PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #5

(1) You know that at most one fermion may occupy any given single-particle state. A parafermion is a particle for which the maximum occupancy of any given single-particle state is k, where k is an integer greater than zero. (For $k = 1$, parafermions are regular everyday fermions; for $k = \infty$, parafermions are regular everyday bosons.) Consider a system with one single-particle level whose energy is ε , *i.e.* the Hamiltonian is simply $\mathcal{H} = \varepsilon n$, where n is the particle number.

(a) Compute the partition function $\mathcal{E}(\mu, T)$ in the grand canonical ensemble for parafermions.

(b) Compute the occupation function $n(\mu, T)$. What is n when $\mu = -\infty$? When $\mu = \varepsilon$? When $\mu = +\infty$? Does this make sense? Show that $n(\mu, T)$ reduces to the Fermi and Bose distributions in the appropriate limits.

(c) Sketch $n(\mu, T)$ as a function of μ for both $T = 0$ and $T > 0$.

(d) Can a gas of ideal parafermions condense in the sense of Bose condensation?

(2) Consider a system of N spin- $\frac{1}{2}$ particles occupying a volume V at temperature T. Opposite spin fermions may bind in a singlet state to form a boson:

$$
f\uparrow + f\downarrow \;\; \rightleftharpoons \;\; b
$$

with a binding energy $-\Delta < 0$. Assume that all the particles are nonrelativistic; the fermion mass is m and the boson mass is $2m$. Assume further that spin-flip processes exist, so that the \uparrow and \downarrow fermion species have identical chemical potential $\mu_{\rm f}.$

(a) What is the equilibrium value of the boson chemical potential, μ_b ? Hint : the answer is $\mu_{\rm b} = 2\mu_{\rm f}$.

(b) Let the total mass density be ρ . Derive the equation of state $\rho = \rho(\mu_f, T)$, assuming the bosons have not condensed. You may wish to abbreviate

$$
\zeta_p(z) \equiv \sum_{n=1}^{\infty} \frac{z^n}{n^p} .
$$

(c) At what value of $\mu_{\rm f}$ do the bosons condense?

(d) Derive an equation for the Bose condensation temperature T_c . Solve for T_c in the limits $\varepsilon_0 \ll \Delta$ and $\varepsilon_0 \gg \Delta$, respectively, where

$$
\varepsilon_0 \equiv \frac{\pi \hbar^2}{m} \bigg(\frac{\rho/2m}{\zeta(\frac{3}{2})} \bigg)^{\!\!2/3}
$$

.

(e) What is the equation for the condensate fraction $\rho_0(T, \rho)/\rho$ when $T < T_c$?

(3) A three-dimensional system of spin-0 bosonic particles obeys the dispersion relation

$$
\varepsilon(\mathbfit{k}) = \Delta + \frac{\hbar^2\mathbfit{k}^2}{2m} \ .
$$

The quantity Δ is the formation energy and m the mass of each particle. These particles are not conserved – they may be created and destroyed at the boundaries of their environment. (A possible example: vacancies in a crystalline lattice.) The Hamiltonian for these particles is

$$
\mathcal{H} = \sum_{\mathbf{k}} \varepsilon(\mathbf{k}) \,\hat{n}_{\mathbf{k}} + \frac{U}{2V} \,\hat{N}^2 \;,
$$

where \hat{n}_k is the number operator for particles with wavevector $k, \hat{N} = \sum_k \hat{n}_k$ is the total number of particles, V is the volume of the system, and U is an interaction potential.

(a) Treat the interaction term within mean field theory. That is, define $\hat{N} = \langle \hat{N} \rangle + \delta \hat{N}$, where $\langle \hat{N} \rangle$ is the thermodynamic average of \hat{N} , and derive the mean field self-consistency equation for the number density $\rho = \langle N \rangle /V$ by neglecting terms quadratic in the fluctuations δN . Show that the mean field Hamiltonian is

$$
\mathcal{H}_{\text{MF}} = -\frac{1}{2} V U \rho^2 + \sum_{\boldsymbol{k}} \left[\varepsilon(\boldsymbol{k}) + U \rho \right] \hat{n}_{\boldsymbol{k}} ,
$$

(b) Derive the criterion for Bose condensation. Show that this requires $\Delta < 0$. For $\Delta = -|\Delta_0|$, find an equation relating T_c , U, and Δ_0 .

(4) The nth moment of the normalized Gaussian distribution $P(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2})$ $(\frac{1}{2}x^2)$ is defined by

$$
\langle x^n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, x^n \, \exp\left(-\frac{1}{2}x^2\right)
$$

Clearly $\langle x^n \rangle = 0$ if n is a nonnegative odd integer. Next consider the *generating function*

$$
Z(j) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left(-\frac{1}{2}x^2\right) \exp(jx) = \exp\left(\frac{1}{2}j^2\right).
$$

(a) Show that

$$
\langle x^n \rangle = \frac{d^n Z}{d j^n} \Big|_{j=0}
$$

and provide an explicit result for $\langle x^{2k} \rangle$ where $k \in \mathbb{N}$.

(b) Now consider the following integral:

$$
F(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left(-\frac{1}{2}x^2 - \frac{1}{4!}\lambda x^4\right).
$$

This has no analytic solution but we may express the result as a power series in the parameter λ by Taylor expanding $\exp\left(-\frac{\lambda}{4!}x^4\right)$ and then using the result of part (a) for the moments $\langle x^{4k} \rangle$. Find the coefficients in the perturbation expansion,

$$
F(\lambda) = \sum_{k=0}^{\infty} C_k \lambda^k.
$$

(c) Define the remainder after N terms as

$$
R_N(\lambda) = F(\lambda) - \sum_{k=0}^N C_k \lambda^k.
$$

Compute $R_N(\lambda)$ by evaluating numerically the integral for $F(\lambda)$ (using Mathematica or some other numerical package) and subtracting the finite sum. Then define the ratio $S_N(\lambda) = R_N(\lambda)/F(\lambda)$, which is the relative error from the N term approximation and plot the absolute relative error $|S_N(\lambda)|$ versus N for several values of λ . (I suggest you plot the error on a log scale.) What do you find?? Try a few values of λ including $\lambda = 0.01$, $\lambda = 0.05, \lambda = 0.2, \lambda = 0.5, \lambda = 1, \lambda = 2.$