 − 2l2

(l2 +m2)5/2
=
∑

l,m

′ l2

(l2 +m2)5/2
= 1.7302 ,

where the numerical value is obtained by numerical summation. Thus,

χµν(SC) =
N

V
· µ2

0

3kBT
δµν + O(T−3)

χµν(SQ) =
N

V
· µ2

0

3kBT
δµν +

N

V
· µ2

0 J

9 (kBT )2
· 1.7302

a3




1 0 0
0 1 0
0 0 −2



+ O(T−3)

for simple cubic and square lattices, respectively. Thus, if we plot Tχµν versus T−1 at high
temperatures, we should observe a straight line with intercept nµ2

0/3kB, with n = N/V .
The slope of the line is zero for the case of a cubic lattice, but for a square lattice, we should
observe a positive slope of 1.7302nµ2

0J/9k
2
B for χxx and χyy and a negative slope of twice

this magnitude for χzz.

(6) The general form of the kinetic energy for a rotating body is

T = 1
2I1
(
φ̇ sin θ sinψ + θ̇ cosψ

)2
+ 1

2I2
(
φ̇ sin θ cosψ − θ̇ sinψ

)2
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
,

where (φ, θ, ψ) are the Euler angles.

(a) Find the Hamiltonian H(pφ, pθ, pψ) for a free asymmetric rigid body.
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(b) Compute the rotational partition function,

ξrot(T ) =
1

h3

∞∫

−∞

dpφ

∞∫

−∞

dpθ

∞∫

−∞

dpψ

2π∫

0

dφ

π∫

0

dθ

2π∫

0

dψ e−H(pφ,pθ,pψ)/kBT

and show that you recover the result in §3.13.3 of the notes.

Solution: We define generalized coordinates (φ, θ, ψ), in which case we may write T =
1
2Tij q̇i q̇j, with

Tij =




(I1 sin2ψ + I2 cos2ψ) sin2θ + I3 cos2θ (I1 − I2) sin θ sinψ cosψ I3 cos θ

(I1 − I2) sin θ sinψ cosψ I1 cos2ψ + I2 sin2ψ 0
I3 cos θ 0 I3





The generalized momenta are pi = ∂T/∂q̇i = Tij q̇j, and the Hamiltonian is

H = 1
2T

−1
ij pi pj .

Recall the general formula for a matrix inverse: M−1
ij = (−1)i+j∆ji/ detM , where the minor

∆ij is the determinant of the square matrix formed from M by eliminating the ith row and

the jth column. The matrix T is of the form

T =




a d e
d b 0
e 0 c



 ,

hence the determinant is det T = abc− cd2 − be2 and the inverse is

T
−1 =

1

abc− cd2 − be2




bc −cd −be
−cd ac− e2 de
−be de ab− d2



 .

Taking the determinant of T is straightforward, and one finds det T = I1I2I3 sin2θ. The
rotational partition function is then given by the multidimensional integral

ξrot(T ) =
1

h3

2π∫

0

dφ

π∫

0

dθ

2π∫

0

dψ

∞∫

−∞

dpφ

∞∫

−∞

dpθ

∞∫

−∞

dpψ e
−T

−1
ij pipj/2kBT

=
1

h3

2π∫

0

dφ

π∫

0

dθ

2π∫

0

dψ (2πkBT )3/2
√

det T

=

(
2kBT

~2

)3/2√
πI1I2I3 ,

as in §3.13.3 of the notes.
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(7) For polyatomic molecules, the full internal partition function is written as the product

ξ(T ) =
gel · gnuc

gsym

· ξvib(T ) · ξrot(T ) ,

where gel is the degeneracy of the lowest electronic state1, gnuc =
∏
j(2Ij + 1) is the total

nuclear spin degeneracy, ξvib(T ) is the vibrational partition function, and ξrot(T ) is the
rotational partition function2. The integer gsym is the symmetry factor of the molecule,
which is defined to be the number of identical configurations of a given molecule which are
realized by rotations when the molecule contains identical nuclei. Evaluate gnuc and gsym for
the molecules CH4 (methane), CH3D, CH2D2, CHD3, and CD4. Discuss how the successive
deuteration of methane will affect the vibrational and rotational partition functions. For
the vibrations your discussion can be qualitative, but for the rotations note that all one
needs, as we derived in problem (6), is the product I1I2I3 of the moments of inertia, which
is the determinant of the inertia tensor Iαβ in a body-fixed center-of-mass frame. Using the
parallel axis theorem, one has

Iαβ =
∑

j

mj

(
r2
j δαβ − rαj r

β
j

)
+M

(
R2 δαβ −RαRβ

)

where M =
∑

jmj and R = M−1
∑

jmjrj . Recall that methane is structurally a tetrahe-
dron of hydrogen atoms with a carbon atom at the center, so we can take r1 = (0, 0, 0) to be
the location of the carbon atom and r2,3,4,5 = (1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1)

to be the location of the hydrogen atoms, with all distances in units of 1√
3

times the C−H
separation.

