
Chapter 13 

Vibrations and Waves 
 

Quick Quizzes 

1. (d). To complete a full cycle of oscillation, the object must travel distance 2A to position 
 and then travel an additional distance 2A returning to the original position at 
. 

x = −
x A= +

A

2. (c). The force producing harmonic oscillation is always directed toward the equilibrium 
position, and hence, directed opposite to the displacement from equilibrium. The 
acceleration is in the direction of the force. Thus, it is also always directed opposite to the 
displacement from equilibrium. 

3. (b). In simple harmonic motion, the force (and hence, the acceleration) is directly 
proportional to the displacement from equilibrium. Therefore, force and acceleration are 
both at a maximum when the displacement is a maximum. 

4. (a). The period of an object-spring system is 2 mπ=T . Thus, increasing the mass by a 

factor of 4 will double the period of oscillation. 

k

5. (c). The total energy of the oscillating system is equal to 21
2 kA , where A is the amplitude of 

oscillation. Since the object starts from rest at displacement A in both cases, it has the same 
amplitude of oscillation in both cases. 

6. (d). The expressions for the total energy, maximum speed, and maximum acceleration are 

( )21
max max2 ,  ,  and  E kA v A k m a A k m= = =  where A is the amplitude. Thus, all are 

changed by a change in amplitude. The period of oscillation is 2T mπ= k  and is 

unchanged by altering the amplitude. 

7. (c), (b). An accelerating elevator is equivalent to a gravitational field. Thus, if the elevator 
is accelerating upward, this is equivalent to an increased effective gravitational field 
magnitude g, and the period will decrease. Similarly, if the elevator is accelerating 
downward, the effective value of g is reduced and the period increases. If the elevator 
moves with constant velocity, the period of the pendulum is the same as that in the 
stationary elevator. 

465 
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8. (a). The clock will run slow. With a longer length, the period of the pendulum will 
increase. Thus, it will take longer to execute each swing, so that each second according to 
the clock will take longer than an actual second. 

9. (b). Greater. The value of g on the Moon is about one-sixth the value of g on Earth, so the 
period of the pendulum on the moon will be greater than the period on Earth. 
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Answers to Even Numbered Conceptual Questions 

 2. Each half-spring will have twice the spring constant of the full spring, as shown by the 
following argument. The force exerted by a spring is proportional to the separation of the 
coils as the spring is extended. Imagine that we extend a spring by a given distance and 
measure the distance between coils. We then cut the spring in half. If one of the half-
springs is now extended by the same distance, the coils will be twice as far apart as they 
were for the complete spring. Thus, it takes twice as much force to stretch the half-spring, 
from which we conclude that the half-spring has a spring constant which is twice that of 
the complete spring. 

 4. To understand how we might have anticipated this similarity in speeds, consider sound as 
a motion of air molecules in a certain direction superimposed on the random, high speed, 
thermal molecular motions predicted by kinetic theory. Individual molecules experience 
billions of collisions per second with their neighbors, and as a result, do not travel very far 
in any appreciable time interval. With this interpretation, the energy of a sound wave is 
carried as kinetic energy of a molecule and transferred to neighboring molecules by 
collision. Thus, the energy transmitted by a sound wave in, say, a compression, travels 
from molecule to molecule at about the rms speed, or actually somewhat less, as observed, 
since multiple collisions slow the process a bit. 

 6. Friction. This includes both air-resistance and damping within the spring. 

 8. No. The period of vibration is 2 Lπ=T   and g is smaller at high altitude. Therefore, the 

period is longer on the mountain top and the clock will run slower. 

g

10. Shorten the pendulum to decrease the period between ticks. 

12. The speed of the pulse is v F µ= , so increasing the tension F in the hose increases the 

speed of the pulse. Filling the hose with water increases the mass per unit length µ , and 
will decrease the speed of the pulse. 

14. Assume that the building has height h and that you wish the jumper to start stretching the 
bungee cord when he reaches a height of 2h  above the ground. The unstretched length of 

the bungee cord must then be 2h= . 

 Furthermore, assume that you wish the bungee cord to bring the jumper to rest just as he 
reaches ground level (that is, when the cord is stretched a distance of 2h∆ = ). For this to 
occur, the elastic potential energy in the cord at this point must equal the total 
gravitational potential energy the jumper has lost, leaving him with zero kinetic energy 
when he reaches ground level. This means that 

  ( )
2

2

max

1 1
2 2 2

h
k k  ∆ = = 

 
mgh  

where  is the weight of the jumper. The required spring constant of the elastic would 

then be 

mg

8k mg h=

( )

. You must be careful to check that the cord can withstand a maximum 

tension of maxF k max

8
4

2
mg h

m
h

  = ∆ = =    
g  without breaking. Also realize that the 
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jumper will experience a net upward force of 3  when the cord has this maximum 
tension. Thus, the jumper must withstand a 3g upward acceleration just as he is brought 
to rest at ground level. 

mg

=

16. If the tension remains the same, the speed of a wave on the string does not change. This 
means, from v fλ= , that if the frequency is doubled, the wavelength must decrease by a 
factor of two. 

18. The speed of a wave on a string is given by v F µ . This says the speed is independent 

of the frequency of the wave. Thus, doubling the frequency leaves the speed unaffected. 

20. (a) The wall exerts a force to the left, and the cart exerts an equal magnitude force to the 
right. The total force acting on the spring is zero. (b) The experimenter exerts a force to the 
right, and the spring exerts an equal magnitude force to the left. The total force acting on 
the cart is zero. (c) After the cart is released, the only force acting on the cart is the spring 
force. The cart then undergoes simple harmonic motion along the surface, with amplitude 
equal to the original displacement from the equilibrium position. 
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Answers to Even Numbered Problems 

 2. (a)  
(b) The graph is a straight line passing through the origin with slope equal to  
 

21.1 10  N×

31.0 10k = ×  N m . 

