
Chapter 17

Physics 110A-B Exams

The following pages contain problems and solutions from midterm and final exams in Physics
110A-B.
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2 CHAPTER 17. PHYSICS 110A-B EXAMS

17.1 F05 Physics 110A Midterm #1

[1] A particle of mass m moves in the one-dimensional potential

U(x) = U0

x2

a2
e−x/a . (17.1)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x→ ±∞.

(b) Sketch a representative set of phase curves. Identify and classify any and all fixed points.
Find the energy of each and every separatrix.

(c) Sketch all the phase curves for motions with total energy E = 2
5 U0. Do the same for

E = U0. (Recall that e = 2.71828 . . . .)

(d) Derive and expression for the period T of the motion when |x| ≪ a.

Solution:

(a) Clearly U(x) diverges to +∞ for x → −∞, and U(x) → 0 for x → +∞. Setting
U ′(x) = 0, we obtain the equation

U ′(x) =
U0

a2

(

2x− x2

a

)

e−x/a = 0 , (17.2)

with (finite x) solutions at x = 0 and x = 2a. Clearly x = 0 is a local minimum and x = 2a

a local maximum. Note U(0) = 0 and U(2a) = 4 e−2 U0 ≈ 0.541U0.

Figure 17.1: The potential U(x). Distances are here measured in units of a, and the
potential in units of U0.

(b) Local minima of a potential U(x) give rise to centers in the (x, v) plane, while local
maxima give rise to saddles. In Fig. 17.2 we sketch the phase curves. There is a center at
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Figure 17.2: Phase curves for the potential U(x). The red curves show phase curves for
E = 2

5 U0 (interior, disconnected red curves, |v| < 1) and E = U0 (outlying red curve). The
separatrix is the dark blue curve which forms a saddle at (x, v) = (2, 0), and corresponds
to an energy E = 4 e−2 U0.

(0, 0) and a saddle at (2a, 0). There is one separatrix, at energy E = U(2a) = 4 e−2 U0 ≈
0.541U0.

(c) Even without a calculator, it is easy to verify that 4 e−2 > 2
5 . One simple way is to

multiply both sides by 5
2 e

2 to obtain 10 > e2, which is true since e2 < (2.71828 . . .)2 < 10.

Thus, the energy E = 2
5 U0 lies below the local maximum value of U(2a), which means that

there are two phase curves with E = 2
5 U0.

It is also quite obvious that the second energy value given, E = U0, lies above U(2a), which
means that there is a single phase curve for this energy. One finds bound motions only for
x < 2 and 0 ≤ E < U(2a). The phase curves corresponding to total energy E = 2

5 U0 and

E = U0 are shown in Fig. 17.2.

(d) Expanding U(x) in a Taylor series about x = 0, we have

U(x) =
U0

a2

{

x2 − x3

a
+

x4

2a2
+ . . .

}

. (17.3)

The leading order term is sufficient for |x| ≪ a. The potential energy is then equivalent to
that of a spring, with spring constant k = 2U0/a

2. The period is

T = 2π

√
m

k
= 2π

√

ma2

2U0
. (17.4)
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[2] A forced, damped oscillator obeys the equation

ẍ+ 2β ẋ+ ω2
0 x = f0 cos(ω0t) . (17.5)

You may assume the oscillator is underdamped.

(a) Write down the most general solution of this differential equation.

(b) Your solution should involve two constants. Derive two equations relating these con-
stants to the initial position x(0) and the initial velocity ẋ(0). You do not have to solve

these equations.

(c) Suppose ω0 = 5.0 s−1, β = 4.0 s−1, and f0 = 8cm s−2. Suppose further you are told that
x(0) = 0 and x(T ) = 0, where T = π

6 s. Derive an expression for the initial velocity ẋ(0).

Solution: (a) The general solution with forcing f(t) = f0 cos(Ωt) is

x(t) = xh(t) +A(Ω) f0 cos
(
Ωt− δ(Ω)

)
, (17.6)

with

A(Ω) =
[

(ω2
0 −Ω2)2 + 4β2Ω2

]−1/2
, δ(Ω) = tan−1

(
2βΩ

ω2
0 −Ω2

)

(17.7)

and
xh(t) = C e−βt cos(νt) +D e−βt sin(νt) , (17.8)

with ν =
√

ω2
0 − β2.

In our case, Ω = ω0, in which case A = (2βω0)
−1 and δ = 1

2π. Thus, the most general
solution is

x(t) = C e−βt cos(νt) +D e−βt sin(νt) +
f0

2βω0
sin(ω0t) . (17.9)

(b) We determine the constants C and D by the boundary conditions on x(0) and ẋ(0):

x(0) = C , ẋ(0) = −βC + νD +
f0

2β
. (17.10)

Thus,

C = x(0) , D =
β

ν
x(0) +

1

ν
ẋ(0) − f0

2βν
. (17.11)

(c) From x(0) = 0 we obtain C = 0. The constant D is then determined by the condition
at time t = T = 1

6π.

Note that ν =
√

ω2
0 − β2 = 3.0 s−1. Thus, with T = 1

6π, we have νT = 1
2π, and

x(T ) = D e−βT +
f0

2βω0
sin(ω0T ) . (17.12)
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This determines D:

D = − f0

2βω0
eβT sin(ω0T ) . (17.13)

We now can write

ẋ(0) = νD +
f0

2β
(17.14)

=
f0

2β

(

1 − ν

ω0
eβT sin(ω0T )

)

(17.15)

=
(

1 − 3
10 e

2π/3
)

cm/s . (17.16)

Numerically, the value is ẋ(0) ≈ 0.145 cm/s .
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17.2 F05 Physics 110A Midterm #2

[1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly
along a horizontal surface, as shown in Fig. 17.3. The unstretched length of the spring is a.

Figure 17.3: Two masses connected by a spring sliding horizontally along a frictionless
surface.

(a) Identify a set of generalized coordinates and write the Lagrangian.
[15 points]

Solution : As generalized coordinates I choose X and u, where X is the position of the
right edge of the block of mass M , and X + u + a is the position of the left edge of the
block of mass m, where a is the unstretched length of the spring. Thus, the extension of
the spring is u. The Lagrangian is then

L = 1
2MẊ2 + 1

2m(Ẋ + u̇)2 − 1
2ku

2

= 1
2(M +m)Ẋ2 + 1

2mu̇
2 +mẊu̇− 1

2ku
2 . (17.17)

(b) Find the equations of motion.
[15 points]

Solution : The canonical momenta are

pX ≡ ∂L

∂Ẋ
= (M +m)Ẋ +mu̇ , pu ≡ ∂L

∂u̇
= m(Ẋ + u̇) . (17.18)

The corresponding equations of motion are then

ṗX = FX =
∂L

∂X
⇒ (M +m)Ẍ +mü = 0 (17.19)

ṗu = Fu =
∂L

∂u
⇒ m(Ẍ + ü) = −ku . (17.20)

(c) Find all conserved quantities.
[10 points]

Solution : There are two conserved quantities. One is pX itself, as is evident from the
fact that L is cyclic in X. This is the conserved ‘charge’ Λ associated with the continuous
symmetry X → X + ζ. i.e. Λ = pX . The other conserved quantity is the Hamiltonian H,
since L is cyclic in t. Furthermore, because the kinetic energy is homogeneous of degree
two in the generalized velocities, we have that H = E, with

E = T + U = 1
2(M +m)Ẋ2 + 1

2mu̇
2 +mẊu̇+ 1

2ku
2 . (17.21)
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It is possible to eliminate Ẋ, using the conservation of Λ:

Ẋ =
Λ −mu̇

M +m
. (17.22)

This allows us to write

E =
Λ2

2(M +m)
+

Mmu̇2

2(M +m)
+ 1

2ku
2 . (17.23)

(d) Find a complete solution to the equations of motion. As there are two degrees of
freedom, your solution should involve 4 constants of integration. You need not match initial
conditions, and you need not choose the quantities in part (c) to be among the constants.
[10 points]

Solution : Using conservation of Λ, we may write Ẍ in terms of ẍ, in which case

Mm

M +m
ü = −ku ⇒ u(t) = A cos(Ωt) +B sin(Ωt) , (17.24)

where

Ω =

√

(M +m)k

Mm
. (17.25)

For the X motion, we integrate eqn. 17.22 above, obtaining

X(t) = X0 +
Λt

M +m
− m

M +m

(

A cos(Ωt) −A+B sin(Ωt)
)

. (17.26)

There are thus four constants: X0, Λ, A, and B. Note that conservation of energy says

E =
Λ2

2(M +m)
+ 1

2k(A
2 +B2) . (17.27)

Alternate solution : We could choose X as the position of the left block and x as the
position of the right block. In this case,

L = 1
2MẊ2 + 1

2mẋ
2 − 1

2k(x−X − b)2 . (17.28)

Here, b includes the unstretched length a of the spring, but may also include the size of
the blocks if, say, X and x are measured relative to the blocks’ midpoints. The canonical
momenta are

pX =
∂L

∂Ẋ
= MẊ , px =

∂L

∂ẋ
= mẋ . (17.29)

The equations of motion are then

ṗX = FX =
∂L

∂X
⇒ MẌ = k(x−X − b) (17.30)

ṗx = Fx =
∂L

∂x
⇒ mẍ = −k(x−X − b) . (17.31)
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The one-parameter family which leaves L invariant is X → X + ζ and x → x + ζ, i.e.