Solution: The total partition function is given by

Z(T, V,N) =
V N

N !

(
2π~

2

MkBT

)3N/2
ξNint(T ) ,

The Gibbs free energy per particle is

µ(T, p) =
G(T, p,N)

N
= kBT ln

(
p λdT
kBT

)
− kBT ln ξ(T )

= kBT ln

(
p λdT
kBT

)
− kBT ln

(
gel · gnuc

gsym

)

+ kBT
∑

a

ln
(
2 sinh(Θa/2T )

)
− kBT ln

[(
2kBT

~2

)3/2√
πI1I2I3

]
.

The electronic degeneracy is gel = 1 for all stages of deuteration. The nuclear spin of the
proton is I = 1

2 and that of the deuteron is I = 1. Thus there is a nuclear degeneracy

1We assume the temperature is low enough that we can ignore electronic excitations.
2Note that for linear polyatomic molecules such as CO2 and HCN, we must treat the molecule as a rotor,

i.e. we use eqn. 3.278 of the notes.
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of 2Ip + 1 = 2 for each hydrogen nucleus and 2Id + 1 = 3 for each deuterium nucleus.
The symmetry factor is analyzed as follows. For methane CH4, there are four threefold
symmetry axes, resulting in gsym = 12. The same result holds for CD4. For CH3D or
CHD3, there is a single threefold axis, hence gsym = 3. For CH2D2, the two hydrogen nuclei
lie in a plane together with the carbon, and the two deuterium nuclei lie in a second plane
together with the carbon. The intersection of these two planes provides a twofold symmetry
axis, about which a 180◦ rotation will rotate one hydrogen into the other and one deuterium
into the other. Thus gsym = 2.

To analyze the rotational partition function, we need the product I1I2I3 of the principal
moments of inertia, which is to say the determinant of the inertia tensor det I. We work
here in units of amu for mass and 1√

3
times the C − H separation for distance. The inertia

tensor is
Iαβ =

∑

j

mj

(
r2
j δαβ − rαj r

β
j

)
+M

(
R2 δαβ −RαRβ

)

where

M =
∑

j

mj

R = M−1
∑

j

mjrj .

The locations of the four hydrogen/deuterium ions are:

L1 : (+1,+1,+1)

L2 : (+1,−1,−1)

L3 : (−1,+1,−1)

L4 : (−1,−1,+1) .

For CH4 we have M = 16 and R = 0. The inertia tensor is

ICH4
=




8 0 0
0 8 0
0 0 8



 .

Similarly, for CD4 we have

ICD4
=




16 0 0
0 16 0
0 0 16



 .

For CH3D, there is an extra mass unit located at L1 relative to methane, so M = 17. The
CM is at R = 1

17(+1,+1,+1). According to the general formula above for Iαβ, thie results
in two changes to the inertia tensor, relative to ICH4

. We find

∆I =




2 −1 −1
−1 2 −1
−1 −1 2



+
1

17




2 −1 −1
−1 2 −1
−1 −1 2



 ,
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where the first term accounts for changes in I in the frame centered at the carbon atom,
and the second term shifts to the center-of-mass frame. Thus,

ICH3D
=





10 + 2
17 −18

17 −18
17

−18
17 10 + 2

17 −18
17

−18
17 −18

17 10 + 2
17




.

For CHD3, we regard the system as CD4 with a missing mass unit at L1, hence M = 19.
The CM is now at R = 1

17(−1,−1,−1). The change in the inertia tensor relative to ICD4

is then

∆I = −




2 −1 −1
−1 2 −1
−1 −1 2



+
1

19




2 −1 −1
−1 2 −1
−1 −1 2



 .

Thus,

ICHD3
=





14 + 2
19

18
19

18
19

18
19 14 + 2

19
18
19

18
19

18
19 14 + 2

19




.

Finally, for CH2D2. we start with methane and put extra masses at L1 and L2, so M = 18
and R = 1

9(+1, 0, 0). Then

∆I = −




4 0 0
0 4 −2
0 −2 4



+
2

9




0 0 0
0 1 0
0 0 1





and

ICH2D2
=





12 0 0

0 12 + 2
9 −2

0 −2 12 + 2
9




.

For the vibrations, absent a specific model for the small oscillations problem the best we can
do is to say that adding mass tends to lower the normal mode frequencies since ω ∼

√
k/M .
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mass M degeneracy symmetry det I
molecule (amu) factor gnuc factor gsym (amu) · a2/3

CH4 16 24 = 16 4 × 3 = 12 83

CH3D 17 23 · 3 = 24 1 × 3 = 3 8 ·
(
11 + 3

17

)2

CH2D2 18 22 · 32 = 36 1 × 2 = 2 12 ·
(
8 + 2

9

)
·
(
16 + 2

9

)

CHD3 19 2 · 33 = 54 1 × 3 = 3 16 ·
(
13 + 3

19

)2

CD4 20 34 = 81 4 × 3 = 12 163

Table 1: Nuclear degeneracy, symmetry factor, and I1I2I3 product for successively deuter-
ated methane.
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