 4. (a)    (b) No, the force is not of Hooke’s law form. 8.00 s

 6. (a) 327 N   (b) 31.25 10  N m×  

 8. (a) 575 N m    (b) 46.0 J 

10. 2.23 m s  

12. (a) 2.61 m s    (b) 2.38 m s  

14. (a) 11 cm s    (b) 6.3 cm s    (c) 3.0 N 

16. (a) 0.15 J    (b) 0.78 m s    (c) 218 m s  

18. 3.06 m s  

20. (a) 0.628 m s    (b) 0.500 Hz   (c) 3.14 rad s  

22. 3.95 N m  

24. 2.2 Hz 

26. (a) 0.30 m, 0.24 m  (b) 0.30 m   (c) 1 6 Hz  
(d) 6.0 s 

28. (a) 250 N m    (b) 0.281 s, 3.56 Hz, 22.4 rad sT f ω= = =  

(c)    (d) 5.00 cm   (e) 0.313 J 21.12 m s , 25.0 m s  
(f) 0.919 cm 

30. (a) 59.6 m   (b) 37.5 s 

32. (a) gain time   (b) 1.1 s 

34. (a) 3.65 s   (b) 6.41 s   (c) 4.24 s 

36. 58.8 s 

38. 5.67 mm 
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40. 0.800 m s  

42. (a) 0.20 Hz   (b) 0.25 Hz 

44. 219 N 

46. 21.64 m s  

48. 7.07 m s  

50. 586 m s  

52. (a) 0    (b) 0.30 m 

54. (a) 0.25 m   (b) 0.47 N m   (c) 0.23 m 
(d) 0.12 m s  

56. 0.990 m 

58. (a) 100 m s    (b) 374 J 

60. (a) 19.8 m s    (b) 8.94 m 

64. 32.9 ms 

66. (a) 6.93 m s    (b) 1.14 m 

68. (a) 28.0 J   (b) 0.446 m 

70. 1.3 cm s  
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Problem Solutions 

13.1 (a) The force exerted on the block by the spring is 
 
 ( ) ( )160 N m 0.15 m 24 NsF kx= − = − − = +  

 
or 24 N directed toward equilibrium positionsF =  

 (b) From Newton's second law, the acceleration is 
 

 2 2

24 N m m
60 60  toward equilibrium position

0.40 kg s s
sF

a
m

+
= = = + =  

13.2 (a) The spring constant is 3
-2

50 N
1.0 10  N m

5.0 10  m
sF mg

x x
= = = = ×

×
k  

 

 ( ) ( )3 21.0 10  N m 0.11 m 1.1 10  NsF F kx= = = × = ×  

 (b) The graph will be a straight line passing through the origin  with a slope equal to 
31.0 10  N mk = × . 

13.3 (a) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m 
before coming to rest momentarily. It will then repeat this motion over and over 
again with a regular period. 

 (b) From 2
0

1
2yy v t a t+ y∆ = , with 0 0yv = , the time required for the ball to reach the 

ground is 
( ) ( )

2

2 2 4.00 m
0.904 s

9.80 m sy

y
t

a

∆ −
= = =

−
. This is one-half of the time for a 

complete cycle of the motion. Thus, the period is 1.81 s=T . 

 (c) N . The net force acting on the object is a constant given by  (except 

when it is contact with the ground). This is not in the form of Hooke’s law. 

o F m= − g
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13.4 (a) The motion is periodic since the ball continuously repeats its back and forth motion 
between the walls with no loss of energy (because of perfectly elastic collisions). The 
time for the ball to travel from one wall to the other is one-half period and is given 
by 

 
12.0 m

4.00 s
2 3.00 m s
T x

v
∆

= = =  

 
The period is then 8.00 s=T  

 (b) The moti since the force acting on the ball is not of the 

form . In fact, here 

on is not simple harmonic

F kx= − 0F =  everywhere except when the ball is in contact with 
a wall. 

13.5 When the system is in equilibrium, the tension in the spring F k x=  must equal the 
weight of the object. Thus,  
 

 k x mg=  giving 
( ) ( )2

2

47.5 N 5.00 10  m
0.242 kg

9.80 m s
k x

m
g

−×
= = =  

13.6 (a) The free-body diagram of the point in the center of the  
string is given at the right. From this, we see that  
 
  
 

or 

0  2 sin 35.0 0xF F TΣ = ⇒ − ° =

375 N
327 N

2sin 35.0 2sin 35.0
F

T = = =
° °

 

��
�

�
��

�
��

�����

�����

 (b) Since the bow requires an applied horizontal force of 375 N to hold the string at 
35.0° from the vertical, the tension in the spring must be 375 N when the spring is 
stretched 30.0 cm. Thus, the spring constant is 
 

 3375 N
1.25 10  N m

0.300 m
F

k
x

= = = ×  
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13.7 (a) Assume the rubber bands obey Hooke’s law. Then, the force constant of each band 
is 
 

 3
-2

15 N
1.5 10  N m

1.0 10  m
sF

k
x

= = = ×
×

 

 
Thus, when both bands are stretched 0.20 m, the total elastic potential energy is 
 

 ( ) ( )22 31
2 1.5 10  N m 0.20 m 60 J

2sPE kx = = × =  
 

 (b) Conservation of mechanical energy gives ( ) ( )s sf i
KE PE KE PE+ = + , or 

 

 21
0 0 60 J

2
mv + = + , so 

( )
-3

2 60 J
50 10  kg

v
×

49 m s= =  

13.8 (a) max

max

230 N
575 N m

0.400 m
F
x

= = =k  

 (b) ( ) ( )221 1
 575 N m 0.400 46.0 J

2 2srk done PE kx= = = =  wo  

13.9 From conservation of mechanical energy, 
 

 ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + +  or 21

0 0 0 0
2f imgh kx+ + = + +  

 
giving 
 

 
( ) ( ) ( )

( )
2

3
22 2

2 0.100 kg 9.80 m s 0.600 m2
2.94 10  N m

2.00 10  m

f

i

mgh
k

x −
= = = ×

×
 

13.10 Conservation of mechanical energy, ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + + , 

 

gives 2 21 1
0 0 0 0

2 2i fmv kx+ + = + + , 

 

or ( )
65.00 10  N m

1000 kgi i

k
v x

m
×

= = 23.16 10  m 2.23 m s−× =  
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13.11 At x A  and conservation of energy gives 
 

 

,  0v= =

21
0

2sPE kA= +E KE= +  or 2 2E
A

k
=  

 (a) At 2=x A , the elastic potential energy is 
 

 
2

2 21
2 2 8 8 4s

EA k k
PE k A

k
  = = = =      

E
 

 
From the energy conservation equation, the kinetic energy is then 
 

 
3

4 4s

E E
KE E PE E= − = − =  

 (b) When KE P= , conservation of energy yields E KsE 2s sE PE PE= + =  or 2s EPE = . 

