Chapter 17

Physics 110A-B Exams

The following pages contain problems and solutions from midterm and final exams in Physics
110A-B.
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17.1 FO05 Physics 110A Midterm #1

[1] A particle of mass m moves in the one-dimensional potential

72

U(x) =U, 2 e~/ (17.1)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as  — 4o0.

(b) Sketch a representative set of phase curves. Identify and classify any and all fixed points.
Find the energy of each and every separatrix.

(c) Sketch all the phase curves for motions with total energy F = %UO. Do the same for
E =U,. (Recall that e =2.71828... .)

(d) Derive and expression for the period T' of the motion when |z| < a.

Solution:
(a) Clearly U(x) diverges to +oo for © — —oo, and U(z) — 0 for x — +o00. Setting

U'(x) =0, we obtain the equation

2
U'(z) = o <2x - x—) et =0, (17.2)

a? a

with (finite x) solutions at x = 0 and z = 2a. Clearly x = 0 is a local minimum and = = 2a
a local maximum. Note U(0) = 0 and U(2a) = 4e~2U, ~ 0.541 U,,.
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Figure 17.1: The potential U(z). Distances are here measured in units of a, and the
potential in units of Uj.

(b) Local minima of a potential U(z) give rise to centers in the (z,v) plane, while local
maxima give rise to saddles. In Fig. 17.2 we sketch the phase curves. There is a center at
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Figure 17.2: Phase curves for the potential U(x). The red curves show phase curves for
E = 21U, (interior, disconnected red curves, |v| < 1) and E = Uy (outlying red curve). The
separatrix is the dark blue curve which forms a saddle at (z,v) = (2,0), and corresponds
to an energy E = 4e 2.

(0,0) and a saddle at (2a,0). There is one separatrix, at energy E = U(2a) = 4e 2U, ~
0.541 0.

¢) Even without a calculator, it is easy to verify that 4e=2 > 2. One simple way is to
y y z y

multiply both sides by %62 to obtain 10 > €2, which is true since e? < (2.71828...)% < 10.
Thus, the energy F = % U, lies below the local maximum value of U(2a), which means that

there are two phase curves with £ = % Up.

It is also quite obvious that the second energy value given, E = U, lies above U(2a), which
means that there is a single phase curve for this energy. One finds bound motions only for
x <2and 0 < E < U(2a). The phase curves corresponding to total energy E = % U, and

E = U, are shown in Fig. 17.2.

(d) Expanding U(z) in a Taylor series about = = 0, we have

U N

The leading order term is sufficient for |x| < a. The potential energy is then equivalent to
that of a spring, with spring constant k = 2Up/a?. The period is

/ | 2
m ma




4 CHAPTER 17. PHYSICS 110A-B EXAMS

[2] A forced, damped oscillator obeys the equation
i+ 283 +wix = f, cos(wyt) . (17.5)
You may assume the oscillator is underdamped.

(a) Write down the most general solution of this differential equation.

(b) Your solution should involve two constants. Derive two equations relating these con-
stants to the initial position z(0) and the initial velocity 4(0). You do not have to solve
these equations.

(c) Suppose wy = 5.0 s, 3=4.0s"" and fo=38cm s~2. Suppose further you are told that
x(0) = 0 and x(T) = 0, where T' = & s. Derive an expression for the initial velocity #(0).

Solution: (a) The general solution with forcing f(t) = f, cos(§2t) is

z(t) =z, () + A(82) fy cos (2t — 5(12)) , (17.6)
with 12 ) 260
A(0) = [(wg — 0%)2 +45292} . 5(92) = tan! <27m> (17.7)
w§ —
and
z,(t) = Ce " cos(vt) + De P sin(vt) , (17.8)

with v = \/w — 32.

In our case, {2 = w,, in which case A = (2ﬁw0)_1 and § = %ﬂ'. Thus, the most general
solution is

x(t) = Ce P cos(vt) + De P! sin(vt) +

5 ﬁffdo sin(wot) | (17.9)

(b) We determine the constants C' and D by the boundary conditions on z(0) and #(0):

| w0)=C |, i(0) = —3C + vD + éf—; . (17.10)
Thus,
Co2(0) . D= gx(O) £ (0) 2% . (17.11)

(c) From x(0) = 0 we obtain C' = 0. The constant D is then determined by the condition
at time t =T = %77.

