PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #3

(1) Consider a system of noninteracting spin trimers, each of which is described by the Hamiltonian

$$
\label{eq:hamiltonian} \hat{H} = -J\big(\sigma_1\sigma_2+\sigma_2\sigma_3+\sigma_3\sigma_1\big)-\mu_0\mathsf{H}\big(\sigma_1+\sigma_2+\sigma_3\big)~.
$$

The individual spin polarizations σ_i are two-state Ising variables, with $\sigma_i = \pm 1$.

(a) Find the single trimer partition function ζ .

(b) Find the magnetization per trimer $m = \mu_0 \langle \sigma_1 + \sigma_2 + \sigma_3 \rangle$.

(c) Suppose there are N_{Δ} trimers in a volume V. The magnetization density is $M =$ $N_{\Delta}m/V$. Find the zero field susceptibility $\chi(T) = (\partial M/\partial H)_{H=0}$.

(d) Find the entropy $S(T, \mathsf{H}, N_{\Delta})$.

(e) Interpret your results for parts (b), (c), and (d) physically for the limits $J \to +\infty$, $J \to 0$, and $J \to -\infty$.

(2) The potential energy density for an isotropic elastic solid is given by

$$
\mathcal{U}(\boldsymbol{x}) = \mu \operatorname{Tr} \varepsilon^2 + \frac{1}{2} \lambda (\operatorname{Tr} \varepsilon)^2
$$

=
$$
\mu \sum_{\alpha,\beta} \varepsilon_{\alpha\beta}^2(\boldsymbol{x}) + \frac{1}{2} \lambda \left(\sum_{\alpha} \varepsilon_{\alpha\alpha}(\boldsymbol{x}) \right)^2,
$$

where μ and λ are the Lamé parameters and

$$
\varepsilon_{\alpha\beta} = \frac{1}{2} \bigg(\frac{\partial u^\alpha}{\partial x^\beta} + \frac{\partial u^\beta}{\partial x^\alpha} \bigg) ,
$$

with $u(x)$ the local displacement field. The Cartesian indices α and β run over x, y, z . The kinetic energy density is

$$
\mathcal{T}(\boldsymbol{x}) = \frac{1}{2}\rho \, \dot{\boldsymbol{u}}^2(\boldsymbol{x}) \; .
$$

(a) Assume periodic boundary conditions, and Fourier transform to wavevector space,

$$
u^{\alpha}(\boldsymbol{x},t) = \frac{1}{\sqrt{V}} \sum_{\boldsymbol{k}} \hat{u}_{\boldsymbol{k}}^{\alpha}(t) e^{i\boldsymbol{k}\cdot\boldsymbol{x}}
$$

$$
\hat{u}_{\boldsymbol{k}}^{\alpha}(t) = \frac{1}{\sqrt{V}} \int d^3x \; u^{\alpha}(\boldsymbol{x},t) e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}.
$$

Write the Lagrangian $L = \int d^3x (\mathcal{T} - \mathcal{U})$ in terms of the generalized coordinates $\hat{u}^{\alpha}_{\mathbf{k}}(t)$ and generalized velocities $\dot{\hat{u}}^{\alpha}_{\mathbf{k}}(t)$.

(b) Find the Hamiltonian H in terms of the generalized coordinates $\hat{u}^{\alpha}_{\mathbf{k}}(t)$ and generalized momenta $\hat{\pi}_{\mathbf{k}}^{\alpha}(t)$.

- (c) Find the thermodynamic average $\langle u(0) \cdot u(x) \rangle$.
- (d) Suppose we add in a nonlocal interaction of the strain field of the form

$$
\Delta U = \frac{1}{2} \int d^3x \int d^3x' \; \mathsf{Tr} \, \varepsilon(\boldsymbol{x}) \; \mathsf{Tr} \, \varepsilon(\boldsymbol{x}') \; v(\boldsymbol{x} - \boldsymbol{x}') \; .
$$

Repeat parts (b) and (c).