Since we also have 2 2sPE kx= , this yields 
 

 
( ) ( )2 22 22 s

kAEPE E A
x

k k k k
= = = =

2
=  

13.12 (a) From the work-energy theorem, 
 

 ( ) ( )nc g s g sf i
W KE PE PE KE PE PE= + + − + +  

 

or 2 21 1
0

2 2f f fF x mv kx⋅ = + +  

 
This yields 
 

 
22 f

f

F x kx
v

m

⋅ −
=

( ) ( )

 

 

  
( )219.6 N m 0.300 m

2.61 m s
1.50 kg

−
= =

2 20.0 N 0.300 m
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(b) The work-energy theorem now contains one more nonzero term, giving 
 

( )

( ) ( ) ( ) ( ) ( )

2

22

2

2 20.0 N 0.200 1.50 kg 9.80 m s 0.300 m 19.6 N m 0.300 m

1.50 kg

2.38 m s

k f
f

f

F mg x kx
v

m

v

µ− ⋅ −
=

 − − =

=

 

13.13 An unknown quantity of mechanical energy is converted into internal energy during the 
collision. Thus, we apply conservation of momentum from just before to just after the 
collision and obtain ( ) ( )0imv M M m V+ = + , or the speed of the block and embedded 
bullet just after collision is 
 

 ( )
310.0 10  kg

300
2.01 kgiV v

− ×
= =   

 m s 1.49 m s
m

M m
  =  +

 

 
Now, we use conservation of mechanical energy from just after collision until the block 

comes to rest. This gives (1 1
2 2fkx M m+ = )2 2V+0 , or 

 

 ( ) 2.01 kg
1.49 m s

19.6 N m
0.478 mf

M m
x V

k
+

= = =  

13.14 (a) In the absence of friction, ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + +  gives 

 

 2 21 1
0 0 0 0

2 2f ikxmv + + = + +  

 

or ( ) 2 000 N m
11 cm s

1.5 kg
=0.30 cmf i

k
v x

m
= =  
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 (b) When friction is present, ( ) ( )nc g s g sf i
KE PE PE KE PE PE= + + − + +W  gives 

 

 2 21 1
0 0

2 2
0 0i f ikx   − + +      

f x mv− ⋅ = + +  

 
or 
 

 

( )( ) ( )( )

2 2

2 000  N m 3.0

0.063 m s 6.3 

i i
f

f

kx f x
v

m

v

− ⋅
=

=

= =

23 310  m 2 2.0 N 3.0 10  m

1.5 kg

cm s

− −× − ×

 

 (c) If v , then 0 at 0f x= = ( ) ( )nc g s g sf i
KE PE PE KE PE PE= + + − + +W  

 

becomes ( ) 21
0 0 0

2i ikx − + +  
f x− ⋅ =  

 

or 
( )( )32 000 N m 3.0 10  m

3.0 N
2 2

ik x
f

−×
= = =  

13.15 From conservation of mechanical energy, 
 

 ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + +  

 

we have 2 2 21 1 1
0 0 0

2 2 2
mv kx kA+ + = + + , or ( )2 2k

v A
m

= − x  

 (a) The speed is a maximum at the equilibrium position, x = 0. 
 

 
( )

( ) ( )22
max

19.6 N m
0.040 m 0.28 m s

0.40 kg
k

v A
m

= = =  

 (b) When x = − , 
 

 

0.015 m 

( )
( ) ( ) ( )2219.6 N m

0.040 m 0.015 m 0.26 m s
0.40 kg

v  = − −  =  



  Vibrations and Waves  477 

 (c) When x = + , 
 

 

0.015 m 

( )
( ) ( ) ( )2219.6 N m

0.040 m 0.015 m 0.26 m s
0.40 kg

v  = − +  =  

 (d) If max

1
2

v=v , then ( )2 2 1
2

k k 2A x A
m m

− =  

 

This gives 
2

4
2 2 A

A x− = , or ( )3 3
4.0 cm 3.5 cm

2 2
x A= = =  

13.16 (a) KE , so 0 at x A= = 21
0

2sE PE kA= + = +E K , or the total energy is 

 

 ( ) ( )2250 N m 0.035 m 0.15 J=21 1
2 2

E kA= =  

 (b) The maximum speed occurs at the equilibrium position where . Thus, 0sPE =

2
max

1
2

E mv= , or 

 

 ( )max

2 250 N m
0.035 m 0.78 m s

0.50 kg
E k

v A
m m

= = = =  

 (c) The acceleration is 
F kx

a
m m
Σ −

= = . Thus, maxa a=  at maxx x A= − = − . 

 

 
( ) ( ) 218 m s=max

250 N m
0.50 kg

k A k
a A

m m

 − −  = = =      
0.035 m  

13.17 The maximum speed occurs at the equilibrium position and is 
 

 max

k
v A

m
=  . Thus, 

( ) ( )
( )

22

22
max

16.0 N m 0.200 m
4.00 kg

0.400 m s

kA
m

v
= = = , and 

 
 ( ) ( )29.80 m s 39.2 N=4.00 kggF mg= =  

13.18 ( ) ( ) ( )2 22 2
-3

10.0 N m
0.250 m 0.125 m 3.06 m s

50.0 10  kg
k

v A x
m

   = − = − =   × 
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13.19 (a) The motion is simple harmonic because the tire is rotating with constant velocity 
and you are looking at the uniform circular motion of the “bump” projected on a 
plane perpendicular to the tire. 

 (b) Note that the tangential speed of a point on the rim of a rolling tire is the same as 
the translational speed of the axle. Thus, 3.00 m st carv v= =  and the angular 
velocity of the tire is 
 

 
3.00 m s

10.0 rad s
0.300 m

tv
r

ω = = =  

 
Therefore, the period of the motion is 
 

 
2 2

0.628 s
10.0 rad s

T
π π

ω
= = =  

13.20 (a) 
( )2 0.200 m2

0.628 m s
2.00 st

r
T

ππ
= = =v  

 (b) 
1 1

0.500 Hz
2.00 sT

=f = =  

 (c) 
2 2

3.14 rad s
2.00 sT

π π
=ω = =  

13.21 The angle of the crank pin is tθ ω= . Its  
x-coordinate is cosx A tcosAθ ω= =  where  
A is the distance from the center of the  
wheel to the crank pin. This is of the  
correct form to describe simple harmonic  
motion. Hence, one must conclude that  
the motion is indeed simple harmonic. 

�

�����

�����
����

���

����

13.22 The period of oscillations of a mass-spring system is given by 2π=T m and the 

frequency is  
 

 

k

1 1
2

k
f

T mπ
= =  

 

Thus, ( ) ( )22 2 2 -1 34 4 5.00 s 4.00 10  kg 3.95 N mk f mπ π −= = × =  
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13.23 The spring constant is found from 
 

 
( ) ( )2

-2

0.010 kg 9.80 m s
2.5 N m

3.9 10  m
s mgF

k
x x

= = = =
×

25m

 

 
When the object attached to the spring has mass  g= , the period of oscillation is 
 

 
0.025 kg

2 2 0.63 s
2.5 N m

m
T

k
π π= = =  

13.24 The springs compress 0.80 cm when supporting an additional load of . Thus, 
the spring constant is 
 

 

320 kgm =

( ) ( )2
5

-2

320 kg 9.80 m s
3.9 10  N m

0.80 10  m
mg

k
x

= = = ×
×

32.0 10  kgM = ×

 

