

Components of Acceleration Vector

3D Motion With Constant Acceleration

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$
$$\vec{v} = \vec{v}_0 + \vec{a} t$$
$$v^2 = v_0^2 + 2a | \vec{r} - \vec{r}_0 |$$
$$\vec{r} - \vec{r}_0 = \left(\frac{\vec{v}_0 + \vec{v}}{2}\right) t$$

P and \perp components of Acceleration a When moving in curved path useful to describe acceleration r a in terms of components which are P & \perp to $\stackrel{r}{v}$ $a \parallel$ $a \parallel$

φ

 a_{\perp}

P

à

Normal

at P

Some Scenarios

When particle travels along curved path with constant speed, $\stackrel{r}{a}$ is \perp to the path & \perp to $\stackrel{r}{v}$

When particle travels along curved path with increasing speed, $\stackrel{r}{a}$ has components $\perp \& P$ to $\stackrel{r}{v} \&$ points ahead of the *normal* to the path

When particle travels along curved path with decreasing speed, $\stackrel{r}{a}$ has components $\perp \&$ anti-P to $\stackrel{r}{v}\&$ points behind the *normal* to the path