simultaneous and identical displacement of both of the generalized coordinates. Then

Λ = MẊ +mẋ , (17.32)

which is simply the x-component of the total momentum. Again, the energy is conserved:

E = 1
2MẊ2 + 1

2mẋ
2 + 1

2k (x−X − b)2 . (17.33)

We can combine the equations of motion to yield

Mm
d2

dt2
(
x−X − b

)
= −k (M +m)

(
x−X − b

)
, (17.34)

which yields
x(t) −X(t) = b+A cos(Ωt) +B sin(Ωt) , (17.35)

From the conservation of Λ, we have

MX(t) +mx(t) = Λt+C , (17.36)

were C is another constant. Thus, we have the motion of the system in terms of four
constants: A, B, Λ, and C:

X(t) = − m
M+m

(
b+A cos(Ωt) +B sin(Ωt)

)
+

Λt+ C

M +m
(17.37)

x(t) = M
M+m

(
b+A cos(Ωt) +B sin(Ωt)

)
+

Λt+ C

M +m
. (17.38)
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[2] A uniformly dense ladder of mass m and length 2ℓ leans against a block of mass M ,
as shown in Fig. 17.4. Choose as generalized coordinates the horizontal position X of the
right end of the block, the angle θ the ladder makes with respect to the floor, and the
coordinates (x, y) of the ladder’s center-of-mass. These four generalized coordinates are not
all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum TCM + Trot, where

TCM = 1
2m(ẋ2 + ẏ2) is the kinetic energy of the center-of-mass motion, and Trot = 1

2Iθ̇
2,

where I is the moment of inertial. For a uniformly dense ladder of length 2ℓ, I = 1
3mℓ

2.

Figure 17.4: A ladder of length 2ℓ leaning against a massive block. All surfaces are fric-
tionless..

(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and
their time derivatives.
[10 points]

Solution : We have L = T − U , hence

L = 1
2MẊ2 + 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇

2 −mgy . (17.39)

(b) Write down all the equations of constraint.
[10 points]

Solution : There are two constraints, corresponding to contact between the ladder and the
block, and contact between the ladder and the horizontal surface:

G1(X, θ, x, y) = x− ℓ cos θ −X = 0 (17.40)

G2(X, θ, x, y) = y − ℓ sin θ = 0 . (17.41)

(c) Write down all the equations of motion.
[10 points]

Solution : Two Lagrange multipliers, λ1 and λ2, are introduced to effect the constraints.

We have for each generalized coordinate qσ,

d

dt

(
∂L

∂q̇σ

)

− ∂L

∂qσ
=

k∑

j=1

λj

∂Gj

∂qσ
≡ Qσ , (17.42)
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where there are k = 2 constraints. We therefore have

MẌ = −λ1 (17.43)

mẍ = +λ1 (17.44)

mÿ = −mg + λ2 (17.45)

Iθ̈ = ℓ sin θ λ1 − ℓ cos θ λ2 . (17.46)

These four equations of motion are supplemented by the two constraint equations, yielding
six equations in the six unknowns {X, θ, x, y, λ1, λ2}.

(d) Find all conserved quantities.
[10 points]

Solution : The Lagrangian and all the constraints are invariant under the transformation

X → X + ζ , x→ x+ ζ , y → y , θ → θ . (17.47)

The associated conserved ‘charge’ is

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣
∣
∣
∣
ζ=0

= MẊ +mẋ . (17.48)

Using the first constraint to eliminate x in terms of X and θ, we may write this as

Λ = (M +m)Ẋ −mℓ sin θ θ̇ . (17.49)

The second conserved quantity is the total energy E. This follows because the Lagrangian
and all the constraints are independent of t, and because the kinetic energy is homogeneous
of degree two in the generalized velocities. Thus,

E = 1
2MẊ2 + 1

2m(ẋ2 + ẏ2) + 1
2Iθ̇

2 +mgy (17.50)

=
Λ2

2(M +m)
+ 1

2

(

I +mℓ2 − m
M+m mℓ2 sin2 θ

)

θ̇2 +mgℓ sin θ , (17.51)

where the second line is obtained by using the constraint equations to eliminate x and y in
terms of X and θ.

(e) What is the condition that the ladder detaches from the block? You do not have to solve
for the angle of detachment! Express the detachment condition in terms of any quantities
you find convenient.
[10 points]

Solution : The condition for detachment from the block is simply λ1 = 0, i.e. the normal
force vanishes.

Further analysis : It is instructive to work this out in detail (though this level of analysis
was not required for the exam). If we eliminate x and y in terms of X and θ, we find

x = X + ℓ cos θ y = ℓ sin θ (17.52)

ẋ = Ẋ − ℓ sin θ θ̇ ẏ = ℓ cos θ θ̇ (17.53)

ẍ = Ẍ − ℓ sin θ θ̈ − ℓ cos θ θ̇2 ÿ = ℓ cos θ θ̈ − ℓ sin θ θ̇2 . (17.54)
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Figure 17.5: Plot of θ∗ versus θ0 for the ladder-block problem (eqn. 17.64). Allowed
solutions, shown in blue, have α ≥ 1, and thus θ∗ ≤ θ0. Unphysical solutions, with α < 1,
are shown in magenta. The line θ∗ = θ0 is shown in red.

We can now write

λ1 = mẍ = mẌ −mℓ sin θ θ̈ −mℓ cos θ θ̇2 = −MẌ , (17.55)

which gives

(M +m)Ẍ = mℓ
(
sin θ θ̈ + cos θ θ̇2

)
, (17.56)

and hence

Qx = λ1 = − Mm

m+m
ℓ
(
sin θ θ̈ + cos θ θ̇2

)
. (17.57)

We also have

Qy = λ2 = mg +mÿ

= mg +mℓ
(
cos θ θ̈ − sin θ θ̇2

)
. (17.58)

We now need an equation relating θ̈ and θ̇. This comes from the last of the equations of
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motion:

Iθ̈ = ℓ sin θ λ1 − ℓ cos θλ2

= − Mm
M+m ℓ2

(
sin2θ θ̈ + sin θ cos θ θ̇2

)
−mgℓ cos θ −mℓ2

(
cos2θ θ̈ − sin θ cos θ θ̇2

)

= −mgℓ cos θ −mℓ2
(

1 − m
M+m sin2θ

)

θ̈ + m
M+m mℓ2 sin θ cos θ θ̇2 . (17.59)

Collecting terms proportional to θ̈, we obtain

(
I +mℓ2 − m

M+m sin2θ
)
θ̈ = m

M+m mℓ2 sin θ cos θ θ̇2 −mgℓ cos θ . (17.60)

We are now ready to demand Qx = λ1 = 0, which entails

θ̈ = −cos θ

sin θ
θ̇2 . (17.61)

Substituting this into eqn. 17.60, we obtain

(
I +mℓ2

)
θ̇2 = mgℓ sin θ . (17.62)

Finally, we substitute this into eqn. 17.51 to obtain an equation for the detachment angle,
θ∗

E − Λ2

2(M +m)
=

(

3 − m

M +m
· mℓ2

I +mℓ2
sin2θ∗

)

· 1
2mgℓ sin θ∗ . (17.63)

If our initial conditions are that the system starts from rest1 with an angle of inclination
θ0, then the detachment condition becomes

sin θ0 = 3
2 sin θ∗ − 1

2

(
m

M+m

)(
mℓ2

I+mℓ2

)

sin3θ∗

= 3
2 sin θ∗ − 1

2 α
−1 sin3θ∗ , (17.64)

where

α ≡
(

1 +
M

m

)(

1 +
I

mℓ2

)

. (17.65)

Note that α ≥ 1, and that when M/m = ∞2, we recover θ∗ = sin−1
(

2
3 sin θ0

)
. For finite

α, the ladder detaches at a larger value of θ∗. A sketch of θ∗ versus θ0 is provided in Fig.
17.5. Note that, provided α ≥ 1, detachment always occurs for some unique value θ∗ for
each θ0.

1‘Rest’ means that the initial velocities are Ẋ = 0 and θ̇ = 0, and hence Λ = 0 as well.
2
I must satisfy I ≤ mℓ

2.
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17.3 F05 Physics 110A Final Exam

[1] Two blocks and three springs are configured as in Fig. 17.6. All motion is horizontal.
When the blocks are at rest, all springs are unstretched.

Figure 17.6: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.

I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0.

Find t∗, the next time at which x2 vanishes.
[5 points]

Solution

(a) The Lagrangian is

L = 1
2m1 x

2
1 + 1

2m2 x
2
2 − 1

2k1 x
2
1 − 1

2k2 (x2 − x1)
2 − 1

2k3 x
2
2

(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj
=

(

m1 0

0 m2

)

, Vij =
∂2U

∂xi ∂xj
=

(

k1 + k2 −k2

−k2 k2 + k3

)
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(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write ω2 ≡ λω2
0 ,

where ω0 ≡
√

k/m. Then

ω2T − V = k

(
2λ− 5 1

1 λ− 3

)

.

The determinant is

det (ω2T − V) = (2λ2 − 11λ + 14) k2

= (2λ− 7) (λ − 2) k2 .