 
When the empty car, , oscillates on the springs, the frequency will be

 
53.9 101

2 2 2.0
k

π π
×

=
× 3

 N m1 1
2.2 Hz

10  kg
f

T M
= = =  

13.25 (a) The period of oscillation is 2 mπ=T  where k is the spring constant and m is the 

mass of the object attached to the end of the spring. Hence, 
 

 

k

0.250 kg
2 1.0 s

9.5 N m
T π= =  

 (b) If the cart is released from rest when it is 4.5 cm from the equilibrium position, the 
amplitude of oscillation will be 24.5 cm 4.5 10  mA −= = × . The maximum speed is 
then given by 
 

 ( )2 9.5 N m
 m 0.28 m

0.250 kg
− =max 4.5 10 s

k
v A A

m
ω= = = ×  

 (c) When the cart is 14 cm from the left end of the track, it has a displacement of 
 from the equilibrium position. The speed of the cart at 

this distance from equilibrium is 
 

 

14 cm 12 cm 2.0 cmx = − =

( ) ( ) ( )2 22 2 9.5 N m
0.045 m 0.020 m 0.25 m s

0.250 kg
k

v A x
m

 = − = − =   
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13.26 (a) At t = , 0 ( ) ( )0.30 m cos 0 0.30 mx = = , and at 0.60 st = , 

 

 ( ) ( ) ( ( ))0x .30 m cos  rad s 0.60 s 0.30  rad 0.24 m
3
π

π  = =    
m cos 0.20 =  

 (b) ( ) ( )0.30 m 1 0.30 mmax= = =A x  

 (c) ( )0.30 m cos
3

x t
π =   

 is of the form ( )cosx A tω=  with an angular frequency of 

 rad s
3
π

ω = . Thus, 
3

2 2
f

πω
π π

= =
1

Hz
6

=  

 (d) The period is 
1

6.0 sT
f

= =  

13.27 (a) At t = , 
 

 

3.50 s

( ) ( )N rad
5.00 3.00 m cos 1.58 3.50 s 11.0 N

m s
     = −        

F kx= − = − , 

 
or 11.0 NF =  directed to the left  

 (b) The angular frequency is 
5.00 N m

1.58 rad s
2.00 kg

k
m

ω = = =  and the period of 

oscillation is 
2 2

3.97 s
1.58 rad s

T
π π

ω
= = = . Hence the number of oscillations made in 

3.50 s is 
3.50 s

0.881
3.97 s

t
T
∆

= = =N  

13.28 (a) -2

7.50 N
250 N m

3.00 10  m
F
x

= = =
×

k  

 (b) 
250 N m

22.4 rad s
0.500 kg

k
m

=ω = = , 
22.4 rad s

3.56 Hz
2 2

f
ω
π π

= = = , 

 

and 
1 1

0.281 s
3.56 Hz

T
f

= = =  
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 (c) At 0t = , v x , so the total energy of the oscillator is 
 

 

20 and 5.00 10  m−= = ×

( ) ( )

2 2

22

1 1
2 2

1
250 N m 5.00 10  m 0.313 J

2

sE PE mv kx

−

= + = +

× =0

E K

= +

 

 (d) When x A , = 21
0  so 0

2sv E KE PE k= = + = + A . 

 

Thus, 
( ) 22 0.313 J

5.00 10  m 5.00 cm
250 N/m

E
k

−= = = × =
2

A  

 (e) At 0x = , 2
max

1
2

mv E= =KE , 

 

or 
( )

maxv
2 2 0.313 J

1.12 m s
0.500 kg

E
m

= = =  

 

 
( ) ( )2

2max
250 N m 5.00 10  m

25.0 m s
0.500 kg

k AF
m m

−×
= = = =maxa  

 (f) At 0.500t = , 
 
 

 s

( ) ( ) ( ) ( )cosx A ω 5.00 cm cos 22.4 rad s 0.500 s 0.919 cmt  = = =   

13.29 From Equation 13.6, ( ) ( )2 2 2 2 2k
v A x A

m
ω= ± − = ± −

(

x  

 

Hence, ) ( ) ( )2 2 2 2cos 1 cos sinA t A t Aω ω ω ω ω= ± − = ± − = ±v A  

 

From Equation 13.2, 

tω

( ) ( )2 2cos cos
k

a x A t A t
m

ω ω ω ω = − = − = −   

13.30 (a) The height of the tower is almost the same as the length of the pendulum. From 
2T Lπ= g , we obtain 

 

 
( ) ( )222

2 2

9.80 m s 15.5 s
59.6 m

4 4
gT

L
π π

= = =  
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 (b) On the Moon, where 21.67 m sg = , the period will be 
 

 2

59.6 m
2 2 37.5

1.67 m s
L

T
g

π π= = =  s  

13.31 The period of a simple pendulum is 2T Lπ= g  where L is its length. The number of 

complete oscillations per second (that is, the frequency) for this pendulum is then given 
by 
 

 
2

-19.80 m s1 1 1
0.352 s

2 2 2.00 m
g

f
T Lπ π

= = = =

5.00t

 

 
Hence, the number of oscillations in a time  min 300 s∆ = =  is 
 
 ( ) ( ) ( )-10.352 s 300 s 105.7N f t= ∆ = =  or 105 complete oscillations  

13.32 (a) The lower temperature will cause the pendulum to contract. The shorter length will 
produce a smaller period, so the clock will run faster or gain time . 

 (b) The period of the pendulum is 0
0 2

L
g

π=T  at 20°C, 

 

and at –5.0°C it is 2
L

T
g

π=  . The ratio of these periods is 0 0T L
T L

= . 

 
From Chapter 10, the length at –5.0°C is ( )0 Al 0L L L Tα= + ∆ , so 
 

 
( ) ( ) [ ]

0

6
Al

1 1 1
1.000 6

1 01 24 10  C

L
L Tα −−

= = = =
+ ∆ + × ° 1 5.0 C 20 C  − ° − ° 

.999 4
 

 

This gives 0 0 1.000 6 1.000 3
T L
T L

= = = . Thus in one hour (3 600 s), the chilled 

pendulum will gain ( )( )1.000 3 1 3 600 s 1.1 s− = . 



  Vibrations and Waves  483 

13.33 (a) The period of the pendulum is 2π=T L . Thus, on the Moon where the free-fall 

acceleration is smaller, the period will be longer and the clock will run 

g

slow . 

 (b) The ratio of the pendulum’s period on the Moon to that on Earth is 
 

 
2 9.80

2.45
1.632

Moon EarthMoon

Earth MoonEarth

L g gT
T gL g

π
π

= = = =  

 
Hence, the pendulum of the clock on Earth makes 2.45 “ticks” while the clock on the 
Moon is making 1.00 “tick”. After the Earth clock has ticked off 24.0 h and again 

reads 12:00 midnight, the Moon clock will have ticked off 
24.0 h

9.79 h
2.45

=  and will 

read 9 : 47 AM . 