Note that v = \/wg — (32 =3.0s"'. Thus, with T' = %ﬂ', we have VT = %w, and

x(T)=De T + % sin(w,T) . (17.12)
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This determines D:

Jfo .
D ~ 280 AT sin(w, T) .
We now can write
#(0) =vD + ;—;
fO BT
— o2 T
% o e’ sin(wy 1)

Numerically, the value is (0) ~ 0.145cm /s .

(17.13)

(17.14)

(17.15)

(17.16)
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17.2 FO05 Physics 110A Midterm #2

[1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly
along a horizontal surface, as shown in Fig. 17.3. The unstretched length of the spring is a.

k

M N M

Figure 17.3: Two masses connected by a spring sliding horizontally along a frictionless
surface.

(a) Identify a set of generalized coordinates and write the Lagrangian.
[15 points]

Solution : As generalized coordinates I choose X and u, where X is the position of the
right edge of the block of mass M, and X + u + a is the position of the left edge of the
block of mass m, where a is the unstretched length of the spring. Thus, the extension of
the spring is u. The Lagrangian is then

L=3iMX?+im(X +4)* — Sku?

= (M +m)X? + Imi® + mXu — Lku® . (17.17)
(b) Find the equations of motion.
[15 points]
Solution : The canonical momenta are
0L . . oL A
pxza—X:(M—i—m)X—l—mu , puE%:m(X—l—u). (17.18)
The corresponding equations of motion are then
. 0L 5 .
pX:FX:8—X = (M+m)X +mi=0 (17.19)
. 0L oo
Py =1F,= B = m(X +1i) = —ku . (17.20)

(c) Find all conserved quantities.
[10 points]

Solution : There are two conserved quantities. One is py itself, as is evident from the
fact that L is cyclic in X. This is the conserved ‘charge’ A associated with the continuous
symmetry X — X + (. i.e. A = py. The other conserved quantity is the Hamiltonian H,
since L is cyclic in t. Furthermore, because the kinetic energy is homogeneous of degree
two in the generalized velocities, we have that H = E, with

E=T+U=3M+m)X?+ tmi® + mXu+ Jku® . (17.21)



17.2. F05 PHYSICS 110A MIDTERM #2 7

It is possible to eliminate X, using the conservation of A:

. A —mau
X = . 17.22
M+m ( )
This allows us to write
A2 Mmu?
E = LEu? | 17.23
2(M +m) T2 tm) 2™ (17.23)

(d) Find a complete solution to the equations of motion. As there are two degrees of
freedom, your solution should involve 4 constants of integration. You need not match initial
conditions, and you need not choose the quantities in part (c) to be among the constants.
[10 points]

Solution : Using conservation of A, we may write X in terms of %, in which case

Mm . .
M= —ku = u(t) = Acos(£2t) + Bsin(§2t) , (17.24)
where
(M m)k
0= I (17.25)

For the X motion, we integrate eqn. 17.22 above, obtaining

At _m
M+m M+m

X(t)=X,+ (A cos(2t) — A+ Bsin(Qt)) . (17.26)

There are thus four constants: X, A, A, and B. Note that conservation of energy says

A2

E=sorvm

+ 1k(A* + B?) . (17.27)

Alternate solution : We could choose X as the position of the left block and z as the
position of the right block. In this case,

L=31MX?+3mi® — k(z — X —b)*. (17.28)

Here, b includes the unstretched length a of the spring, but may also include the size of
the blocks if, say, X and z are measured relative to the blocks’ midpoints. The canonical
momenta are

oL . oL
= —MX = =mi. 17.2
The equations of motion are then
. oL .
Py = Fx =% = MX =k(z — X —b) (17.30)
. oL .
p,=F, = = mi = —k(z —X —b) . (17.31)

v Ox
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The one-parameter family which leaves L invariant is X — X 4+ ( and  — = + (, i.e.
simultaneous and identical displacement of both of the generalized coordinates. Then

A=MX +mi, (17.32)
which is simply the z-component of the total momentum. Again, the energy is conserved:

E = LMX? + Imd® + Lk (2 — X —b)°. (17.33)

We can combine the equations of motion to yield

d2
MME(JE—X—Z)):—k‘(M—I-m)(:E—X—b), (17.34)

which yields
x(t) — X (t) = b+ Acos(2t) + Bsin(2t) , (17.35)

From the conservation of A, we have
MX(t)+muz(t)=At+C, (17.36)

were C is another constant. Thus, we have the motion of the system in terms of four
constants: A, B, A, and C:

At
X(t) = — 3% (b + Acos(2t) + Bsin(2t)) + % —14:7?1 (17.37)
x(t) = Mﬂfm (b+ Acos(£2t) + Bsin(2t)) + AL+ C . (17.38)

M+ m
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[2] A uniformly dense ladder of mass m and length 2¢ leans against a block of mass M,
as shown in Fig. 17.4. Choose as generalized coordinates the horizontal position X of the
right end of the block, the angle 6 the ladder makes with respect to the floor, and the
coordinates (x,y) of the ladder’s center-of-mass. These four generalized coordinates are not
all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum T+ + T}, where
Toy = %m(:z:2 + 9?) is the kinetic energy of the center-of-mass motion, and T.,, = %I 62,
where [ is the moment of inertial. For a uniformly dense ladder of length 2¢, I = %mﬁz.

Figure 17.4: A ladder of length 2¢ leaning against a massive block. All surfaces are fric-
tionless..

(a) Write down the Lagrangian for this system in terms of the coordinates X, 6, z, y, and
their time derivatives.
[10 points]

Solution : We have L =T — U, hence

L=3IMX2+ Im(i? +g?) + $16* — mgy . (17.39)

(b) Write down all the equations of constraint.
[10 points]

Solution : There are two constraints, corresponding to contact between the ladder and the
block, and contact between the ladder and the horizontal surface:

G,(X,0,z,y) =x—Llcos — X =0 (17.40)
Gy(X,0,z,y) =y —Lsinf =0 . (17.41)

(c) Write down all the equations of motion.
[10 points]

Solution : Two Lagrange multipliers, A\; and \,, are introduced to effect the constraints.
We have for each generalized coordinate ¢,

k

d(oL\ oL 0G; _
i) o T 2N, =9 (742)
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where there are k = 2 constraints. We therefore have

MX =) (17.43)
mi =+, (17.44)
my = —mg+ A, (17.45)

16 = (sinf X\, — LcosB N, . (17.46)

These four equations of motion are supplemented by the two constraint equations, yielding
six equations in the six unknowns {X,0,z,y, A, A, }.

(d) Find all conserved quantities.
[10 points]

Solution : The Lagrangian and all the constraints are invariant under the transformation

X—>X+¢ , z—z+¢ , y—y , 0—0. (17.47)
The associated conserved ‘charge’ is
OL 94y - .
= — — =MX +mz . 17.48
94, ¢ ¢=0 ( )
Using the first constraint to eliminate x in terms of X and 6, we may write this as
A= (M+m)X —mlsinfé . (17.49)

The second conserved quantity is the total energy E. This follows because the Lagrangian
and all the constraints are independent of ¢, and because the kinetic energy is homogeneous
of degree two in the generalized velocities. Thus,

E=iMX?+im(i® +9%) + 11607 + mgy (17.50)
ZW—F%(I—H?M — 14 me”sin 9)9 + mglsinf | (17.51)

where the second line is obtained by using the constraint equations to eliminate x and y in
terms of X and 6.

(e) What is the condition that the ladder detaches from the block? You do not have to solve
for the angle of detachment! Express the detachment condition in terms of any quantities
you find convenient.

[10 points]

Solution : The condition for detachment from the block is simply A; = 0, i.e. the normal
force vanishes.

Further analysis : It is instructive to work this out in detail (though this level of analysis

was not required for the exam). If we eliminate x and y in terms of X and 6, we find
x=X+/lcosb y = {sinf (17.52)
=X —/(sinfo §="Lcos0 (17.53)
i=X—{sin06 — {cos 00> j="LcosOf — lsind6? . (17.54)
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Figure 17.5: Plot of #* wversus 6y for the ladder-block problem (eqn. 17.64). Allowed
solutions, shown in blue, have o« > 1, and thus 6* < #y. Unphysical solutions, with a < 1,
are shown in magenta. The line 6* = 0 is shown in red.