There are two roots: λ− = 2 and λ+ = 7
2 , corresponding to the eigenfrequencies

ω− =

√

2k

m
, ω+ =

√

7k

2m

(d) The normal modes are determined from (ω2
aT−V) ~ψ(a) = 0. Plugging in λ = 2 we have

for the normal mode ~ψ(−)

(
−1 1
1 −1

)(
ψ(−)

1

ψ(−)

2

)

= 0 ⇒ ~ψ(−) = C−
(

1
1

)

Plugging in λ = 7
2 we have for the normal mode ~ψ(+)

(
2 1
1 1

2

)(
ψ(+)

1

ψ(+)

2

)

= 0 ⇒ ~ψ(+) = C+

(
1
−2

)

The standard normalization ψ
(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C2 =
1√
6m

. (17.66)

(e) The general solution is
(

x1

x2

)

= A

(
1
1

)

cos(ω−t) +B

(
1
−2

)

cos(ω+t) + C

(
1
1

)

sin(ω−t) +D

(
1
−2

)

sin(ω+t) .

The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3b , B = 1

3b , C = 0 , D = 0 .

Thus,

x1(t) = 1
3b ·

(

2 cos(ω−t) + cos(ω+t)
)

x2(t) = 2
3b ·

(

cos(ω−t) − cos(ω+t)
)

.
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Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+

[2] Two point particles of masses m1 and m2 interact via the central potential

U(r) = U0 ln

(
r2

r2 + b2

)

,

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ℓ does a circular orbit exist? Find

the radius r0 of the circular orbit. Is it stable or unstable?
[7 points]

(c) For the case where a circular orbit exists, sketch the phase curves for the radial motion
in the (r, ṙ) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]

(c) Suppose the orbit is nearly circular, with r = r0+η, where |η| ≪ r0. Find the equation
for the shape η(φ) of the perturbation.
[8 points]

(d) What is the angle ∆φ through which periapsis changes each cycle? For which value(s)
of ℓ does the perturbed orbit not precess?
[5 points]
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Solution

(a) The effective potential is

Ueff(r) =
ℓ2

2µr2
+ U(r)

=
ℓ2

2µr2
+ U0 ln

(
r2

r2 + b2

)

.

where µ = m1m2/(m1 + m1) is the reduced mass. For a circular orbit, we must have
U ′

eff(r) = 0, or
l2

µr3
= U ′(r) =

2rU0b
2

r2 (r2 + b2)
.

The solution is

r20 =
b2ℓ2

2µb2U0 − ℓ2

Since r20 > 0, the condition on ℓ is

ℓ < ℓc ≡
√

2µb2U0

For large r, we have

Ueff(r) =

(
ℓ2

2µ
− U0 b

2

)

· 1

r2
+ O(r−4) .

Thus, for ℓ < ℓc the effective potential is negative for sufficiently large values of r. Thus,
over the range ℓ < ℓc, we must have Ueff,min < 0, which must be a global minimum, since

Ueff(0+) = ∞ and Ueff(∞) = 0. Therefore, the circular orbit is stable whenever it exists.

(b) Let ℓ = ǫ ℓc. The effective potential is then

Ueff(r) = U0 f(r/b) ,

where the dimensionless effective potential is

f(s) =
ǫ2

s2
− ln(1 + s−2) .

The phase curves are plotted in Fig. 17.7.

(c) The energy is

E = 1
2µṙ

2 + Ueff(r)

=
ℓ2

2µr4

(
dr

dφ

)2

+ Ueff(r) ,
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Figure 17.7: Phase curves for the scaled effective potential f(s) = ǫ s−2 − ln(1 + s−2), with
ǫ = 1√

2
. Here, ǫ = ℓ/ℓc. The dimensionless time variable is τ = t ·

√

U0/mb2.

where we’ve used ṙ = φ̇ r′ along with ℓ = µr2φ̇. Writing r = r0 + η and differentiating E
with respect to φ, we find

η′′ = −β2η , β2 =
µr40
ℓ2

U ′′
eff(r0) .

For our potential, we have

β2 = 2 − ℓ2

µb2U0
= 2

(

1 − ℓ2

ℓ2c

)

The solution is

η(φ) = A cos(βφ+ δ) (17.67)

where A and δ are constants.

(d) The change of periapsis per cycle is

∆φ = 2π
(
β−1 − 1

)
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If β > 1 then ∆φ < 0 and periapsis advances each cycle (i.e.it comes sooner with every
cycle). If β < 1 then ∆φ > 0 and periapsis recedes. For β = 1, which means ℓ =

√

µb2U0,
there is no precession and ∆φ = 0.

[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic

field B = B0 ẑ and a uniform electric field E = E0 x̂. The potential energy is

U(r, ṙ) = −eE0 x− e

c
B0 x ẏ ,

where we have chosen the gauge A = B0 x ŷ.

(a) Find the canonical momenta px, py, and pz.
[7 points]

(b) Identify all conserved quantities.
[8 points]

(c) Find a complete, general solution for the motion of the system
{
x(t), y(t), x(t)

}
.

[10 points]

Solution

(a) The Lagrangian is

L = 1
2m(ẋ2 + ẏ2 + ż2) +

e

c
B0 x ẏ + eE0 x .

The canonical momenta are

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ +

e

c
B0 x

px =
∂L

∂ż
= mż

(b) There are three conserved quantities. First is the momentum py, since Fy = ∂L
∂y = 0.

Second is the momentum pz, since Fy = ∂L
∂z = 0. The third conserved quantity is the

Hamiltonian, since ∂L
∂t = 0. We have

H = px ẋ+ py ẏ + pz ż − L

⇒ H = 1
2m(ẋ2 + ẏ2 + ż2) − eE0 x
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(c) The equations of motion are

ẍ− ωc ẏ =
e

m
E0

ÿ + ωc ẋ = 0

z̈ = 0 .

The second equation can be integrated once to yield ẏ = ωc(x0−x), where x0 is a constant.
Substituting this into the first equation gives

ẍ+ ω2
c x = ω2

c x0 +
e

m
E0 .

This is the equation of a constantly forced harmonic oscillator. We can therefore write the
general solution as

x(t) = x0 +
eE0

mω2
c

+A cos
(
ωct+ δ

)

y(t) = y0 −
eE0

mωc
t−A sin

(
ωct+ δ

)

z(t) = z0 + ż0 t

Note that there are six constants,
{
A, δ, x0, y0, z0, ż0

}
, are are required for the general

solution of three coupled second order ODEs.

[4] An N = 1 dynamical system obeys the equation

du

dt
= ru+ 2bu2 − u3 ,

where r is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.
[7 points]

(b) Sketch the fixed points u∗ versus r.
[6 points]

Now let b = 3. At time t = 0, the initial value of u is u(0) = 1. The control parameter
r is then increased very slowly from r = −20 to r = +20, and then decreased very
slowly back down to r = −20.

(c) What is the value of u when r = −5 on the increasing part of the cycle?
[3 points]
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(d) What is the value of u when r = +16 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = +16 on the decreasing part of the cycle?
[3 points]

(f) What is the value of u when r = −5 on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting u̇ = 0 we obtain
(u2 − 2bu− r)u = 0 .

The roots are
u = 0 , u = b±

√

b2 + r .

The roots at u = u± = b ±
√
b2 + r are only present when r > −b2. At r = −b2 there

is a saddle-node bifurcation. The fixed point u = u− crosses the fixed point at u = 0 at
r = 0, at which the two fixed points exchange stability. This corresponds to a transcritical

bifurcation. In Fig. 17.8 we plot u̇/b3 versus u/b for several representative values of r/b2.
Note that, defining ũ = u/b, r̃ = r/b2, and t̃ = b2t that our N = 1 system may be written

dũ

dt̃
=
(
r̃ + 2ũ− ũ2

)
ũ ,

which shows that it is only the dimensionless combination r̃ = r/b2 which enters into the
location and classification of the bifurcations.

(b) A sketch of the fixed points u∗ versus r is shown in Fig. 17.9. Note the two bifurcations
at r = −b2 (saddle-node) and r = 0 (transcritical).

(c) For r = −20 < −b2 = −9, the initial condition u(0) = 1 flows directly toward the stable
fixed point at u = 0. Since the approach to the FP is asymptotic, u remains slightly positive
even after a long time. When r = −5, the FP at u = 0 is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at u∗ = 0 becomes unstable, and u flows to the

upper branch u+. When r = 16, we have u = 3 +
√

32 + 16 = 8. Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus, u = 8 at
r = 16 on the way down as well. Answer: u = 8.

(f) Now when r first becomes negative on the way down, the upper branch u+ remains
stable. Indeed it remains stable all the way down to r = −b2, the location of the saddle-
node bifurcation, at which point the solution u = u+ simply vanishes and the flow is toward
u = 0 again. Thus, for r = −5 on the way down, the system remains on the upper branch,
in which case u = 3 +

√
32 − 5 = 5. Answer: u = 5.
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Figure 17.8: Plot of dimensionless ‘velocity’ u̇/b3 versus dimensionless ‘coordinate’ u/b for
several values of the dimensionless control parameter r̃ = r/b2.