13.34 The apparent free-fall acceleration is the vector sum of the actual  
free-fall acceleration and the negative of the elevator’s acceleration.  
To see this, consider an object that is suspended by a string in the  
elevator and that appears to be at rest to the elevator passengers.  
These passengers believe the tension in the string is the negative of  
the object’s weight, or appm= −T g  where appg  is the apparent free-fall  

acceleration in the elevator. 
 
An observer located outside the elevator applies Newton’s second law to this object by 
writing  where em= amΣ = +F T g ea  is the acceleration of the elevator and all its 

contents. Thus, e appm m= − =g m−T a g , which gives app e= −g g a . 

��
��

�
��

 (a) If we choose downward as the positive direction, then 25.00 m se = −a  in this case 

and ( ) 29.80 5.00  m s 14.8 m sapp = + = +g 2  (downward). The period of the 

pendulum is 
 

 2

5.00 m
2 2 3.65 s

14.8 m sapp

L
g

π π= = =T  

 (b) Again choosing downward as positive, 25.00 m se =a  and 

( ) 29.80 5.00  m s 4.80 m sapp = − = +g 2  (downward) in this case. The period is now 

given by 
 

 2

5.00 m
2 2 6.4

4.80 m sapp

L
T

g
π π= = = 1 s  
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 (c) If 2 m se 5.00=a  horizontally, the vector sum app e= −g g a   

is as shown in the sketch at the right. The magnitude is 
 

 ( ) ( )2 22 25.00 m s 9.80 m s 11.0 mappg = + 2s= , 

 
and the period of the pendulum is 
 

 2

5.00 m
2 2 4.24 s

11.0 m sapp

L
T

g
π π= = =  

���
��

�
��

�	


��

13.35 (a) From 2 Lπ=T , the length of a pendulum with period T is g
2

24
gT

L
π

= . 

 

On Earth, with T , 1.0 s=
( ) ( )22

2

9.80 m s 1.0 s
0.25 m 25 cm

4
L

π
= = =  

 

If T  on Mars, 1.0 s=
( ) ( )22

2

3.7 m s 1.0 s
0.094 m 9.4 cm

4π
= = =L  

 (b) The period of an object on a spring is 2 mπ=T , which is independent of the 

local free-fall acceleration. Thus, the same mass will work on Earth and on Mars. 
This mass is 
 

 

k

( ) ( )22

2 2

10 N m 1.0 s
0.25 kg

4 4
k T

m
π π

= = =  

13.36 The frequency of the wave (that is, the number of crests passing the cork each second) is 
 and the wavelength (distance between successive crests) is -12.00 sf = 8.50 cmλ = . 

Thus, the wave speed is 
 
 ( ) ( )-18.50 cm 2.00 s 17.0 cm s 0.170 m sv fλ= = = =  

 
and the time required for the ripples to travel 10.0 m over the surface of the water is 
 

 
10.0 m

58.8 s
0.170 m s

x
v

∆
= =t∆ =  
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13.37 (a) The amplitude, A, is the maximum displacement from equilibrium. Thus, from 

Figure P13.37, ( )1
18.0 cm 9.00 cm

2
A = =  

 (b) The wavelength, λ , is the distance between successive crests (or successive 
troughs). From Figure P13.37, ( )2 10.0 cm 20.0 cmλ = =  

 (c) The period is 21 1
4.00 10  s 40.0 ms

25.0 Hzf
−= = = × =T  

 (d) The speed of the wave is ( ) ( )0.200 m 25.0 Hz 5.00 m sv fλ= = =  

13.38 From v fλ= , the wavelength (and size of smallest detectable insect) is 
 

 -3
3

340 m s
5.67 10  m 5.67 mm

60.0 10  Hz
v
f

λ = = = × =
×

 

13.39 (a) 8
6

1 1
1.14 10  s 11.4 ns

88.0 10  Hzf
−= = = × =

×
T  

 (b) 
8

6

3.00 10  m s
3.41 m

88.0 10  Hz
v
f

×
=

×
λ = =  

13.40 The distance between successive maxima in a transverse wave is the wavelength of that 
wave. Hence, 1.20 mλ = . The frequency (number of crests passing a fixed point each 
second) is 
 

 -1 s 0.667 Hz
12.0

f =
8

0.667
 s

= =  

 
Therefore, the wave speed is ( ) ( )-11.20 m 0.667 s 0.800 m sv fλ= = =  

13.41 The speed of the wave is 
425 cm

42.5 cm s
10.0 s

x
v

t
∆

= = =
∆

 

 

and the frequency is 
40.0 vib

1.33 Hz
30.0 s

f = =  

 

Thus, 
42.5 cm s

31.9 cm
1.33 Hz

v
f

λ = = =  
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13.42 (a) When the boat is at rest in the water, the speed of the wave relative to the boat is the 
same as the speed of the wave relative to the water, 4.0 m sv = . The frequency 
detected in this case is 
 

 
4.0 m s

0.20 Hz
20 m

v
f

λ
= = =  

 (b) Taking westward as positive, , ,boat water boat wave wave water,= +v v v  gives 
 
 ( ), , , 1.0 m s 4.0 m s 5.0 m sboat wave boat water wave water= − = + − − = +v v v  

 

Thus, , 5.0 m s
0.25 Hz

20 m
boat wavev

f
λ

= = =  

13.43 The down and back distance is 4.00 m 4.00 m 8.00 m+ = . 
 

The speed is then 
( )4 8
0.

totald
t

.00 m
40.0 m s

800 s
v F µ= = = =  

 

Now, 210  kg m−×
0.200 kg

5.00
4.00 m

m
L

µ = = = , so 

 

 ( ) ( )22 25.00 10  kg m 40.0 m s 80.0 NF vµ −= = × =  

13.44 The speed of the wave is 
20.0 m

25.0 m s
0.800 s

x
v

t
∆

= = =
∆

, and the mass per unit length of 

the rope is 0.350 kg m
m
L

µ = = . Thus, from v F µ= , we obtain 

 

 ( ) ( )22 25.0 m s 0.350 kg m 219 NF v µ= = =  

13.45 (a) The mass per unit length is 
0.0600 kg

0.0120 kg m
5.00 m

m
L

µ = = =  

 
From v F µ= , the required tension in the string is 

 

 ( ) ( )22 50.0 m s 0.0120 kg m 30.0 NF v µ= = = , 

 (b) 
8.00 N

25.8 m s
0.0120 kg m

F
µ

=v = =  
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13.46 The mass per unit length of the wire is 
 

 
-3

-34.00 10  kg
2.50 10  kg m

1.60 m
m
L

µ
×

= = = × , 

 

and the speed of the pulse is 
1.60 m

44.3 m s
0.0361 s

L
t

= = =
∆

v . 

