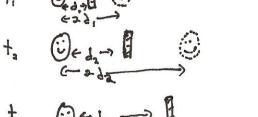
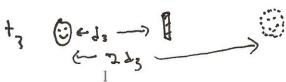
s101cq2

Multiple Choice


Identify the letter of the choice that best completes the statement or answers the question.


- 1. The Doppler shift of ultrasonic waves can measure the speed of blood in an artery. If the frequency of the stationary source is 100 kHz and the reflected sound has a Doppler shift of 200 Hz, what is the blood flow speed? (The speed of sound inside the body is 1 500 m/s.)
 - 1.0 m/s There are TWO doppler shifts!

 - (a) $\frac{1.5 \text{ m/s}}{\text{c.}} = \frac{(c + V_b)}{f_b}$
 - d. 3.3 m/s
 - a. 3.3 m/s e. 4.5 m/s $f_r = (\frac{c}{c-v}) f_s = \frac{c+v}{c-v} f_s \Rightarrow v_b = c \frac{f_r f_s}{f_r + f_s} = 1.498 \text{ m/s}$ 2. A standing wave is set up in a 2.0-m string fixed at both ends. The string vibrates in 5 distinct
 - segments when driven by a 120-Hz source. In how many distinct standing wave segments will the
 - string vibrate if the tension is increased by a factor of 4?

 a. 3 Originally $f_1 = 120 \text{Hz}/5 = 24 \text{Hz}$
- b. 10 Increasing the Tension by a factor of 4 doublse f_1 , d. 30 So f_1 becomes 48 Hz. Since 120 is not an integer multiple f_2 No standing wave pattern occurs. of 48 no standing waves develop.

 3. A radio wave transmits 1.2 W/m² average power per unit area. What is the peak value of the associated magnetic field? ($\mu_0 = 4\pi \times 10^{-7} \, \text{T·m/A}$ and $c = 3.00 \times 10^8 \, \text{m/s}$)
- - $1.0 \times 10^{-7} \,\mathrm{T}$
 - I = & Bmax =) Bmax = J2 Mo F = 1 x 10 T b. 8.4×10^{-3} T
 - c. 1.2 T
 - d. 30 T
 - 51 T
- 4. How is the direction of propagation of an electromagnetic wave oriented relative to the associated E and B fields?
 - parallel to both E and B (a.)
 - perpendicular to both \vec{E} and \vec{B}
 - parallel to E, perpendicular to B
 - parallel to B, perpendicular to E
 - Both choices a and c are valid.
- 5. When viewing your image in a hand-held mirror, if you move the mirror away at a speed v, the image appears to:
 - also move away at v.
 - move away at 2v.
 - move away at v/2. C.
 - not move.
 - move away at v/3.

6. A ray of light strikes a thick sheet of glass (n = 1.5) at an angle of 25° with the normal. Find the angle of the refracted ray within the glass with respect to the normal.

a.
$$56^{\circ}$$
 $N_1 S_1 N(\theta_1) = N_2 S_1 N(\theta_2)$

c.
$$\frac{25^{\circ}}{0.16^{\circ}} = \frac{1}{100} \theta_2 = \frac{1}{100} \left(\frac{N_1}{N_2} \sin \theta_1 \right) = \frac{1}{100} \left(\frac{1}{1.5} \sin (25^{\circ}) \right) = \frac{1}{100} \left(\frac{1}{1.5} \sin (25^{\circ}) \right) = \frac{1}{100} \left(\frac{1}{100} \cos (25^{\circ}) \right) = \frac{1}{100} \left(\frac{1}$$

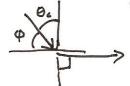
7. An oil film floats on a water surface. The indices of refraction for water and oil, respectively, are 1.333 and 1.466. If a ray of light is incident on the air-to-oil surface at an angle of 37.0° with the normal, what is the angle of the refracted ray in the water?

at is the angle of the refracted ray in the water:

$$\theta_{0:1} = S_1 h^{-1} \left(\frac{1}{1.466} S_1 h (37^{\circ}) \right) = 24.24^{\circ}$$
Oil

Water = $S_1 h^{-1} \left(\frac{1.466}{1.333} S_1 h (24.24^{\circ}) \right) = 26.9^{\circ}$

8. An optical fiber is made of clear plastic with index of refraction n = 1.50. For what angles with the surface will light remain within the plastic "guide"?


a.
$$\varphi < 66.6^{\circ}$$

a.
$$\varphi < 66.6^{\circ}$$

b. $\varphi < 57.1^{\circ}$

c.
$$\varphi < 51.7^{\circ}$$

d.
$$\varphi < 48.2^{\circ}$$

e.
$$\varphi < 29.9^{\circ}$$