We can now write

A\, =mi=mX —mlsinff —mlcoshh? = —MX | (17.55)

which gives
(M +m)X = mﬁ(sin&é + cos 092) , (17.56)

and hence
Qm:Alz—%ﬁ(sin0§+cos092) . (17.57)

We also have

Qy = Ay =mg+mj
= mg—l—mﬁ(cos&é—sin@éQ) . (17.58)

We now need an equation relating 6 and 6. This comes from the last of the equations of
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motion:

I6 = £sin O\, — Lcos O,

= —J\%_”;;L 62(sin29é+ sin 6 cos 992) — mgl cos 6 — m€2(cos295 —sin 6 008992)

= —mgl cos § — ml? (1 - sin29) 0+ e me? sin 6 cos 662 . (17.59)

Collecting terms proportional to 6, we obtain

(I+me*— yE sin”f) 6= jy i ml? sin 6 cos 6 6% — mgl cos . (17.60)

We are now ready to demand @, = A; = 0, which entails

b= —Z?jz 62 . (17.61)

Substituting this into eqn. 17.60, we obtain
(I+ m€2) 02 = mgl sin @ . (17.62)
Finally, we substitute this into eqn. 17.51 to obtain an equation for the detachment angle,

9*
2 2
E_Aiz 3 — m__. mé
2(M +m) M+m I+ me?

Sin20*> - imgl sin6* . (17.63)

If our initial conditions are that the system starts from rest! with an angle of inclination
6, then the detachment condition becomes

: _ 3 * 1 m me> 3%
sinfy = 5sin6 —§<M+m)(l+m£2>sm9

=3sin0* — Lo sin0* | (17.64)

a= (1 + %) <1 + #) . (17.65)

Note that a > 1, and that when M/m = 00?, we recover §* = sin™? (% sin 90). For finite

«, the ladder detaches at a larger value of 0*. A sketch of 0* versus ¢, is provided in Fig.
17.5. Note that, provided o > 1, detachment always occurs for some unique value 6* for
each 6.

where

1‘Rest’ means that the initial velocities are X = 0 and § = 0, and hence A = 0 as well.
2T must satisfy T < mf?.
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17.3 FO05 Physics 110A Final Exam

[1] Two blocks and three springs are configured as in Fig. 17.6. All motion is horizontal.
When the blocks are at rest, all springs are unstretched.

ky k. ks
SRR A  Bnns

m 1 m 9

Figure 17.6: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.
[5 points]

(b) Find the T and V matrices.
[5 points]
(c) Suppose
my=2m , my=m , k =4k , ky=k

Find the frequencies of small oscillations.
[5 points]

(d) Find the normal modes of oscillation.
[5 points]

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.
Le. 2,(0) = b. The other initial conditions are z,(0) = 0, ¢;(0) = 0, and #,(0) = 0.
Find t*, the next time at which x, vanishes.

[5 points]

Solution

(a) The Lagrangian is

1 2,1 2 1 2 1 2 1 2
L= 35m a7+ 5myx5 — 5k 27 — 5ky (15 — 27)” — 5ky 3

(b) The T and V matrices are

v o T _(my 0 v.oo U (ktky —k
9 03 0 0 m, ’ W O Oz ~ky  ky+ky




14 CHAPTER 17. PHYSICS 110A-B EXAMS

(c) We have m; = 2m, my, = m, k, = 4k, ky = k, and ky = 2k. Let us write w? = )\wg,

where wy = \/k/m. Then

o g (22A=5 1
w*T V—k< 1 \_3]

The determinant is

det (W?T — V) = (222 — 11\ + 14) k?
=2\ —-T)(A—2)k?.

There are two roots: A\_ =2 and A\, = %, corresponding to the eigenfrequencies
2k 7k
w_ =14/ — w, =4/ —
- m ' + 2m

(d) The normal modes are determined from (W2T - V) 1/7(“) = 0. Plugging in A = 2 we have
for the normal mode )~

_ (=) .
R 1) R e O

Plugging in A = % we have for the normal mode 1/7(“

2 1 (+) . 1
1 R I &

The standard normalization ¢§a) T, ¢](.b) =0, gives

Co=— . Cy= . (17.66)

(e) The general solution is

(2) =A G) cos(w_t) + B <_12> cos(w,t) +C G) sin(w_t) + D (_12> sin(w, 1) .

Thus,
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Setting x4 (t*) = 0, we find

2
cos(w_t*) = cos(w_ t* = T-—wilt=w.t—7T = = ——
(w_t") (wit") - + ot

[2] Two point particles of masses m, and m, interact via the central potential

7,2
U(T) = UO In (m) s

where b is a constant with dimensions of length.