 
Thus, the tension in the wire is 
 

 ( ) ( )22 -344.3 m s 2.50 10  kg m 4.91 NF v µ= = × =  

 
But, the tension in the wire is the weight of a 3.00-kg object on the Moon. Hence, the 
local free-fall acceleration is 
 

 24.91 N
1.64 m s

3.00 kg
F

g
m

= = =  

13.47 The period of the pendulum is 2
L
g

π=T , so the length of the string is 

 

 
( ) ( )222

2 2

9.80 m s 2.00 s
0.993 m

4 4
gT

L
π π

= = =  

 
Then mass per unit length of the string is then 
 

 
0.060 0 kg kg

0.060 4 
0.993 m m

m
L

µ = = =

(

 

 
When the pendulum is vertical and stationary, the tension in the string is 
 
 ) ( )25.00 kg 9.80 m s 49.0 NballF M g= = = , 

 
and the speed of transverse waves in it is 
 

 
49.0 N

28.5 m s
0.060 4 kg m

F
v

µ
= = =  
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13.48 If 1 1m Lµ =  is the mass per unit length for the first string, then 2 2 1 12 2m L m Lµ µ= = =  
is that of the second string. Thus, with 2 1F F F= = , the speed of waves in the second 
string is 
 

 2 12 2v v= =
2 1 1

2
2 5.00 m s 7.07 m s

FF F
µ µ µ

 
= = = =  

 ( )

13.49 (a) The tension in the string is ( ) ( )23.0 kg 9.80 m s 29 NF mg= = = . Then, from 

v F µ= , the mass per unit length is 

 

 
( )22

29 N
0.051 kg m

24 m s

F
v

µ = = =  

 (b) When 2m = , the tension is 
 
 

.00 kg

(

 

) ( )29.80 m s 20 N=2.0 kgF mg= =  

 
and the speed of transverse waves in the string is 
 

 
20 N

20 m s
0.051 kg m

F
v

µ
= = =  

13.50 If the tension in the wire is F, the tensile stress is Stress F A= , so the speed of transverse 
waves in the wire may be written as 
 

 
( )

F A Stress Stress
v

m L m A Lµ
⋅

= = =
⋅

 

 

But,  =volumeA L V⋅ = , so ( ) densitym A L ρ⋅ = = . Thus, 
Stress

v
ρ

= . 

 
When the stress is at its maximum, the speed of waves in the wire is 
 

 
( ) 9

3 3

2.70 10  Pa
7.86 10  kg m

×
×

max 586 m s= = =max

Stress
v

ρ
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13.51 From v F µ= , the tension in the string is 2F v µ= . Thus, the ratio of the new tension to 

the original is 
 

 
2

2
2

1 1

F v
F v

= 2 , giving ( )
2

 m s
 m s

 
  

2

2
2 1

1

30.0
6.00 N 13.5 N

20.0
v

F F
v

 
= = =  

 

13.52 (a) If the end is fixed, there is inversion of the pulse upon reflection. Thus, when they 
meet, they cancel and the amplitude is zero . 

 (b) If the end is free there is no inversion on reflection. When they meet the amplitude 
is ( )2 2 0.15 mA A= =′ = 0.30 m . 

13.53 (a) Constructive interference  produces the maximum amplitude 

 
 max 1 2 0.50 mA A A= + =′  

 (b) D  produces the minimum amplitude 

 
 

estructive interference

min 1 2 0.10 mA A A= − =′  

13.54 We are given that ( ) ( ) ( )cos 0.25 m cos 0.4x A t tω π= = . 

 (a) By inspection, the amplitude is seen to be 0.25 mA =  

 (b) The angular frequency is 0.4  rad sω π= . But k mω = , so the spring constant is 

 

 ( ) ( )22 0.30 kg 0.4  rad s 0.47 N mk mω π= = =  

 (c) At 0.30t = ,  (s ) ( ) ( )0.25 m cos 0.4  rad  s 0.30 s 0.23 mx π = =   

 (d) From conservation of mechanical energy, the speed at displacement x is given by 
2v Aω= − 2x . Thus, at t 0.30 s= , when 0.23 mx = , the speed is 

 

 ( ) ( )( )2 20.4  rad s 0.25 .23 m sv π = m 0= − 0.12 m  
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13.55 The maximum acceleration of the oscillating system is 
 

 ( )22
max 2a A fω π= = A  

 
The friction force exerted between the two blocks must be  
capable of accelerating block B at this rate. When block B is  
on the verge of slipping, ( ) maxmaxs s s sf f n mg maµ µ= = = =  and  

we must have 
 

 ( )2

max 2 sa f A gπ µ= =

( )

 

 

Thus, 
( ) ( )

( )

2
2

2 2

.80 m s
6.62 10  m 6.62 cm

 Hz
−= × =

  

0.600 9

2 2 1.50
s gA
f

µ

π π
= =  

�
��

���	���
�� ��

��

��



13.56 Since the spring is “light”, we neglect any small amount of energy lost in the collision 
with the spring, and apply conservation of mechanical energy from when the block first 
starts until it comes to rest again. This gives 
 

 ( ) ( )g s g sf i
KE PE PE KE PE PE+ + = + + , or 2

max

1
0 0 0 0

2 ikx mgh+ + = + +  

 

Thus, 
( ) ( ) ( )2

max

2 0.500 kg 9.80 m s 2.00 m2
0.990 m

20.0 N m
imgh

x
k

= = =  

13.57 Choosing PE  at the initial height of the block, conservation of mechanical energy 

gives (
0g =

) ( )g s g sf i
KE PE KE PE PE= + +PE+ + , or 

 

 ( )2 21 1
0

2 2
x kx+ − + =mv mg , 

 
where v is the speed of the block after falling distance x. 

 (a) When 0v = , the non-zero solution to the energy equation from above gives 
 

 2
max = max

1
2

kx mgx , 

 

or 
( ) ( )2

max

2 3.00 kg 9.80 m s2
588 N m

0.100 m
mg

k
x

= = =  
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 (b) When x = = , the energy equation gives 
 

 

5.00 cm 0.050 0 m 

2

2
kx

v gx
m

= − , or 

 

 ( )( ) ( )( )2

2 588 N m 0.050 0 m
s 0.050 0 m 0.700 m s

3.00 kg
= − =2 9.80 mv  

13.58 (a) We apply conservation of mechanical energy from just after the collision until the 
block comes to rest. 
 

