
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) Prove that for x ≥ 0 and y ≥ 0 that

(x− y) (ln x− ln y) ≥ 0 .

Solution: Trivial. Both f(x) = x and g(x) = lnx are strictly increasing functions on the
interval (0,∞). Hence lnx < ln y if 0 < x < y, and ln y < lnx if 0 < y < x. Thus,
(x− y)

(
lnx− ln y

)
≥ 0.

(2) A Markov chain is a process which describes transitions of a discrete stochastic variable
occurring at discrete times. Let Pi(t) be the probability that the system is in state i at
time t. The evolution equation is

Pi(t+ 1) =
∑

j

Qij Pj(t) .

The transition matrix Qij satisfies
∑

iQij = 1 so that the total probability
∑

i Pi(t) is
conserved. The element Qij is the conditional probability that for the system to evolve
to state i given that it is in state j. Now consider a group of Physics graduate students
consisting of three theorists and four experimentalists. Within each group, the students are
to be regarded as indistinguishable. Together, the students rent two apartments, A and B.
Initially the three theorists live in A and the four experimentalists live in B. Each month,
a random occupant of A and a random occupant of B exchange domiciles. Compute the
transition matrix Qij for this Markov chain, and compute the average fraction of the time
that B contains two theorists and two experimentalists, averaged over the effectively infinite
time it takes the students to get their degrees. Hint: Q is a 4 × 4 matrix.

Solution: There are four states available: Now let’s compute the transition probabilities.

| j 〉 room A room B gA

j gB

j gTOT

j

| 1 〉 TTT EEEE 1 1 1

| 2 〉 TTE EEET 3 4 12

| 3 〉 TEE EETT 3 6 18

| 4 〉 EEE ETTT 1 4 4

Table 1: States and their degeneracies.

First, we compute the transition probabilities out of state | 1 〉, i.e. the matrix elements Qj1.
Clearly Q21 = 1 since we must exchange a theorist (T) for an experimentalist (E). All the
other probabilities are zero: Q11 = Q31 = Q41 = 0. For transitions out of state | 2 〉, the
nonzero elements are

Q12 = 1
4 × 1

3 = 1
12 , Q22 = 3

4 × 1
3 + 1

4 × 2
3 = 5

12 , Q32 = 1
2 .
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To compute Q12, we must choose the experimentalist from room A (probability 1
3) with the

theorist from room B (probability 1
4). For Q22, we can either choose E from A and one of

the E’s from B, or one of the T’s from A and the T from B. This explains the intermediate
steps written above. For transitions out of state | 3 〉, the nonzero elements are then

Q23 = 1
3 , Q33 = 1

2 , Q43 = 1
6 .

Finally, for transitions out of state | 4 〉, the nonzero elements are

Q34 = 3
4 , Q44 = 1

4 .

The full transition matrix is then

Q =




0 1
12 0 0

1 5
12

1
3 0

0 1
2

1
2

3
4

0 0 1
6

1
4




.

Note that
∑

iQij = 1 for all j = 1, 2, 3, 4. This guarantees that φ(1) = (1 , 1 , 1 , 1) is a
left eigenvector of Q with eigenvalue 1. The corresponding right eigenvector is obtained

by setting Qij ψ
(1)
j = ψ

(1)
i . Simultaneously solving these four equations and normalizing so

that
∑

j ψ
(1)
j = 1, we easily obtain

ψ(1) =
1

35




1
12
18
4


 .

This is the state we converge to after repeated application of the transition matrix Q. If we
decompose Q =

∑4
α=1 λα |ψ(α) 〉〈φ(α) |, then in the limit t→ ∞ we have Qt ≈ |ψ(1) 〉〈φ(1) |,

where λ1 = 1, since the remaining eigenvalues are all less than 1 in magnitude1. Thus, Qt

acts as a projector onto the state |ψ(1) 〉. Whatever the initial set of probabilities Pj(t = 0),

we must have 〈φ(1) |P (0) 〉 =
∑

j Pj(0) = 1. Therefore, limt→∞ Pj(t) = ψ
(1)
j , and we find

P3(∞) = 18
35 . Note that the equilibrium distribution satisfies detailed balance:

ψ
(1)
j =

gTOT

j∑
l g

TOT

l

.