17.4 F07 Physics 110A Midterm #1

[1] A particle of mass m moves in the one-dimensional potential

U(x) =
U0

a4

(
x2 − a2

)2
. (17.68)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x→ ±∞.
[15 points]

Solution : Clearly the minima lie at x = ±a and there is a local maximum at x = 0.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy E = 1

2 U0. Do the same for E = 2U0.
[15 points]

Solution : See Fig. 17.10 for the phase curves. Clearly U(±a) = 0 is the minimum of the
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Figure 17.9: Fixed points and their stability versus control parameter for the N = 1 system
u̇ = ru+ 2bu2 − u3. Solid lines indicate stable fixed points; dashed lines indicate unstable
fixed points. There is a saddle-node bifurcation at r = −b2 and a transcritical bifurcation
at r = 0. The hysteresis loop in the upper half plane u > 0 is shown. For u < 0 variations
of the control parameter r are reversible and there is no hysteresis.

potential, and U(0) = U0 is the local maximum and the energy of the separatrix. Thus,

E = 1
2 U0 cuts through the potential in both wells, and the phase curves at this energy form

two disjoint sets. For E < U0 there are four turning points, at

x1,< = −a

√

1 +

√

E

U0
, x1,> = −a

√

1 −
√

E

U0

and

x2,< = a

√

1 −
√

E

U0
, x2,> = a

√

1 +

√

E

U0

For E = 2U0, the energy is above that of the separatrix, and there are only two turning

points, x1,< and x2,>. The phase curve is then connected.
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Figure 17.10: Sketch of the double well potential U(x) = (U0/a
4)(x2 − a2)2, here with

distances in units of a, and associated phase curves. The separatrix is the phase curve
which runs through the origin. Shown in red is the phase curve for U = 1

2 U0, consisting
of two deformed ellipses. For U = 2U0, the phase curve is connected, lying outside the
separatrix.

(c) The phase space dynamics are written as ϕ̇ = V (ϕ), where ϕ =

(
x
ẋ

)

. Find the upper

and lower components of the vector field V .
[10 points]

Solution :
d

dt

(
x
ẋ

)

=

(
ẋ

− 1
m U ′(x)

)

=

(
ẋ

−4U0
a2 x (x2 − a2)

)

. (17.69)

(d) Derive and expression for the period T of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]
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Solution : Set x = ±a+ η and Taylor expand:

U(±a+ η) =
4U0

a2
η2 + O(η3) . (17.70)

Equating this with 1
2k η

2, we have the effective spring constant k = 8U0/a
2, and the small

oscillation frequency

ω0 =

√

k

m
=

√

8U0

ma2
. (17.71)

The period is 2π/ω0.

[2] An R-L-C circuit is shown in fig. 17.11. The resistive element is a light bulb. The
inductance is L = 400µH; the capacitance is C = 1µF; the resistance is R = 32Ω. The
voltage V (t) oscillates sinusoidally, with V (t) = V0 cos(ωt), where V0 = 4V. In this problem,
you may neglect all transients; we are interested in the late time, steady state operation of
this circuit. Recall the relevant MKS units:

1Ω = 1V · s /C , 1F = 1C /V , 1H = 1V · s2/C .

Figure 17.11: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?
[10 points]

Solution : We have

ω0 = (LC)−1/2 = 5 × 104 s−1 , β =
R

2L
= 4 × 104 s−1 .

Thus, ω2
0 > β2 and the circuit is underdamped .
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(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is

greater than a threshold Pth = 2
9 W . For fixed V0 = 4V, find the frequency range for ω over

which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
PR(t) = I2(t)R. (Average this over a cycle to get the average power dissipated.)
[20 points]

Solution : The charge on the capacitor plate obeys the ODE

L Q̈+R Q̇+
Q

C
= V (t) .

The solution is

Q(t) = Qhom(t) +A(ω)
V0

L
cos
(
ωt− δ(ω)

)
,

with

A(ω) =
[

(ω2
0 − ω2)2 + 4β2ω2

]−1/2
, δ(ω) = tan−1

(
2βω

ω2
0 − ω2

)

.

Thus, ignoring the transients, the power dissipated by the bulb is

PR(t) = Q̇2(t)R

= ω2A2(ω)
V 2

0 R

L2
sin2

(
ωt− δ(ω)

)
.

Averaging over a period, we have 〈 sin2(ωt− δ) 〉 = 1
2 , so

〈PR 〉 = ω2A2(ω)
V 2

0 R

2L2
=
V 2

0

2R
· 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

.

Now V 2
0 /2R = 1

4 W. So Pth = αV 2
0 /2R, with α = 8

9 . We then set 〈PR〉 = Pth, whence

(1 − α) · 4β2ω2 = α (ω2
0 − ω2)2 .

The solutions are

ω = ±
√

1 − α

α
β +

√
(

1 − α

α

)

β2 + ω2
0 =

(
3
√

3 ±
√

2
)
× 1000 s−1 .

(c) Compare the expressions for the instantaneous power dissipated by the voltage source,

PV (t), and the power dissipated by the resistor PR(t) = I2(t)R. If PV (t) 6= PR(t), where

does the power extra power go or come from? What can you say about the averages of PV

and PR(t) over a cycle? Explain your answer.
[20 points]

Solution : The instantaneous power dissipated by the voltage source is

PV (t) = V (t) I(t) = −ωA V0

L
sin(ωt− δ) cos(ωt)

= ωA
V0

2L

(

sin δ − sin(2ωt − δ)
)

.
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As we have seen, the power dissipated by the bulb is

PR(t) = ω2A2 V
2
0 R

L2
sin2(ωt− δ) .

These two quantities are not identical, but they do have identical time averages over one
cycle:

〈PV (t) 〉 = 〈PR(t) 〉 =
V 2

0

2R
· 4β2 ω2A2(ω) .

Energy conservation means
PV (t) = PR(t) + Ė(t) ,

where

E(t) =
LQ̇2

2
+
Q2

2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of Ė over a

cycle must vanish, which guarantees 〈PV (t) 〉 = 〈PR(t) 〉.

What was not asked:

(d) What is the maximum charge Qmax on the capacitor plate if ω = 3000 s−1?
[10 points]

Solution : Kirchoff’s law gives for this circuit the equation

Q̈+ 2β Q̇+ ω2
0 Q =

V0

L
cos(ωt) ,

with the solution

Q(t) = Qhom(t) +A(ω)
V0

L
cos
(
ωt− δ(ω)

)
,

where Qhom(t) is the homogeneous solution, i.e. the transient which we ignore, and

A(ω) =
[

(ω2
0 − ω2)2 + 4β2ω2

]−1/2
, δ(ω) = tan−1

(
2βω

ω2
0 − ω2

)

.

Then

Qmax = A(ω)
V0

L
.

Plugging in ω = 3000 s−1, we have

A(ω) =
[
(52 − 42)2 + 4 · 42 · 32

]−1/2 × 10−3 s2 =
1

8
√

13
× 10−3 s2 .

Since V0/L = 104 C/s2, we have

Qmax =
5

4
√

13
Coul .
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17.5 F07 Physics 110A Midterm #2

[1] A point mass m slides frictionlessly, under the influence of gravity, along a massive ring
of radius a and mass M . The ring is affixed by horizontal springs to two fixed vertical
surfaces, as depicted in fig. 17.12. All motion is within the plane of the figure.

Figure 17.12: A point mass m slides frictionlessly along a massive ring of radius a and mass
M , which is affixed by horizontal springs to two fixed vertical surfaces.

(a) Choose as generalized coordinates the horizontal displacement X of the center of the
ring with respect to equilibrium, and the angle θ a radius to the mass m makes with respect
to the vertical (see fig. 17.12). You may assume that at X = 0 the springs are both
unstretched. Find the Lagrangian L(X, θ, Ẋ, θ̇, t).
[15 points]

The coordinates of the mass point are

x = X + a sin θ , y = −a cos θ .

The kinetic energy is

T = 1
2MẊ2 + 1

2m
(
Ẋ + a cos θ θ̇

)2
+ 1

2ma
2 sin2θ θ̇2

= 1
2 (M +m)Ẋ2 + 1

2ma
2θ̇2 +ma cos θ Ẋ θ̇ .

The potential energy is
U = kX2 −mga cos θ .

Thus, the Lagrangian is

L = 1
2 (M +m)Ẋ2 + 1

2ma
2θ̇2 +ma cos θ Ẋ − kX2 +mga cos θ .

(b) Find the generalized momenta pX and pθ, and the generalized forces FX and Fθ
[10 points]

We have

pX =
∂L

∂Ẋ
= (M +m)Ẋ +ma cos θ θ̇ , pθ =

∂L

∂θ̇
= ma2θ̇ +ma cos θ Ẋ .
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For the forces,

FX =
∂L

∂X
= −2kX , Fθ =

∂L

∂θ
= −ma sin θ Ẋ θ̇ −mga sin θ .

(c) Derive the equations of motion.
[15 points]

The equations of motion are
d

dt

(
∂L

∂q̇σ

)

=
∂L

∂qσ
,

for each generalized coordinate qσ. For X we have

(M +m)Ẍ +ma cos θ θ̈ −ma sin θ θ̇2 = −2kX .

For θ,
ma2 θ̈ +ma cos θẌ = −mga sin θ .

(d) Find expressions for all conserved quantities.
[10 points]

Horizontal and vertical translational symmetries are broken by the springs and by gravity,
respectively. The remaining symmetry is that of time translation. From dH

dt = −∂L
∂t , we have

that H =
∑

σ pσ q̇σ −L is conserved. For this problem, the kinetic energy is a homogeneous
function of degree 2 in the generalized velocities, and the potential is velocity-independent.
Thus,

H = T + U = 1
2(M +m)Ẋ2 + 1

2ma
2θ̇2 +ma cos θ Ẋ θ̇ + kX2 −mga cos θ .
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[2] A point particle of mass m moves in three dimensions in a helical potential

U(ρ, φ, z) = U0 ρ cos

(

φ− 2πz

b

)

.