(a) For what values of the relative angular momentum ¢ does a circular orbit exist? Find
the radius 7 of the circular orbit. Is it stable or unstable?
[7 points]

(¢) For the case where a circular orbit exists, sketch the phase curves for the radial motion
in the (r,7) half-plane. Identify the energy ranges for bound and unbound orbits.
[5 points]

(c) Suppose the orbit is nearly circular, with » = r,+n, where || < ;. Find the equation
for the shape 71(¢) of the perturbation.
[8 points]

(d) What is the angle A¢ through which periapsis changes each cycle? For which value(s)
of ¢ does the perturbed orbit not precess?
[5 points]
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Solution
(a) The effective potential is

2
- 2ur?

62 7,2
=——4+ U, In| —— | .
2ur? TP <T2 +b2>

where p = mym,/(m; + my) is the reduced mass. For a circular orbit, we must have
Uls(r) =0, or

Uer (1)

+U(r)

l2 / 2TU(]b2
=0 = 55
pr r?(r? + %)

The solution is

b2e?

2 _
0T 520, — 2

Since 7“8 > 0, the condition on £ is

0 < 0, = \/2ub20,

For large r, we have

62 2 1 —4
UeH(T): E—Uob ﬁ"‘O(T ) .

Thus, for ¢ < /. the effective potential is negative for sufficiently large values of r. Thus,
over the range ¢ < {., we must have U, < 0, which must be a global minimum, since

eff,min

Uz (0%) = 0o and U,4(c0) = 0. Therefore, the circular orbit is stable whenever it exists.

(b) Let £ = e/.. The effective potential is then

Ue(r) = Uy f(r/b)
where the dimensionless effective potential is

62

_ -2
f(s) = 8—2—ln(1—|—8 ) .
The phase curves are plotted in Fig. 17.7.
(c) The energy is

B = 50 + Us(r)

2 [dr\
= 2#7 <%> + Up(r)
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Figure 17.7: Phase curves for the scaled effective potential f(s) = ¢ s72 — In(1 4 s~2), with
¢ = —. Here, ¢ = {/{.. The dimensionless time variable is 7 = t - \/Up/mb>.
\/i 9 C

where we've used 7 = q'ﬁr’ along with ¢ = ,ur2<z'$. Writing r = r, +n and differentiating F
with respect to ¢, we find

4
r
. P

For our potential, we have
0? 0?
29— _—9l1-—
ﬁ ,ub2U0 62

The solution is
n(¢) = A cos(f¢ +0) (17.67)

where A and ¢ are constants.

(d) The change of periapsis per cycle is

Agp=2r(B7" —1)
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If 8 > 1 then A¢ < 0 and periapsis advances each cycle (i.e.it comes sooner with every
cycle). If 3 < 1 then A¢ > 0 and periapsis recedes. For 3 = 1, which means ¢ = \/ub2Up,
there is no precession and A¢ = 0.

[3] A particle of charge e moves in three dimensions in the presence of a uniform magnetic
field B = B 2 and a uniform electric field E = F, . The potential energy is
e
Ulr,r)=—-eEyjx—-DByzvy,
c
where we have chosen the gauge A = Byzy.
(a) Find the canonical momenta p;, py, and p.
[7 points]

(b) Identify all conserved quantities.
[8 points]

(¢) Find a complete, general solution for the motion of the system {z(t),y(t), z(t)}.
[10 points]

Solution
(a) The Lagrangian is
. . . € .
L=3im(@*+y* + 2?) —I—EBOxy+eE03: .

The canonical momenta are

oL .

oL L€
pyza—y.:my—I—EBO:n

oL .

pZB:E:mZ

(b) There are three conserved quantities. First is the momentum p,, since F,, = % = 0.

Second is the momentum p., since F, = g—é = 0. The third conserved quantity is the
Hamiltonian, since %—f = 0. We have

H=p,i+p,y+p,2—L

= H=4im(@*+¢9*+ %) —eEyx
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(¢) The equations of motion are

. . €
I—wey=—FK,
m

i+ wed =0
5=0.

The second equation can be integrated once to yield § = we(x, — x), where x, is a constant.
Substituting this into the first equation gives

" €
itwir=wlzy+—E,.
m

This is the equation of a constantly forced harmonic oscillator. We can therefore write the
general solution as

eE()
t) = A t+9
z(t) = xy + —3 + A cos (wet + 9)

C

eE()
mwe

y(t) = yy — t — A sin (wet + 6)

2(t) = 25+ %yt

Note that there are six constants, {A, 0, Tgs Yor 20> ZO}, are are required for the general
solution of three coupled second order ODEs.

