Physics 2a, Nov 10, lecture 22

 \star Reading: chapter 8.

• More on elastic collisions, in 1d. $m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$ and $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v'_1^2 + \frac{1}{2}m_2v'_2^2$. Example: $v_1 = v$, $v_2 = 0$, $v'_1 = \frac{m_1 - m_2}{m_1 + m_2}v$, $v'_2 = \frac{2m_1}{m_1 + m_2}v$, consider cases $m_1 \ll m_2$, and $m_1 \gg m_2$ and $m_1 = m_2$. Relative velocity changes sign before and after collision.

• Gravitational slingshot. Spacecraft has $v_1 = 10.4 \times 10^3$ and Saturn has $v_2 = -9.6 \times 10^3$. So $v_1 - v_2 = -(v'_1 - v'_2)$ and $v_2 = v'_2$. So $v'_1 = 2v_2 - v_1 = -29.6 \times 10^3$. Craft's speed is almost tripled and kinetic energy is increased by factor of 8.

• Center of mass. For a system of objects with masses m_i and locations \vec{r}_i , the center of mass is a kind of average position: $\vec{r}_{cm} = \sum m_i \vec{r}_i / \sum m_i$, so $M \frac{d}{dt} \vec{r}_{cm} = \vec{P}$. Any total external force acts on the center of mass, and internal forces cancel out.

• Rocket equations: p(t) = mv, and $p(t + dt) = (m + dm)(v + dv) + (-dm)(v - v_{ex})$, where -dm > 0 is the ejected mass and $-v_{ex}$ is its velocity relative to the rocket. So $dp = (m+dm)(v+dv) + (-dm)(v-v_{ex}) - mv = mdv + v_{ex}dm$ and thus $F_{ext} = m\frac{dv}{dt} + v_{ex}\frac{dm}{dt}$. If $F_{ext} = 0$ (e.g. in space) then we can integrate to get $v - v_0 = v_{ex}\ln(m_0/m)$. Or if $F_{ext} = -mg$, integrate to get $v - v_0 = -gt + v_{ex}\ln(m_0/m)$.