(3) Consider a q-state generalization of the Kac ring model in which Zq spins rotate around
an N -site ring which contains a fraction x = N

F
/N of flippers on its links. Each flipper

cyclically rotates the spin values: 1 → 2 → 3 → · · · → q → 1 (hence the clock model
symmetry Zq).

1One can check that λ1 = 1, λ2 = 5

12
, λ3 = −

1

4
. and λ4 = 0.
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(a) What is the Poincare recurrence time?

(b) Make the Stosszahlansatz , i.e. assume the spin flips are stochastic random processes.
Then one has

Pσ(t+ 1) = (1 − x)Pσ(t) + xPσ−1(t) ,

where P0 ≡ Pq. This defines a Markov chain

Pσ(t+ 1) = Qσσ′ Pσ′(t) .

Decompose the transition matrix Q into its eigenvectors. Hint: The matrix may be diago-
nalized by a simple Fourier transform.

(c) The eigenvalues of Q may be written as λα = e−1/τα e−iδα , where τα is a relaxation
time and δα is a phase. Find the spectrum of relaxation times. What is the longest finite
relaxation time?

(d) Suppose all the spins are initially in the state σ = q. Write down an expression for
Pσ(t) for all subsequent times t ∈ Z

+. Plot your results for different values of x and q.

Hint: It may be helpful to study carefully the solution to problem 5.1 (i.e. problem 1 of
assignment 5) from F08 Physics 140A. You can access this through the link to the 140B
website on the 210A course web page.

Solution:

(a) The recurrence time is τ = qN/gcd(NF, q), where gcd(NF, q) is the greatest common
divisor of NF and q. After τ steps, which is to say q/gcd(NF, q) cycles around the ring, each
spin will have visited qN

F
/gcd(NF, q) flippers. This is necessarily an integer multiple of q,

which means that each spin will have mate N
F
/gcd(NF, q) complete cycles of its internal Zq

clock.

(b) We have
Qσσ′ = (1 − x) δ̃σ,σ′ + x δ̃σ,σ′+1 ,

where

δ̃ij =

{
1 if i = j mod q

0 otherwise.

Q is known as a circulant matrix , which is to say it satisfies Qσσ′ = Q(σ − σ′ mod q). A
circulant matrix of rank q has only q independent entries. Such a matrix may be brought
to diagonal form by a unitary transformation: Q = U Q̂U †,2 where Uσk = 1√

q e
2πikσ/q and

Q̂kk′ ≡ Q̂(k) δ̃kk′ with

Q̂(k) =

q∑

n=1

Q(µ) e−2πikµ/q . (1)

Since Q(µ) = (1 − x) δ̃µ,0 + x δ̃µ,1, we have

Q̂(k) = 1 − x+ x e−2πik/q .

2There was some discussion of the details on the web forum pages for Physics 210A this past week.
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Figure 1: Behavior of Pσ(t) for q = 5 and x = 0.1 within the Stosszahlansatz with ini-
tial conditions Pσ(0) = δσ,q. Note that at large times the probabilities all converge to
limt→∞ Pσ(t) = q−1.

(c) In the polar representation, we have Q̂(k) = e−1/τ
k
(x) e−iδ

k
(x), where

τk(x) = − 2

ln
[
1 − 2x(1 − x)

(
1 − cos(2πk/q)

)]

and

δk(x) = tan−1

(
x sin(2πk/q)

1 − x+ x cos(2πk/q)

)
.

Note that τq = ∞, because the total probability is conserved by the Markov process. The
longest finite relaxation time is τ1 = τq−1.

(d) Given the initial conditions Pσ(0) = δσ,q, we have

Pσ(t) =
(
Qt)σσ′ Pσ′(0)

=
1

q

q∑

k=1

Uσk Q̂
t(k)U∗

σ′k Pσ′(0)

=
1

q

q∑

k=1

e−t/τ
k e−itδ

k e2πiσk/q .

We can combine the terms in the k sum by pairing k with q − k, since τq−k = τk and
δq−k = −δk. We should however consider separately the cases k = q and, if q is even,

k = 1
2q, since for those values of k we have Q̂(k) is real.

If q is even, then Q̂
(
k = 1

2q
)

= 1 − 2x. We then have

Pσ(t) =
1

q
+

(−1)σ

q
(1 − 2x)t +

2

q

q

2
−1∑

k=1

e−t/τ
k
(x) cos

(
2πσk

q
− t δk(x)

)
.
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Figure 2: Evolution of the initial distribution Pσ(0) = δσ,q for the Zq Kac ring model for
q = 6, from a direct numerical simulation of the model.