We call b the pitch of the helix.

(a) Write down the Lagrangian, choosing (ρ, φ, z) as generalized coordinates.
[10 points]

The Lagrangian is

L = 1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
− U0 ρ cos

(

φ− 2πz

b

)

(b) Find the equations of motion.
[20 points]

Clearly

pρ = mρ̇ , pφ = mρ2 φ̇ , pz = mż ,

and

Fρ = mρ φ̇2−U0 cos

(

φ−2πz

b

)

, Fφ = U0 ρ sin

(

φ−2πz

b

)

, Fz = −2πU0

b
ρ sin

(

φ−2πz

b

)

.

Thus, the equation of motion are

mρ̈ = mρ φ̇2 − U0 cos

(

φ− 2πz

b

)

mρ2 φ̈+ 2mρ ρ̇ φ̇ = U0 ρ sin

(

φ− 2πz

b

)

mz̈ = −2πU0

b
ρ sin

(

φ− 2πz

b

)

.

(c) Show that there exists a continuous one-parameter family of coordinate transformations
which leaves L invariant. Find the associated conserved quantity, Λ. Is anything else
conserved?
[20 points]

Due to the helical symmetry, we have that

φ→ φ+ ζ , z → z +
b

2π
ζ

is such a continuous one-parameter family of coordinate transformations. Since it leaves
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the combination φ− 2πz
b unchanged, we have that dL

dζ = 0, and

Λ = pρ

∂ρ

∂ζ

∣
∣
∣
∣
ζ=0

+ pφ

∂φ

∂ζ

∣
∣
∣
∣
ζ=0

+ pz

∂z

∂ζ

∣
∣
∣
∣
ζ=0

= pφ +
b

2π
pz

= mρ2 φ̇+
mb

2π
ż

is the conserved Noether ‘charge’. The other conserved quantity is the Hamiltonian,

H = 1
2m
(
ρ̇2 + ρ2φ̇2 + ż2

)
+ U0 ρ cos

(

φ− 2πz

b

)

.

Note that H = T + U , because T is homogeneous of degree 2 and U is homogeneous of
degree 0 in the generalized velocities.
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17.6 F07 Physics 110A Final Exam

[1] Two masses and two springs are configured linearly and externally driven to rotate with
angular velocity ω about a fixed point on a horizontal surface, as shown in fig. 17.13. The
unstretched length of each spring is a.

Figure 17.13: Two masses and two springs rotate with angular velocity ω.

(a) Choose as generalized coordinates the radial distances r1,2 from the origin. Find the

Lagrangian L(r1, r2, ṙ1, ṙ2, t).
[5 points]

The Lagrangian is

L = 1
2m
(
ṙ21 + ṙ22 + ω2 r21 + ω2 r22

)
− 1

2k (r1 − a)2 − 1
2k (r2 − r1 − a)2 . (17.72)

(b) Derive expressions for all conserved quantities.
[5 points]

The Hamiltonian is conserved. Since the kinetic energy is not homogeneous of degree 2 in
the generalized velocities, H 6= T + U . Rather,

H =
∑

σ

pσ q̇σ − L (17.73)

= 1
2m
(
ṙ21 + ṙ22

)
− 1

2mω
2
(
r21 + r22) + 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (17.74)

We could define an effective potential

Ueff(r1, r2) = −1
2mω

2
(
r21 + r22) + 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (17.75)

Note the first term, which comes from the kinetic energy, has an interpretation of a fictitious
potential which generates a centrifugal force.



32 CHAPTER 17. PHYSICS 110A-B EXAMS

(c) What equations determine the equilibrium radii r01 and r02? (You do not have to solve
these equations.)
[5 points]

The equations of equilibrium are Fσ = 0. Thus,

0 = F1 =
∂L

∂r1
= mω2r1 − k (r1 − a) + k (r2 − r1 − a) (17.76)

0 = F2 =
∂L

∂r2
= mω2r2 − k (r2 − r1 − a) . (17.77)

(d) Suppose now that the system is not externally driven, and that the angular coordinate
φ is a dynamical variable like r1 and r2. Find the Lagrangian L(r1, r2, φ, ṙ1, ṙ2, φ̇, t).
[5 points]

Now we have

L = 1
2m
(
ṙ21 + ṙ22 + r21 φ̇

2 + r22 φ̇
2
)
− 1

2k (r1 − a)2 − 1
2k (r2 − r1 − a)2 . (17.78)

(e) For the system described in part (d), find expressions for all conserved quantities.
[5 points]

There are two conserved quantities. One is pφ, owing to the fact the φ is cyclic in the
Lagrangian. I.e. φ→ φ+ ζ is a continuous one-parameter coordinate transformation which
leaves L invariant. We have

pφ =
∂L

∂φ̇
= m

(
r21 + r22

)
φ̇ . (17.79)

The second conserved quantity is the Hamiltonian, which is now H = T + U , since T is
homogeneous of degree 2 in the generalized velocities. Using conservation of momentum,
we can write

H = 1
2m
(
ṙ21 + ṙ22

)
+

p2
φ

2m(r21 + r22)
+ 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 . (17.80)

Once again, we can define an effective potential,

Ueff(r1, r2) =
p2

φ

2m(r21 + r22)
+ 1

2k (r1 − a)2 + 1
2k (r2 − r1 − a)2 , (17.81)

which is different than the effective potential from part (b). However in both this case and
in part (b), we have that the radial coordinates obey the equations of motion

mr̈j = −∂Ueff

∂rj
, (17.82)

for j = 1, 2. Note that this equation of motion follows directly from Ḣ = 0.
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Figure 17.14: A mass point m rolls inside a hoop of mass M and radius R which rolls
without slipping on a horizontal surface.

[2] A point mass m slides inside a hoop of radius R and mass M , which itself rolls without
slipping on a horizontal surface, as depicted in fig. 17.14.

Choose as general coordinates (X,φ, r), where X is the horizontal location of the center of
the hoop, φ is the angle the mass m makes with respect to the vertical (φ = 0 at the bottom
of the hoop), and r is the distance of the mass m from the center of the hoop. Since the
mass m slides inside the hoop, there is a constraint:

G(X,φ, r) = r −R = 0 .

Nota bene: The kinetic energy of the moving hoop, including translational and rotational
components (but not including the mass m), is Thoop = MẊ2 (i.e. twice the translational
contribution alone).

(a) Find the Lagrangian L(X,φ, r, Ẋ , φ̇, ṙ, t).
[5 points]

The Cartesian coordinates and velocities of the mass m are

x = X + r sinφ ẋ = Ẋ + ṙ sinφ+ rφ̇ cosφ (17.83)

y = R− r cosφ ẏ = −ṙ cosφ+ rφ̇ sinφ (17.84)

The Lagrangian is then

L =

T
︷ ︸︸ ︷

(M + 1
2m)Ẋ2 + 1

2m(ṙ2 + r2φ̇2) +mẊ(ṙ sinφ+ rφ̇ cosφ) −

U
︷ ︸︸ ︷

mg(R− r cosφ) (17.85)

Note that we are not allowed to substitute r = R and hence ṙ = 0 in the Lagrangian prior

to obtaining the equations of motion. Only after the generalized momenta and forces are
computed are we allowed to do so.

(b) Find all the generalized momenta pσ, the generalized forces Fσ, and the forces of
constraint Qσ.
[10 points]
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The generalized momenta are

pr =
∂L

∂ṙ
= mṙ +mẊ sinφ (17.86)

pX =
∂L

∂Ẋ
= (2M +m)Ẋ +mṙ sinφ+mrφ̇ cosφ (17.87)

pφ =
∂L

∂φ̇
= mr2φ̇+mrẊ cosφ (17.88)

The generalized forces and the forces of constraint are

Fr =
∂L

∂r
= mrφ̇2 +mẊφ̇ cosφ+mg cosφ Qr = λ

∂G

∂r
= λ (17.89)

FX =
∂L

∂X
= 0 QX = λ

∂G

∂X
= 0 (17.90)

Fφ =
∂L

∂φ
= mẊṙ cosφ−mẊφ̇ sinφ−mgr sinφ Qφ = λ

∂G

∂φ
= 0 . (17.91)

The equations of motion are
ṗσ = Fσ +Qσ . (17.92)

At this point, we can legitimately invoke the constraint r = R and set ṙ = 0 in all the pσ

and Fσ.