 ( ) ( )s sf i
KE PE KE PE+ = +  gives 2 21 1

2 2fkx MV0 0+ = +  

 
or the speed of the block just after the collision is 
 

 
( )( )22 900 N m 0.050 0 m

1.50 m s
1.00 kg

fkx
V

M
= = =

(

 

 
Now, we apply conservation of momentum from just before impact to immediately 
after the collision. This gives 
 
 ) ( )0bullet bulleti f

m v m v MV+ = +

( ) ( )

 

 

or 

( )-3

1.00 kg
400 m s

5.00 10

bullet bulletf i

M
v v V

m
 = −   

= −
×

1.5 m s 100 m s
 kg

 
=  

 

 (b) The mechanical energy converted into internal energy during the collision is 
 

 ( ) ( )2 2 21 1 1
2 2 2i f bullet bulleti f

E KE KE m v m v MV∆ = − Σ = − −  

 
or 
 

 ( ) ( ) ( ) ( ) ( )2 231 1
5.00 10  kg 400 m s 100 m s 1.00 kg 1.50 m s

2 2
E −  ∆ = × − − 

2
 

 
 374 JE∆ =  
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13.59 Choose PE  when the blocks start from rest. Then, using conservation of mechanical 

energy from when the blocks are released until the spring returns to its unstretched 

length gives 

0g =

( ) ( )g s g sf i
PE PE KE PE PE+ + = + +KE , or 

 

 ( ) ( )2 21 1
0 0

2 2
k x= + +1 2 1 2sin 40 0fv m g x m g x+ + ° − +m m  

 

 
( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

2 2

22

0  kg 25 kg 9.80 m s 0.200 m sin 40

1
30 kg 9.80 m s 0.200 m 200 N m 0.200 m

2

fv+ + °      

− =

1
25 3

2

                
 

 
yielding 1.1  m sf =v  

13.60 (a) When the gun is fired, the energy initially stored as elastic potential energy in the 
spring is transformed into kinetic energy of the bullet. Assuming no loss of energy, 
we have 2 21 1

2 2 imv kx= , or 
 

 ( ) 3

9.80 N m
0.200 m 19.8 m s

1.00 10  kgi

k
v x

m −= = =
×

 

 (b) From 21
0 2yy v t a t+

0 0yv =

(

y∆ = , the time required for the pellet to drop 1.00 m to the floor, 

starting with , is 

 

 
) ( )

2

2 2 1.00 m
0.452 s

0 m sy

y
t

a

∆ −
=

9.8
= =

−
 

 
The range (horizontal distance traveled during the flight) is then 
 
 ( ) ( )0 s 0.452 s 8.94 mxx v t∆ = =19.8 m=  

13.61 (a) 
500 N m

15.8 rad s
2.00 kg

k
m

ω = = =  
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 (b) Apply Newton’s second law to the block while the elevator is accelerating: 
 
 y s yF F mg ma= − =Σ  

 
With   and sF kx a= 3y g= , this gives ( )3kx m g g= + , or 

 

 
( ) ( )

( )
2

2
4 2.00 kg 9.80 m s4

5.23 10  m 5.23 cm
3 3 500 N m
mg

x
k

−= = = × =  

13.62 (a) When the block is given some small upward displacement, the net restoring force 
exerted on it by the rubber bands is 
 

 2 sinnet yF F F θ= Σ = − , where tan
y
L

θ =  

 

For small displacements, the angle θ  will be very small. Then sin tan
y
L

θ θ≈ = , and 

the net restoring force is 
 

 
2

2netF F   = − = −    
y F
L L




y

y

 

 (b) The net restoring force found in part (a) is in the form of Hooke’s law , with F k= −
2F

k
L

= . Thus, the motion will be simple harmonic, and the angular frequency is 

 

 
2Fk

m mL
ω = =  
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13.63 The free-body diagram at the right shows the forces  
acting on the balloon when it is displaced distance  
s Lθ=  along the circular arc it follows. The net force  
tangential to this path is 
 

( )sin sin sinxF F B mg B mgnet θ θ θ= − + = − −= Σ  

 

For small angles, sin
s
L

θ θ≈ =

(

 

 
Also, )Hemg V gρ=  
 
and the buoyant force is ( )airV gρ=B . Thus, the net  
restoring force 
 

acting on the balloon is 
( )He Vg

F s
L

ρ ρair
net

 −
≈ −  

 
 

 
Observe that this is in the form of Hooke’s law, F k s= − , 
 
with ( )Heairρ ρ= −k Vg L

simp

 
 
Thus, the motion will be  and the period is given by 
 

 

le harmonic

( )
He

Heair

He

He

2
air

Vm L21
T 2 2

f k Vg L g
ρ ρ

π
ρ ρ ρ

 
=  − − 

π
= = π π

ω ρ
==  

 

This yields 
( )

( )1.29
T π  

��



�� � 


�

��
�

� �

��

2

3.00 m0.180 
2 1.40 s

0.180 9.80 m s
 = =  −

13.64 Observe in the sketch at the right that  
2 2d L D+ = , or 
 

2 2.00 m 1.50 m
0.250 m

2 2
D L

d
− −

= = =  

 
Thus, 
 

1 1 0.250 m
cos cos 70.5

4 0.750 m
d

L
θ − −   = = =     

°

�

��

��

�

�

�

��	���

 


����������
��������

��
��

�
��

�
��
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 Now, consider a free body diagram of point A: 
 
 ( )20  cos 70.5xF F TΣ = ⇒ = °

(

 

 
and )20 sin 70.5yF TΣ = ⇒ ° =

( )

19.6 Nmg =  

 
Hence, the tension in the section between A and B is 
 

 
19.6 N

6.93 N
tan 70.5

F = =
°

 

 
The mass per unit length of the string is 
 

 
3

-310.0 10  kg
3.33 10  kg m

3.00 m
µ

−×
= = ×  

 
so the speed of transverse waves in the string between points A and B is 
 

 -3

6.93 N
3.33 10  kg

F
v

µ
= =

×
45.6 m

m
= s  

 
The time for the pulse to travel from A to B is 
 

 22 1.50 m
3.29 10  s 3

45.6 m s
L

t
v

−= = = × = 2.9 ms  

�

�� �

��

��

�
��

���	���
�� ��

13.65 Newton's law of gravitation is 
 

 3
2

4
,   where  

3
GMm

F M
r

ρ π = − =   
r  

 

Thus, 
4

= - 
3

F Gm rπρ 
  

= -

 

 
which is of Hooke’s law form, F k r , with 
 

 
4

 = 
3

k Gmπρ  

�

��

�

�

�
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13.66 (a) Apply the work-energy theorem from the instant  
the firefighter starts from rest until just before contact  
with the platform. 
 

( ) ( )nc g gf i
W KE PE KE PE= + − +  gives 

 

( )21
0 0 ,  or 2

2
f

f h mv mgh v g h
m

  − ⋅ = + − + = −      
 

 

( )2 300 N
2 9.80 m s 5.00 m 6.93 m s

60 kg
v

 
= − =  

 

 (b) Next, apply conservation of momentum to find the speed V of the firefighter and 
platform immediately after the perfectly inelastic collision. This gives 
 
 ( ) ( )0m M V mv M+ = +  
 

or ( )60
60.0+2

m
V v

m M
  = =    +

(

.0
6.93 m s 5.20 m s

0.0
 =

 

 
Finally, apply the work-energy theorem from just after the collision until the 
firefighter comes to rest. 
 