If q is odd, then

Pσ(t) =
1

q
+

2

q

q−1

2∑

k=1

e−t/τ
k
(x) cos

(
2πσk

q
− t δk(x)

)
.

(e) See fig. 2.

(4) A ball of mass m executes perfect one-dimensional motion along the symmetry axis
of a piston. Above the ball lies a mobile piston head of mass M which slides frictionlessly
inside the piston. Both the ball and piston head execute ballistic motion, with two types
of collision possible: (i) the ball may bounce off the floor, which is assumed to be infinitely
massive and fixed in space, and (ii) the ball and piston head may engage in a one-dimensional
elastic collision. The Hamiltonian is

H =
P 2

2M
+

p2

2m
+MgX +mgx ,
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where X is the height of the piston head and x the height of the ball. Another quantity is
conserved by the dynamics: Θ(X − x). I.e., the ball always is below the piston head.

(a) Choose an arbitrary length scale L, and then energy scale E0 = MgL, momentum
scale P0 = M

√
gL, and time scale τ0 =

√
L/g. Show that the dimensionless Hamiltonian

becomes

H̄ = 1
2 P̄

2 + X̄ +
p̄2

2r
+ rx̄ ,

with r = m/M , and with equations of motion dX/dt = ∂H̄/∂P̄ , etc. (Here the bar indicates
dimensionless variables: P̄ = P/P0, t̄ = t/τ0, etc.) What special dynamical consequences
hold for r = 1?

(b) Compute the microcanonical average piston height 〈X〉. The analogous dynamical
average is

〈X〉T = lim
T→∞

1

T

T∫

0

dtX(t) .

When computing microcanonical averages, it is helpful to use the Laplace transform, dis-
cussed toward the end of §3.3 of the notes. (It is possible to compute the microcanonical
average by more brute force methods as well.)

(c) Compute the microcanonical average of the rate of collisions between the ball and the
floor. Show that this is given by

〈∑

i

δ(t− ti)
〉

=
〈
Θ(v) v δ(x − 0+)

〉
.

The analogous dynamical average is

〈γ〉T = lim
T→∞

1

T

T∫

0

dt
∑

i

δ(t − ti) ,

where {ti} is the set of times at which the ball hits the floor.

(d) How do your results change if you do not enforce the dynamical constraint X ≥ x?

(e) Write a computer program to simulate this system. The only input should be the mass
ratio r (set Ē = 10 to fix the energy). You also may wish to input the initial conditions,
or perhaps to choose the initial conditions randomly (all satisfying energy conservation, of
course!). Have your program compute the microcanonical as well as dynamical averages
in parts (b) and (c). Plot out the Poincaré section of P vs. X for those times when the
ball hits the floor. Investigate this for several values of r. Just to show you that this is
interesting, I’ve plotted some of my own numerical results in fig. 3.

Solution:

(a) Once we choose a length scale L (arbitrary), we may define E0 = M gL, P0 = M
√
gL,

V0 =
√
gL, and τ0 =

√
L/g as energy, momentum, velocity, and time scales, respectively,
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Figure 3: Poincaré sections for the ball and piston head problem. Each color corresponds
to a different initial condition. When the mass ratio r = m/M exceeds unity, the system
apparently becomes ergodic.

the result follows directly. Rather than write P̄ = P/P0 etc., we will drop the bar notation
and write

H = 1
2P

2 +X +
p2

2r
+ rx .

(b) What is missing from the Hamiltonian of course is the interaction potential between the
ball and the piston head. We assume that both objects are impenetrable, so the potential
energy is infinite when the two overlap. We further assume that the ball is a point particle
(otherwise reset ground level to minus the diameter of the ball). We can eliminate the
interaction potential from H if we enforce that each time X = x the ball and the piston
head undergo an elastic collision. From energy and momentum conservation, it is easy to
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derive the elastic collision formulae

P ′ =
1 − r

1 + r
P +

2

1 + r
p

p′ =
2r

1 + r
P − 1 − r

1 + r
p .