(c) Derive expressions for all conserved quantities.
[5 points]

There are two conserved quantities, which each derive from continuous invariances of the
Lagrangian which respect the constraint. The first is the total momentum pX :

FX = 0 =⇒ P ≡ pX = constant . (17.93)

The second conserved quantity is the Hamiltonian, which in this problem turns out to be
the total energy E = T +U . Incidentally, we can use conservation of P to write the energy
in terms of the variable φ alone. From

Ẋ =
P

2M +m
− mR cosφ

2M +m
φ̇ , (17.94)

we obtain

E = 1
2(2M +m)Ẋ2 + 1

2mR
2φ̇2 +mRẊφ̇ cosφ+mgR(1 − cosφ)

=
αP 2

2m(1 + α)
+ 1

2mR
2

(
1 + α sin2φ

1 + α

)

φ̇2 +mgR(1 − cosφ) , (17.95)

where we’ve defined the dimensionless ratio α ≡ m/2M . It is convenient to define the
quantity

Ω2 ≡
(

1 + α sin2φ

1 + α

)

φ̇2 + 2ω2
0(1 − cosφ) , (17.96)
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with ω0 ≡
√

g/R. Clearly Ω2 is conserved, as it is linearly related to the energy E:

E =
αP 2

2m(1 + α)
+ 1

2mR
2Ω2 . (17.97)

(d) Derive a differential equation of motion involving the coordinate φ(t) alone. I.e. your
equation should not involve r, X, or the Lagrange multiplier λ.
[5 points]

From conservation of energy,

d(Ω2)

dt
= 0 =⇒

(
1 + α sin2φ

1 + α

)

φ̈+

(
α sinφ cosφ

1 + α

)

φ̇2 + ω2
0 sinφ = 0 , (17.98)

again with α = m/2M . Incidentally, one can use these results in eqns. 17.96 and 17.98 to

eliminate φ̇ and φ̈ in the expression for the constraint force, Qr = λ = ṗr − Fr. One finds

λ = −mR φ̇2 + ω2
0 cosφ

1 + α sin2φ

= − mRω2
0

(1 + α sin2φ)2

{

(1 + α)

(
Ω2

ω2
0

− 4 sin2(1
2φ)

)

+ (1 + α sin2φ) cosφ

}

. (17.99)

This last equation can be used to determine the angle of detachment, where λ vanishes and
the mass m falls off the inside of the hoop. This is because the hoop can only supply a
repulsive normal force to the mass m. This was worked out in detail in my lecture notes on
constrained systems.

[3] Two objects of masses m1 and m2 move under the influence of a central potential

U = k
∣
∣r1 − r2

∣
∣1/4

.

(a) Sketch the effective potential Ueff(r) and the phase curves for the radial motion. Identify
for which energies the motion is bounded.
[5 points]

The effective potential is

Ueff(r) =
ℓ2

2µr2
+ krn (17.100)

with n = 1
4 . In sketching the effective potential, I have rendered it in dimensionless form,

Ueff(r) = E0 Ueff(r/r0) , (17.101)

where r0 = (ℓ2/nkµ)(n+2)−1
and E0 =

(
1
2 + 1

n

)
ℓ2/µr20, which are obtained from the results

of part (b). One then finds

Ueff(x) =
nx−2 + 2xn

n+ 2
. (17.102)
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Figure 17.15: The effective Ueff(r) = E0 Ueff(r/r0), where r0 and E0 are the radius and
energy of the circular orbit.

Although it is not obvious from the detailed sketch in fig. 17.15, the effective potential does
diverge, albeit slowly, for r → ∞. Clearly it also diverges for r → 0. Thus, the relative
coordinate motion is bounded for all energies; the allowed energies are E ≥ E0.

(b) What is the radius r0 of the circular orbit? Is it stable or unstable? Why?
[5 points]

For the general power law potential U(r) = krn, with nk > 0 (attractive force), setting

U ′
eff(r0) = 0 yields

− ℓ2

µr30
+ nkrn−1

0 = 0 . (17.103)

Thus,

r0 =

(
ℓ2

nkµ

) 1
n+2

=

(
4ℓ2

kµ

)4
9

. (17.104)

The orbit r(t) = r0 is stable because the effective potential has a local minimum at r = r0,
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i.e. U ′′
eff(r0) > 0. This is obvious from inspection of the graph of Ueff(r) but can also be

computed explicitly:

U ′′
eff(r0) =

3ℓ2

µr40
+ n(n− 1)krn

0

= (n+ 2)
ℓ2

µr40
. (17.105)

Thus, provided n > −2 we have U ′′
eff(r0) > 0.

(c) For small perturbations about a circular orbit, the radial coordinate oscillates between
two values. Suppose we compare two systems, with ℓ′/ℓ = 2, but µ′ = µ and k′ = k. What
is the ratio ω′/ω of their frequencies of small radial oscillations?
[5 points]

From the radial coordinate equation µr̈ = −U ′
eff(r), we expand r = r0 + η and find

µη̈ = −U ′′
eff(r0) η + O(η2) . (17.106)

The radial oscillation frequency is then

ω = (n+ 2)1/2 ℓ

µr20
= (n+ 2)1/2 n

2
n+2 k

2
n+2 µ−

n

n+2 ℓ
n−2
n+2 . (17.107)

The ℓ dependence is what is key here. Clearly

ω′

ω
=

(
ℓ′

ℓ

)n−2
n+2

. (17.108)

In our case, with n = 1
4 , we have ω ∝ ℓ−7/9 and thus

ω′

ω
= 2−7/9 . (17.109)

(d) Find the equation of the shape of the slightly perturbed circular orbit: r(φ) = r0+η(φ).
That is, find η(φ). Sketch the shape of the orbit.
[5 points]

We have that η(φ) = η0 cos(βφ+ δ0), with

β =
ω

φ̇
=
µr20
ℓ

· ω =
√
n+ 2 . (17.110)

With n = 1
4 , we have β = 3

2 . Thus, the radial coordinate makes three oscillations for every
two rotations. The situation is depicted in fig. 17.21.

(e) What value of n would result in a perturbed orbit shaped like that in fig. 17.22?
[5 points]
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Figure 17.16: Radial oscillations with β = 3
2 .

Figure 17.17: Closed precession in a central potential U(r) = krn.

Clearly β =
√
n+ 2 = 4, in order that η(φ) = η0 cos(βφ+δ0) executes four complete periods

over the interval φ ∈ [0, 2π]. This means n = 14.

[4] Two masses and three springs are arranged as shown in fig. 17.18. You may assume
that in equilibrium the springs are all unstretched with length a. The masses and spring
constants are simple multiples of fundamental values, viz.

m1 = m , m2 = 4m , k1 = k , k2 = 4k , k3 = 28k . (17.111)

Figure 17.18: Coupled masses and springs.

(a) Find the Lagrangian.
[5 points]
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Choosing displacements relative to equilibrium as our generalized coordinates, we have

T = 1
2mη̇2

1 + 2mη̇2
2 (17.112)

and
U = 1

2k η
2
1 + 2k (η2 − η1)

2 + 14k η2
2 . (17.113)

Thus,

L = T − U = 1
2mη̇2

1 + 2mη̇2
2 − 1

2k η
2
1 − 2k (η2 − η1)

2 − 14k η2
2 . (17.114)

You are not required to find the equilibrium values of x1 and x2. However, suppose all the
unstretched spring lengths are a and the total distance between the walls is L. Then, with
x1,2 being the location of the masses relative to the left wall, we have

U = 1
2k1 (x1 − a)2 + 1

2k2 (x2 − x1 − a)2 + 1
2k3 (L− x2 − a)2 . (17.115)

Differentiating with respect to x1,2 then yields

∂U

∂x1
= k1 (x1 − a) − k2 (x2 − x1 − a) (17.116)

∂U

∂x2
= k2 (x2 − x1 − a) − k3 (L− x2 − a) . (17.117)

Setting these both to zero, we obtain

(k1 + k2)x1 − k2 x2 = (k1 − k2) a (17.118)

−k2 x1 + (k2 + k3)x2 = (k2 − k3) a+ k3L . (17.119)

Solving these two inhomogeneous coupled linear equations for x1,2 then yields the equilib-
rium positions. However, we don’t need to do this to solve the problem.

(b) Find the T and V matrices.
[5 points]

We have

Tσσ′ =
∂2T

∂η̇σ∂η̇σ′

=

(
m 0
0 4m

)

(17.120)

and

Vσσ′ =
∂2U

∂ησ∂ησ′

=

(
5k −4k
−4k 32k

)

. (17.121)

(c) Find the eigenfrequencies ω1 and ω2.
[5 points]

We have

Q(ω) ≡ ω2 T − V =

(
mω2 − 5k 4k

4k 4mω2 − 32k

)

= k

(
λ− 5 4

4 4λ− 32

)

, (17.122)
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where λ = ω2/ω2
0 , with ω0 =

√

k/m. Setting det Q(ω) = 0 then yields

λ2 − 13λ+ 36 = 0 , (17.123)

the roots of which are λ− = 4 and λ+ = 9. Thus, the eigenfrequencies are

ω− = 2ω0 , ω+ = 3ω0 . (17.124)

(d) Find the modal matrix Aσi.
[5 points]

To find the normal modes, we set

(

λ± − 5 4

4 4λ± − 32

)(

ψ
(±)
1

ψ
(±)
2

)

= 0 . (17.125)

This yields two linearly dependent equations, from which we can determine only the ratios

ψ
(±)
2 /ψ

(±)
1 . Plugging in for λ±, we find

(

ψ
(−)
1

ψ
(−)
2

)

= C−
(

4
1

)

,

(

ψ
(+)
1

ψ
(+)
2

)

= C+

(
1
−1

)

. (17.126)

We then normalize by demanding ψ
(i)
σ

Tσσ′ ψ
(j)
σ′ = δij . We can practically solve this by

inspection:
20m |C−|2 = 1 , 5m |C+|2 = 1 . (17.127)

We may now write the modal matrix,

A =
1√
5m

(
2 1
1
2 −1

)

. (17.128)

(e) Write down the most general solution for the motion of the system.
[5 points]

The most general solution is

(

η1(t)

η2(t)

)

= B−

(
4
1

)

cos(2ω0t+ ϕ−) +B+

(
1
−1

)

cos(3ω0t+ ϕ+) . (17.129)

Note that there are four constants of integration: B± and ϕ±.
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17.7 W08 Physics 110B Midterm Exam

[1] Two identical semi-infinite lengths of string are joined at a point of mass m which
moves vertically along a thin wire, as depicted in fig. 17.21. The mass moves with friction
coefficient γ, i.e. its equation of motion is

mz̈ + γż = F , (17.130)

where z is the vertical displacement of the mass, and F is the force on the mass due to
the string segments on either side. In this problem, gravity is to be neglected. It may be
convenient to define K ≡ 2τ/mc2 and Q ≡ γ/mc.