 ) ( )nc g s g sf i
KE PE PE− + +W KE PE PE= + +  gives 

 

 ( ) ( )2 21 1
2 2

m M V m M gs + + + +
0 0f s ks − ⋅ = + + −  

0


 

 

or ( )2 22
0

m M
s m M g f s V

k k
+ − + − − =      

 

 
Using the given data, we obtain ( )2 0.387 m 20.865 ms s 0− − = , and the quadratic 

formula gives a positive solution of 1.14 ms =  
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13.67 (a) Using conservation of mechanical energy, ( ) ( )s sf i
KE PE KE PE+ = + , from the 

moment of release to the instant of separation gives 
 

 ( ) 2 2
1 2

1 1
0 0

2 2
m m v kA+ + = +  

 

or ( ) ( )1 2

100 N m
0.20 m

9.0 7.0  kg
k

v A
m m

= =
+ +

0.50 m s=  

 (b) After the two blocks separate,  oscillates with new amplitude 1m A′  found by 

applying ( ) ( )s sf i
PE+KE PE KE+ =  to the 1 springm +  system from the moment of 

separation until the spring is fully stretched the first time. 
 

 2 2
1

1 1
2 2

kA m v+ =′0  

 

or ( )1  kg
0.50 m s

10 m
m

A v
k

= =′
9.0
0 N

0.15 m=  

 

The period of this oscillation is 1 9.0
2 2

100
m
k

π π= =
 kg

 N m
1.= 9 sT , 

 

so the spring is fully stretched for the first time at 0.47 s
4
T

= =t

x vt

 after separation. 

During this time,  has moved distance 2m =  from the point of separation. Thus, 
the distance separating the two blocks at this instant is 
 
 ( ) ( )0.50 m s 0.47 0.15D vt A= − = −′  s  m 0.086 m= 8.6 cm=  

13.68 (a) Apply the work-energy theorem from the instant before the block contacts the 
spring until the instant the block leaves the spring. 
 

 
( )

( ) ( ) ( )

2 2

2 2

1
2

1
8.00 kg 3.00 m s 4.00 m s 28.0 J

2

nc f i f iW KE KE m v v= − = −

 = −  = −
 

 
or the mechanical energy lost is 28.0 JncW =  



498  CHAPTER 13 

 (b) The energy spent overcoming the friction force while the block is in contact with the 
spring is ncf s W⋅ = , where 2 maxs x=  with  being the maximum distance the 
spring was compressed. Hence, 
 

 

maxx

( ) ( ) ( )29.80 m s

ncW

mg2 2 2

28.0 J
 m

2 0.400 8.00 kg

nc nc
max

k k

W W
x

f nµ µ
= = =

= = 0.446

 

13.69 (a) As seen in the sketch at the right, the length of the chord  
 followed by the longitudinal wave is shorter than  

the arc length  traveled by the transverse wave. Also,  
the longitudinal wave travels faster than does the  
transverse wave. Thus, 

x∆
s∆

the longitudinal wave  will  

arrive first. 

��

��

�

�




��
��

 (b) With 60.0 3  radiansθ π== ° , the arc length, s∆ , traveled by the transverse wave is 
 

  rad
3E Es R R
π

θ  ∆ = =   
 

 

and the time for this wave to travel from A to B is: 
( )3E

t
t t

Rs
t

v v

π∆
∆ = =  

From the sketch, observe that the chord labeled x∆  is one side of an isosceles 
triangle. Thus,  and the travel time for the longitudinal wave is 
 

 

Ex R∆ =

ERx
t

v v
∆

∆ = =  

 
The difference in the arrival times of the two waves is then 
 

 ( ) ( )
31 1

6.37 10
3 73 4.50 km stv v
π π

 km
.80 km st Et Rt t

  
− = × −∆ = ∆ − ∆ =       

 

 

or ( ) 1 m
666 st∆ =

in
11.1 min

60 s
  =  
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13.70 The inner tip of the wing is attached to the end of the spring and always moves with the 
same speed as the end of the vibrating spring. Thus, its maximum speed is 
 

 ( )
4

, max , max 3

4.7 10  N m
0.20 cm 0.25 cm s

0.30 10  kginner spring

k
v v A

m

−

−

×
= = = =

×
 

 
Treating the wing as a rigid bar, all points in the wing have the same angular velocity at 
any instant in time. As the wing rocks on the fulcrum, the inner tip and outer tips follow 
circular paths of different radii. Since the angular velocities of the tips are always equal, 

we may write outer inner

outer inner

v v
r r

ω = = . The maximum speed of the outer tip is then 

 

 ( ),  max , max

15.0 mm
0.25 cm s 1.3 cm s

3.00 mm
outer

outer inner
inner

r
v v

r

   = = =     
 

13.71 (a) If the surface is frictionless, the total mechanical energy of the system is conserved. 
Thus, taking the initial position at the point when the block starts from rest and the 
final position at the equilibrium position, we have 
 

 2 21 1
    0 0

2 2f f i i f iKE PE KE PE mv kx+ = + ⇒ + = +  

 

or ( )
3

2 1.0 10  N m
2.0 10  m 0.50 m s

1.6 kgf i

k
v x

m
− ×

= = × =  

 (b) When a constant friction force retards the motion of the block, the work-energy 
theorem gives 
 

 ( ) ( )nc f iW KE PE KE PE= + − +  or 2 2 21 1 1 1
2 2 2 2

2
f f i if s mv kx mv kx− ⋅ = + − −  

 
where s is the total distance the block moves between the initial and final states. If 
the block is initially at rest at 2.0 cm=ix , and the final state is when the block 

makes its first pass through the equilibrium position, then is x=  and we have 
 

 ( ) ( ) ( ) ( ) ( 22 2 31 1
4.0 N 2.0 10  m 1.6 kg 0 0 1.0 10  N m 2.0 10  m

2 2fv− −− ⋅ × = + − − × × )2  

 

or 
0.20 J 0.080 J

0.39 m s
0.80 kgfv

−
= =  
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 (c) When a friction force is present, the system is continuously spending energy as the 
friction force does negative work on it. The block will cease to move when all of the 
original energy (initially stored as elastic potential energy) has been used doing 
work to overcome friction. That is, until  
 

 21
2 if s kx⋅ =  or 

( ) ( )
( )

23 22
2

1.0 10  N m 2.0 10  m
5.0 10  m 5.0 cm

2 2 4.0 N
ikx

s
f

−
−

× ×
= = = × =  
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