We can now answer the last question from part (a). When r = 1, we have that P ′ = p and
p′ = P , i.e. the ball and piston simply exchange momenta. The problem is then equivalent
to two identical particles elastically bouncing off the bottom of the piston, and moving
through each other as if they were completely transparent. When the trajectories cross,
however, the particles exchange identities.

Averages within the microcanonical ensemble are normally performed with respect to the
phase space distribution

̺(ϕ) =
δ(

(
E −H(ϕ)

)

Tr δ
(
E −H(ϕ)

) ,

where ϕ = (P,X, p, x), and

Tr F (ϕ) =

∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

∞∫

0

dx F (P,X, p, x) .

Since X ≥ x is a dynamical constraint, we should define an appropriately restricted micro-
canonical average:

〈
F (ϕ)

〉
µce

≡ T̃r
[
F (ϕ) δ

(
E −H(ϕ)

)]/
T̃r δ

(
E −H(ϕ)

)

where

T̃rF (ϕ) ≡
∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

X∫

0

dx F (P,X, p, x)

is the modified trace. Note that the integral over x has an upper limit of X rather than ∞,
since the region of phase space with x > X is dynamically inaccessible.

When computing the traces, we shall make use of the following result from the theory of
Laplace transforms. The Laplace transform of a function K(E) is

K̂(β) =

∞∫

0

dE K(E) e−βE .

The inverse Laplace transform is given by

K(E) =

c+i∞∫

c−i∞

dβ

2πi
K̂(β) eβE ,
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where the integration contour, which is a line extending from β = c − i∞ to β = c + i∞,
lies to the right of any singularities of K̂(β) in the complex β-plane. For this problem, all
we shall need is the following:

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

For a proof, see §3.3.1 of the lecture notes.

We’re now ready to compute the microcanonical average of X. We have

〈X〉 =
N(E)

D(E)
,

where

N(E) = T̃r
[
X δ(E −H)

]

D(E) = T̃r δ(E −H) .

Let’s first compute D(E). To do this, we compute the Laplace transform D̂(β):

D̂(β) = T̃r e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX e−βX

X∫

0

dx e−βrx

=
2π

√
r

β

∞∫

0

dX e−βX

(
1 − e−βrX

βr

)
=

√
r

1 + r
· 2π

β3
.

Similarly for N̂(β) we have

N̂(β) = T̃rX e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX X e−βX

X∫

0

dx e−βrx

=
2π

√
r

β

∞∫

0

dX X e−βX

(
1 − e−βrX

βr

)
=

(2 + r) r3/2

(1 + r)2
· 2π

β4
.

Taking the inverse Laplace transform, we then have

D(E) =

√
r

1 + r
· πE2 , N(E) =

(2 + r)
√
r

(1 + r)2
· 1

3πE
3 .

We then have

〈X〉 =
N(E)

D(E)
=

(
2 + r

1 + r

)
· 1

3E .
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The ‘brute force’ evaluation of the integrals isn’t so bad either. We have

D(E) =

∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

X∫

0

dx δ
(

1
2P

2 + 1
2rp

2 +X + rx− E
)
.

To evaluate, define P =
√

2ux and p =
√

2r uy. Then we have dP dp = 2
√
r dux duy and

1
2P

2 + 1
2r p

2 = u2
x + u2

y. Now convert to 2D polar coordinates with w ≡ u2
x + u2

y. Thus,

D(E) = 2π
√
r

∞∫

0

dw

∞∫

0

dX

X∫

0

dx δ
(
w +X + rx− E

)

=
2π√
r

∞∫

0

dw

∞∫

0

dX

X∫

0

dx Θ(E −w −X)Θ(X + rX − E + w)

=
2π√
r

E∫

0

dw

E−w∫

E−w
1+r

dX =
2π

√
r

1 + r

E∫

0

dq q =

√
r

1 + r
· πE2 ,

with q = E − w. Similarly,

N(E) = 2π
√
r

∞∫

0

dw

∞∫

0

dX X

X∫

0

dx δ
(
w +X + rx− E

)

=
2π√
r

∞∫

0

dw

∞∫

0

dX X

X∫

0

dx Θ(E − w −X)Θ(X + rX − E + w)

=
2π√
r

E∫

0

dw

E−w∫

E−w
1+r

dX X =
2π√
r

E∫

0

dq

(
1 − 1

(1 + r)2

)
· 1

2q
2 =

(
2 + r

1 + r

)
·

√
r

1 + r
· 1

3πE
3 .