Figure 17.19: A point mass m joining two semi-infinite lengths of identical string moves
vertically along a thin wire with friction coefficient γ.

(a) The general solution with an incident wave from the left is written

y(x, t) =

{

f(ct− x) + g(ct+ x) (x < 0)

h(ct− x) (x > 0) .

Find two equations relating the functions f(ξ), g(ξ), and h(ξ).
[20 points]

The first equation is continuity at x = 0:

f(ξ) = g(ξ) + h(ξ)

where ξ = ct ranges over the real line [−∞,∞]. The second equation comes from Newton’s
2nd law F = ma applied to the mass point:

mÿ(0, t) + γ ẏ(0, t) = τ y′(0+, t) − τ y′(0−, t) .

Expressed in terms of the functions f(ξ), g(ξ), and h(ξ), and dividing through by mc2,
this gives

f ′′(ξ) + g′′(ξ) +Qf ′(ξ) +Qg′(ξ) = −1
2 K h′(ξ) + 1

2 K f ′(ξ) − 1
2 K g′(ξ).
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Integrating once, and invoking h = f + g, this second equation becomes

f ′(ξ) +Qf(ξ) = −g′(ξ) − (K +Q) g(ξ)

(b) Solve for the reflection amplitude r(k) = ĝ(k)/f̂ (k) and the transmission amplitude
t(k) = ĥ(k)/f̂ (k). Recall that

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ ⇐⇒ f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ ,

et cetera for the Fourier transforms. Also compute the sum of the reflection and transmission
coefficients,

∣
∣r(k)

∣
∣2 +

∣
∣t(k)

∣
∣2. Show that this sum is always less than or equal to unity, and

interpret this fact.
[20 points]

Using d/dξ −→ ik, we have

(Q+ ik) f̂ (k) = −(K +Q+ ik) ĝ(k) . (17.131)

Therefore,

r(k) =
ĝ(k)

f̂(k)
= − Q+ ik

Q+K + ik
(17.132)

To find the transmission amplitude, we invoke h(ξ) = f(ξ) + g(ξ), in which case

t(k) =
ĥ(k)

f̂(k)
= − K

Q+K + ik
(17.133)

The sum of reflection and transmission coefficients is

∣
∣r(k)

∣
∣2 +

∣
∣t(k)

∣
∣2 =

Q2 +K2 + k2

(Q+K)2 + k2
(17.134)

Clearly the RHS of this equation is bounded from above by unity, since both Q and K are
nonnegative.

(c) Find an expression in terms of the functions f , g, and h (and/or their derivatives) for
the rate Ė at which energy is lost by the string. Do this by evaluating the energy current
on either side of the point mass. Your expression should be an overall function of time t.
[10 points]

Recall the formulae for the energy density in a string,

E(x, t) = 1
2 µ ẏ

2(x, t) + 1
2 τ y

′2(x, t) (17.135)
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and
jE (x, t) = −τ ẏ(x, t) y′(x, t) . (17.136)

The energy continuity equation is ∂tE + ∂xjE = 0. Assuming jE(±∞, t) = 0, we have

dE

dt
=

0−∫

−∞

dx
∂E
∂t

+

∞∫

0+

dx
∂E
∂t

= −jE(∞, t) + jE (0+, t) + jE (−∞, t) − jE (0−, t) . (17.137)

Thus,

dE

dt
= cτ

([
g′(ct)

]2
+
[
h′(ct)

]2 −
[
f ′(ct)

]2
)

(17.138)

Incidentally, if we integrate over all time, we obtain the total energy change in the string:

∆E = τ

∞∫

−∞

dξ
([
g′(ξ)

]2
+
[
h′(ξ)

]2 −
[
f ′(ξ)

]2
)

= −τ
∞∫

−∞

dk

2π

2QK k2

(Q+K)2 + k2

∣
∣f̂(k)

∣
∣2 . (17.139)

Note that the initial energy in the string, at time t = −∞, is

E0 = τ

∞∫

−∞

dk

2π
k2
∣
∣f̂(k)

∣
∣2 . (17.140)

If the incident wave packet is very broad, say described by a Gaussian f(ξ) = A exp(−x2/2σ2)
with σK ≫ 1 and σQ ≫ 1, then k2 may be neglected in the denominator of eqn. 17.139,
in which case

∆E ≈ − 2QK

(Q+K)2
E0 ≥ −1

2E0 . (17.141)
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[2] Consider a rectangular cube of density ρ and dimensions a × b × c, as depicted in fig.
17.22.

Figure 17.20: A rectangular cube of dimensions a× b× c. In part (c), a massless torsional
fiber is attached along the diagonal of one of the b× c faces.

(a) Compute the inertia tensor Iαβ along body-fixed principle axes, with the origin at the
center of mass.
[15 points]

We first compute Izz:

ICM
zz = ρ

a/2∫

−a/2

dx

b/2∫

−b/2

dy

c/2∫

−c/2

dz
(
x2 + y2) = 1

12 M
(
a2 + b2

)
, (17.142)

where M = ρ abc. Corresponding expressions hold for the other moments of inertia. Thus,

ICM = 1
12M





b2 + c2 0 0
0 a2 + c2 0
0 0 a2 + b2



 (17.143)

(b) Shifting the origin to the center of either of the b×c faces, and keeping the axes parallel,
compute the new inertia tensor.
[15 points]

We shift the origin by a distance d = −1
2a x̂ and use the parallel axis theorem,

Iαβ(d) = Iαβ(0) +M
(
d2δαβ − dαdβ

)
, (17.144)

resulting in

I =





b2 + c2 0 0
0 4a2 + c2 0
0 0 4a2 + b2



 (17.145)

(c) A massless torsional fiber is (masslessly) welded along the diagonal of either b× c face.
The potential energy in this fiber is given by U(θ) = 1

2Y θ
2, where Y is a constant and θ is
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the angle of rotation of the fiber. Neglecting gravity, find an expression for the oscillation
frequency of the system.
[20 points]

Let θ be the twisting angle of the fiber. The kinetic energy in the fiber is

T = 1
2 Iαβ ωα ωβ

= 1
2 nα Iαβ nβ θ̇

2 , (17.146)

where

n̂ =
b ŷ√
b2 + c2

+
c ẑ√
b2 + c2

. (17.147)

We then find

Iaxis ≡ nα Iαβ nβ = 1
3Ma2 + 1

6M
b2 c2

b2 + c2
. (17.148)

The frequency of oscillation is then Ω =

√

Y/Iaxis, or

Ω =

√

6Y

M
· b2 + c2

2a2
(
b2 + c2

)
+ b2 c2

(17.149)
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17.8 W08 Physics 110B Final Exam

[1] Consider a string with uniform mass density µ and tension τ . At the point x = 0, the
string is connected to a spring of force constant K, as shown in the figure below.

Figure 17.21: A string connected to a spring.

(a) The general solution with an incident wave from the left is written

y(x, t) =

{

f(ct− x) + g(ct + x) (x < 0)

h(ct− x) (x > 0) .

Find two equations relating the functions f(ξ), g(ξ), and h(ξ). [10 points]

SOLUTION : The first equation is continuity at x = 0:

f(ξ) + g(ξ) = h(ξ)

where ξ = ct ranges over the real line [−∞,∞]. The second equation comes from Newton’s
2nd law F = ma applied to the mass point:

τ y′(0+, t) − τ y′(0−, t) −K y(0, t) = 0 ,

or

− τ h′(ξ) + τ f ′(ξ) − τ g′(ξ) −K
[
f(ξ) + g(ξ)

]
= 0

(b) Solve for the reflection amplitude r(k) = ĝ(k)/f̂(k) and the transmission amplitude
t(k) = ĥ(k)/f̂(k). Recall that

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ ⇐⇒ f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ ,
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et cetera for the Fourier transforms. Also compute the sum of the reflection and
transmission coefficients,

∣
∣r(k)

∣
∣2 +

∣
∣t(k)

∣
∣2. [10 points]

SOLUTION : Taking the Fourier transform of the two equations from part (a), we have

f̂(k) + ĝ(k) = ĥ(k)

f̂(k) + ĝ(k) =
iτk

K

[

f̂(k) − ĝ(k) − ĥ(k)

]

.

