
Physics 2a, Nov 17, lecture 25

⋆Reading: chapters 9 and 10.

• Last time, Examples of moments of inertia:

I =
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ML2 rod through center
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ML2 rod through end
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MR2 solid cylinder
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MR2 solid sphere
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MR2 thin walled hollow sphere.

For cylinder or sphere of radius R, write I = cMR2, and note that chollow > csolid

and ccylinder > csphere make intuitive sense, since bigger c means more mass farther from

the axis of rotation. (Parallel axis result: the moment around an axis parallel to, and at

a distance d from, one going through the CM is Ip = Icm + Md2. For example, the I of a

rod through an end vs through the center are related this way.)

Race round rigid bodies down an incline plane, which wins? Use conservation of

energy. Einitial = Mgh. Efinal = 1

2
Mv2

cm + 1

2
Iω2, and ω = vcm/R (rolling without

slipping), so Efinal = 1

2
(1 + c)Mv2

cm, so vcm =
√

2gh/(1 + c). Smaller I object wins.

Makes sense, less energy taken up with rotation means more going into velocity. Writing

h = d sinβ where d is the distance traveled along the slope shows that the acceleration

along the slope is a = g sin β/(1 + c).

Unwinding cable example. Mass m on string, wrapped around cylinder with mass M

and radius R. Mass drops height h. Find it’s speed.

mgh = 1

2
mv2 + 1

2
I(v/R)2, so v =

√

2gh/(1 + I/mR2), with I = 1

2
MR2. Note that

v2 = 2ah, with a = g/(1 + I/mR2).

• Let’s now reconsider the above examples, as illustrations of the use of torque, τ =

~r × ~F .

Consider first the unwinding cable example. The downward force on the mass is

mg − T = ma. The tension T provides a torque τ = TR = Iα on the cylinder. Finally,

a = Rα. Solve these to get a = g/(1 + I/mR2).

Now consider the rolling body example. The force parallel to the slope is Mg sin β −

ff = Ma. The torque around the middle is τ = Rff = Iα. Setting a = αR for non-

slipping, get g sin β = a(1 + c), where c = I/MR2, and this agrees with the acceleration

found last time using energy considerations. Note that ff = cMg sin β/(1 + c) and n =

Mg cos β, so need minimum friction coefficient µs = c
1+c

tanβ.
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• More on angular momentum, ~L =
∑

i ~ri × ~pi = ~Lcm + I~ω, and examples. Note that

it depends on choice of origin. As seen in Monday’s lecture, ~τ = d~L
dt

.

If no torque, ~τ = 0, angular momentum is conserved, ~L = constant.

Two objects, A and B, since ~FA→B = −~FB→A, we see ~τA→B = −~τB→A, equal and

opposite torques, so d
dt

(~LA + ~LB) = 0. In general, Newton’s 3rd law → ~τtotal = ~τexternal,

which vanishes for a closed system. So closed systems have conserved angular momentum.

At a fundamental level, angular momentum is always conserved, though it can flow in and

out of a system. Conservation of angular momentum is a deep principle, like conservation

of energy and conservation of momentum. (They are related to symmetries: energy to

time translations, momentum to space translations, and angular momentum to rotational

invariance).

• Spinning with dumbbells, bring them in and use conservation of L to find ωf .

Compare Kf − Ki to work done.

• Bullet in door example. Door width d and mass M . Bullet of mass m and velocity

v hits at distance ℓ from hinge. Using conservation of ~L, get Lz = mvℓ before, and ~L = Iω

after, where I = 1

3
Md2 + mℓ2. Equating gives ω = mvℓ/I. Note Kbefore = 1

2
mv2 and

Kafter = 1

2
Iω2, and Kbefore −Kafter is positive, as expected, and equal to the energy lost

to heat in the inelastic collision of bullet and door.

• Gyroscopes and precession. The weight of the gyro leads to ~τ = ~r × ~w. This is

perpendicular to ~L (since ~L is parallel to ~r), so d
dt

(~L · ~L) = 0, the magnitude of ~L is

unchanged, but it’s direction rotates in a circle. The procession angular speed is Ω =

|d~|/|~L|/dt = Mgr/Iω.
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