(c) Using the general result

δ
(
F (x) −A

)
=

∑

i

δ(x − xi)∣∣F ′(xi)
∣∣ ,

where F (xi) = A, we recover the desired expression. We should be careful not to double
count, so to avoid this difficulty we can evaluate δ(t−t+i ), where t+i = ti+0+ is infinitesimally
later than ti. The point here is that when t = t+i we have p = r v > 0 (i.e. just after hitting
the bottom). Similarly, at times t = t−i we have p < 0 (i.e. just prior to hitting the bottom).
Note v = p/r. Again we write γ(E) = N(E)/D(E), this time with

N(E) = T̃r
[
Θ(p) r−1p δ(x− 0+) δ(E −H)

]
.
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The Laplace transform is

N̂(β) =

∞∫

−∞

dP e−βP 2/2

∞∫

0

dp r−1 p e−βp2/2r

∞∫

0

dX e−βX

=

√
2π

β
· 1

β
· 1

β
=

√
2π β−5/2 .

Thus,

N(E) = 4
√

2
3 E3/2

and

〈γ〉 =
N(E)

D(E)
= 4

√
2

3π

(
1 + r√
r

)
E−1/2 .

(d) When the constraint X ≥ x is removed, we integrate over all phase space. We then
have

D̂(β) = Tr e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX e−βX

∞∫

0

dx e−βrx =
2π

√
r

β3
.

For part (b) we would then have

N̂(β) = Tr X e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX X e−βX

∞∫

0

dx e−βrx =
2π

√
r

β4
.

The respective inverse Laplace transforms are D(E) = π
√
r E2 and N(E) = 1

3π
√
r E3. The

microcanonical average of X would then be

〈X〉 = 1
3E .

Using the restricted phase space, we obtained a value which is greater than this by a factor
of (2 + r)/(1 + r). That the restricted average gives a larger value makes good sense, since
X is not allowed to descend below x in that case. For part (c), we would obtain the same
result for N(E) since x = 0 in the average. We would then obtain

〈γ〉 = 4
√

2
3π r−1/2E−1/2 .

The restricted microcanonical average yields a rate which is larger by a factor 1+ r. Again,
it makes good sense that the restricted average should yield a higher rate, since the ball is
not allowed to attain a height greater than the instantaneous value of X.

(e) It is straightforward to simulate the dynamics. So long as 0 < x(t) < X(t), we have

Ẋ = P , Ṗ = −1 , ẋ =
p

r
, ṗ = −r .
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Starting at an arbitrary time t0, these equations are integrated to yield

X(t) = X(t0) + P (t0) (t− t0) − 1
2(t− t0)

2

P (t) = P (t0) − (t− t0)

x(t) = x(t0) +
p(t0)

r
(t− t0) − 1

2(t− t0)
2

p(t) = p(t0) − r(t− t0) .

We must stop the evolution when one of two things happens. The first possibility is a
bounce at t = tb, meaning x(tb) = 0. The momentum p(t) changes discontinuously at the
bounce, with p(t+b ) = −p(t−b ), and where p(t−b ) < 0 necessarily. The second possibility is a
collision at t = tc, meaning X(tc) = x(tc). Integrating across the collision, we must conserve
both energy and momentum. This means

P (t+c ) =
1 − r

1 + r
P (t−c ) +

2

1 + r
p(t−c )

p(t+c ) =
2r

1 + r
P (t−c ) − 1 − r

1 + r
p(t−c ) .

In the following tables I report on the results of numerical simulations, comparing dynamical
averages with (restricted) phase space averages within the microcanonical ensemble. For
r = 0.3 the microcanonical averages poorly approximate the dynamical averages, and the
dynamical averages are dependent on the initial conditions, indicating that the system is
not ergodic. For r = 1.2, the agreement between dynamical and microcanonical averages
generally improves with averaging time. Indeed, it has been shown by N. I. Chernov, Physica

D 53, 233 (1991), building on the work of M. P. Wojtkowski, Comm. Math. Phys. 126,
507 (1990) that this system is ergodic for r > 1. Wojtkowski also showed that this system
is equivalent to the wedge billiard , in which a single point particle of mass m bounces inside
a two-dimensional wedge-shaped region

{
(x, y)

∣∣ x ≥ 0 , y ≥ x ctnφ
}

for some fixed angle
φ = tan−1

√
m
M . To see this, pass to relative (X ) and center-of-mass (Y) coordinates,

X = X − x Px =
mP −Mp

M +m

Y =
MX +mx

M +m
Py = P + p .