Solving for ĝ(k) and ĥ(k) in terms of f̂(k), we find

ĝ(k) = r(k) f̂(k) , ĥ(k) = t(k) f̂(k)

where the reflection coefficient r(k) and the transmission coefficient t(k) are given by

r(k) = − K

K + 2iτk
, t(k) =

2iτk

K + 2iτk

Note that

∣
∣r(k)

∣
∣2 +

∣
∣t(k)

∣
∣2 = 1

which says that the energy flux is conserved.

(c) For the Lagrangian density

L = 1
2µ

(
∂y

∂t

)2

− 1
2τ

(
∂y

∂x

)2

− 1
4γ

(
∂y

∂x

)4

,

find the Euler-Lagrange equations of motion. [7 points]

SOLUTION : For a Lagrangian density L(y, ẏ, y′), the Euler-Lagrange equations are

∂L
∂y

=
∂

∂t

(
∂L
∂ẏ

)

+
∂

∂x

(
∂L
∂y′

)

.

Thus, the wave equation for this system is

µ ÿ = τ y′′ + 3γ
(
y′
)2
y′′
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(d) For the Lagrangian density

L = 1
2µ

(
∂y

∂t

)2

− 1
2αy

2 − 1
2τ

(
∂y

∂x

)2

− 1
4β

(
∂2y

∂x2

)2

,

find the Euler-Lagrange equations of motion. [7 points]

SOLUTION : For a Lagrangian density L(y, ẏ, y′, y′′), the Euler-Lagrange equations are

∂L
∂y

=
∂

∂t

(
∂L
∂ẏ

)

+
∂

∂x

(
∂L
∂y′

)

− ∂2

∂x2

(
∂L
∂y′′

)

.

The last term arises upon integrating by parts twice in the integrand of the variation of the
action δS. Thus, the wave equation for this system is

µ ÿ = −αy + τ y′′ − β y′′′′
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[2] Consider single species population dynamics governed by the differential equation

dN

dt
= γN − N2

K
− HN

N + L
,

where γ, K, L, and H are constants.

(a) Show that by rescaling N and t that the above ODE is equivalent to

du

ds
= r u− u2 − hu

u+ 1
.

Give the definitions of u, s, r, and h. [5 points]

SOLUTION : From the denominator u+1 in the last term of the scaled equation, we see that
we need to define N = Lu. We then write t = τs, and substituting into the original ODE
yields

L

τ

du

ds
= γLu− L2

K
u2 − H u

u+ 1
.

Multiplying through by τ/L then gives

du

ds
= γτ u− Lτ

K
u2 − τH

L

u

u+ 1
.

We set the coefficient of the second term on the RHS equal to −1 to obtain the desired
form. Thus, τ = K/L and

u =
N

L
, s =

Lt

K
, r =

γK

L
, h =

KH

L2

(b) Find and solve the equation for all fixed points u∗(r, h). [10 points]

SOLUTION : In order for u to be a fixed point, we need u̇ = 0, which requires

u

(

r − u− h

u+ 1

)

= 0

One solution is always u∗ = 0 . The other roots are governed by the quadratic equation

(u− r)(u+ 1) + h = 0 ,

with roots at

u∗ = 1
2

(

r − 1 ±
√

(r + 1)2 − 4h
)
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Figure 17.22: Bifurcation curves for the equation u̇ = ru − u2 − hu/(u + 1). Red curve:
hSN(r) = 1

4 (r + 1)2, corresponding to saddle-node bifurcation. Blue curve: hT(r) = r,
corresponding to transcritical bifurcation.

(c) Sketch the upper right quadrant of the (r, h) plane. Show that there are four distinct
regions:

Region I : 3 real fixed points (two negative)

Region II : 3 real fixed points (one positive, one negative)

Region III : 3 real fixed points (two positive)

Region IV : 1 real fixed point

Find the equations for the boundaries of these regions. These boundaries are the
locations of bifurcations. Classify the bifurcations. (Note that negative values of u
are unphysical in the context of population dynamics, but are legitimate from a purely
mathematical standpoint.) [10 points]

SOLUTION : From the quadratic equation for the non-zero roots, we see the discriminant
vanishes for h = 1

4(r + 1)2. For h > 1
4 (r + 1)2, the discriminant is negative, and there is

one real root at u∗ = 0. Thus, the curve hSN(r) = 1
4 (r + 1)2 corresponds to a curve of

saddle-node bifurcations. Clearly the largest value of u∗ must be a stable node, because
for large u the −u2 dominates on the RHS of u̇ = f(u). In cases where there are three
fixed points, the middle one must be unstable, and the smallest stable. There is another
bifurcation, which occurs when the root at u∗ = 0 is degenerate. This occurs at

r − 1 =
√

(r + 1)2 − 4h =⇒ h = r .
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Figure 17.23: Examples of phase flows for the equation u̇ = ru−u2−hu/(u+1). (a) r = 1,
h = 0.22 (region I) ; (b) r = 1, h = 0.5 (region II) ; (c) r = 3, h = 3.8 (region III) ; (d)
r = 1, h = 1.5 (region IV).

This defines the curve for transcritical bifurcations: hT(r) = r . Note that hT(r) ≤ hSN(r),

since hSN(r) − hT(r) = 1
4(r − 1)2 ≥ 0. For h < r, one root is positive and one negative,

corresponding to region II.

The (r, h) control parameter space is depicted in fig. 17.22, with the regions I through IV
bounded by sections of the bifurcation curves, as shown.

(d) Sketch the phase flow for each of the regions I through IV. [8 points]

SOLUTION : See fig. 17.23.
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[3] Two brief relativity problems:

(a) A mirror lying in the (x, y) plane moves in the ẑ direction with speed u. A monochro-
matic ray of light making an angle θ with respect to the ẑ axis in the laboratory
frame reflects off the moving mirror. Find (i) the angle of reflection, measured in the
laboratory frame, and (ii) the frequency of the reflected light. [17 points]

SOLUTION : The reflection is simplest to consider in the frame of the mirror, where p̃z → −p̃z

upon reflection. In the laboratory frame, the 4-momentum of a photon in the beam is

Pµ =
(
E , 0 , E sin θ , E cos θ

)
,

where, without loss of generality, we have taken the light ray to lie in the (y, z) plane, and
where we are taking c = 1. Lorentz transforming to the frame of the mirror, we have

P̃µ =
(
γE(1 − u cos θ) , 0 , E sin θ , γE(−u+ cos θ)

)
.

which follows from the general Lorentz boost of a 4-vector Qµ,

Q̃0 = γQ0 − γuQ‖

Q̃‖ = −γuQ0 + γQ‖

Q̃⊥ = Q⊥ ,

where frame K̃ moves with velocity u with respect to frame K.

Upon reflection, we reverse the sign of P̃ 3 in the frame of the mirror:

P̃ ′µ =
(
γE(1 − u cos θ) , 0 , E sin θ , γE(u− cos θ)

)
.

Transforming this back to the laboratory frame yields

E′ = P ′0 = γ2E (1 − u cos θ) + γ2E u (u− cos θ)

= γ2E
(
1 − 2u cos θ + u2

)

P ′1 = 0

P ′2 = E sin θ

P ′3 = γ2E u (1 − u cos θ) + γ2E (u− cos θ)

= −γ2E
(
(1 + u2) cos θ − 2u

)

Thus, the angle of reflection is

cos θ′ =

∣
∣
∣
∣

P ′3

P ′0

∣
∣
∣
∣
=

(1 + u2) cos θ − 2u

1 − 2u cos θ + u2
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and the reflected photon frequency is ν ′ = E′/h, where

E′ =

(
1 − 2u cos θ + u2

1 − u2

)

E

(b) Consider the reaction π+ +n → K+ +Λ0. What is the threshold kinetic energy of the
pion to create kaon at an angle of 90◦ in the rest frame of the neutron? Express your
answer in terms of the masses mπ, mn, mK, and mΛ. [16 points]

SOLUTION : We have conservation of 4-momentum, giving

Pµ
π + Pµ

n = Pµ
K + Pµ

Λ .

Thus,

P 2
Λ = (Eπ + En − EK)2 − (Pπ + Pn − PK)2

= (E2
π − P 2

π ) + (E2
n − P 2

n ) + (E2
K − P 2

K)

+ 2EπEn − 2EπEK − 2EnEK − 2Pπ · Pn + 2Pπ · PK + 2Pn · PK

= E2
Λ − P 2

Λ = m2
Λ .

Now in the laboratory frame the neutron is at rest, so

Pµ
n = (mn , 0) .

Thus, Pπ · Pn = Pn · PK = 0. We are also told that the pion and the kaon make an angle

of 90◦ in the laboratory frame, hence Pπ ·PK = 0. And of course for each particle we have
E2 − P2 = m2. Thus, we have

m2
Λ = m2

π +m2
n +m2

K − 2mnEK + 2(mn −EK)Eπ ,

or, solving for Eπ,

Eπ =
m2

Λ −m2
π −m2

n −m2
K + 2mnEK

2(mn − EK)
.

The threshold pion energy is the minimum value of Eπ, which must occur when EK takes

its minimum allowed value, EK = mK. Thus,

Tπ = Eπ −mπ ≥ m2
Λ −m2

π −m2
n −m2

K + 2mnmK

2(mn −mK)
−mπ
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[4] Sketch what a bletch might look like. [10,000 quatloos extra credit]

[-50 points if it looks like your professor]

Figure 17.24: The putrid bletch, from the (underwater) Jkroo forest, on planet Barney.