Then

H =
(M +m)P2

x

2Mm
+

P2
y

2(M +m)
+ (M +m) gY .

There are two constraints. One requires X ≥ x, i.e. X ≥ 0. The second requires x > 0, i.e.

x = Y − M

M +m
X ≥ 0 .
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Now define x ≡ X , px ≡ Px, and rescale y ≡ M+m√
Mm

Y and py ≡
√

Mm
M+m Py to obtain

H =
1

2µ

(
p2

x + p2
y

)
+ M g y

with µ = Mm
M+m the familiar reduced mass and M =

√
Mm. The constraints are then x ≥ 0

and y ≥
√

M
m x.

r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce

0.3 0.1 6.1743 5.8974 0.5283 0.4505

0.3 1.0 5.7303 5.8974 0.4170 0.4505

0.3 3.0 5.7876 5.8974 0.4217 0.4505

0.3 5.0 5.8231 5.8974 0.4228 0.4505

0.3 7.0 5.8227 5.8974 0.4228 0.4505

0.3 9.0 5.8016 5.8974 0.4234 0.4505

0.3 9.9 6.1539 5.8974 0.5249 0.4505

Table 2: Comparison of time averages and microcanonical ensemble averages for r = 0.3.
Initial conditions are P (0) = x(0) = 0, with X(0) given in the table and E = 10. Averages
were performed over a period extending for Nb = 107 bounces.

r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce

1.2 0.1 4.8509 4.8545 0.3816 0.3812

1.2 1.0 4.8479 4.8545 0.3811 0.3812

1.2 3.0 4.8493 4.8545 0.3813 0.3812

1.2 5.0 4.8482 4.8545 0.3813 0.3812

1.2 7.0 4.8472 4.8545 0.3808 0.3812

1.2 9.0 4.8466 4.8545 0.3808 0.3812

1.2 9.9 4.8444 4.8545 0.3807 0.3812

Table 3: Comparison of time averages and microcanonical ensemble averages for r = 1.2.
Initial conditions are P (0) = x(0) = 0, with X(0) given in the table and E = 10. Averages
were performed over a period extending for Nb = 107 bounces.

Finally, in fig. 4, I plot the running averages of Xav(t) ≡ t−1
t∫
0

dt′X(t′) for the cases r = 0.3

and r = 1.2, each with E = 10, and each for three different sets of initial conditions. For
r = 0.3, the system is not ergodic, and the dynamics will be restricted to a subset of phase
space. Accordingly the long time averages vary with the initial conditions. For r = 1.2
the system is ergodic and the results converge to the appropriate restricted microcanonical
average 〈X〉µce at large times, independent of initial conditions.
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r X(0) Nb 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce

1.2 7.0 104 4.8054892 4.8484848 0.37560388 0.38118510

1.2 7.0 105 4.8436969 4.8484848 0.38120356 0.38118510

1.2 7.0 106 4.8479414 4.8484848 0.38122778 0.38118510

1.2 7.0 107 4.8471686 4.8484848 0.38083749 0.38118510

1.2 7.0 108 4.8485825 4.8484848 0.38116282 0.38118510

1.2 7.0 109 4.8486682 4.8484848 0.38120259 0.38118510

1.2 1.0 109 4.8485381 4.8484848 0.38118069 0.38118510

1.2 9.9 109 4.8484886 4.8484848 0.38116295 0.38118510

Table 4: Comparison of time averages and microcanonical ensemble averages for r = 1.2,
with Nb ranging from 104 to 109.

Figure 4: Long time running numerical averages Xav(t) ≡ t−1
t∫
0

dt′ X(t′) for r = 0.3 (top)

and r = 1.2 (bottom), each for three different initial conditions, with E = 10 in all cases.
Note how in the r = 0.3 case the long time average is dependent on the initial condition,
while the r = 1.2 case is ergodic and hence independent of initial conditions. The dashed
black line shows the restricted microcanonical average, 〈X〉µce = (2+r)

(1+r) · 1
3E.
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