[4] An N =1 dynamical system obeys the equation
d
d_th = ru+ 2bu® — u? |

where 7 is a control parameter, and where b > 0 is a constant.

(a) Find and classify all bifurcations for this system.
[7 points]

(b) Sketch the fixed points u* versus r.
[6 points]

Now let b = 3. At time ¢ = 0, the initial value of u is u(0) = 1. The control parameter
r is then increased wvery slowly from r = —20 to r = +20, and then decreased very
slowly back down to r = —20.

(c) What is the value of u when r = —5 on the increasing part of the cycle?
[3 points]
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(d) What is the value of u when r = 416 on the increasing part of the cycle?
[3 points]

(e) What is the value of u when r = 416 on the decreasing part of the cycle?
[3 points]

(f) What is the value of uw when r = —5 on the decreasing part of the cycle?
[3 points]

Solution

(a) Setting u = 0 we obtain
(u? = 2bu —r)u=0.

u=0 , u=bx\Vb+r.

The roots at u = uy = b+ Vb2 +r are only present when r > —b% At r = —b* there
is a saddle-node bifurcation. The fixed point u = u_ crosses the fixed point at u = 0 at
r = 0, at which the two fixed points exchange stability. This corresponds to a transcritical
bifurcation. In Fig. 17.8 we plot 1/b® versus u/b for several representative values of r/b%.
Note that, defining @ = u/b, ¥ = r/b?, and t = b*t that our N = 1 system may be written

The roots are

du

— =(F+20—-a}a,

which shows that it is only the dimensionless combination # = 7/b? which enters into the
location and classification of the bifurcations.

(b) A sketch of the fixed points u* versus r is shown in Fig. 17.9. Note the two bifurcations
at r = —b? (saddle-node) and r = 0 (transcritical).

(¢) For r = —20 < —b? = —9, the initial condition u(0) = 1 flows directly toward the stable
fixed point at uw = 0. Since the approach to the FP is asymptotic, u remains slightly positive
even after a long time. When r = —5, the FP at u = 0 is still stable. Answer: u = 0.

(d) As soon as r becomes positive, the FP at «* = 0 becomes unstable, and u flows to the
upper branch u . When r = 16, we have u = 3 + V32 4+ 16 = 8. Answer: u = 8.

(e) Coming back down from larger r, the upper FP branch remains stable, thus, v = 8 at
r = 16 on the way down as well. Answer: u = 8.

(f) Now when r first becomes negative on the way down, the upper branch u, remains
stable. Indeed it remains stable all the way down to 7 = —b?, the location of the saddle-
node bifurcation, at which point the solution u = u, simply vanishes and the flow is toward
u = 0 again. Thus, for » = —5 on the way down, the system remains on the upper branch,
in which case © = 3+ V32 —5 = 5. Answer: u = 5.
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Figure 17.8: Plot of dimensionless ‘velocity’ /b3 versus dimensionless ‘coordinate’ u/b for
several values of the dimensionless control parameter 7 = r/b%.

17.4 FO7 Physics 110A Midterm #1

[1] A particle of mass m moves in the one-dimensional potential
U(z) = =2 (2% — a?)? . (17.68)

(a) Sketch U(z). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as z — 4o0.
[15 points]

Solution : Clearly the minima lie at x = +a and there is a local maximum at x = 0.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy F = % Uy. Do the same for £ = 2U,,.

[15 points]

Solution : See Fig. 17.10 for the phase curves. Clearly U(+a) = 0 is the minimum of the
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r/b?

Figure 17.9: Fixed points and their stability versus control parameter for the N = 1 system
@ = ru + 2bu® — u3. Solid lines indicate stable fixed points; dashed lines indicate unstable
fixed points. There is a saddle-node bifurcation at » = —b? and a transcritical bifurcation
at 7 = 0. The hysteresis loop in the upper half plane u > 0 is shown. For u < 0 variations
of the control parameter r are reversible and there is no hysteresis.

potential, and U(0) = U, is the local maximum and the energy of the separatrix. Thus,
b= % U, cuts through the potential in both wells, and the phase curves at this energy form
two disjoint sets. For EJ < U, there are four turning points, at

1 | E
T, = —a — /=
’ 1,> UO

| E
Ty =a 1— Fo ; Tys =a 1+ Fo

For E = 2U,, the energy is above that of the separatrix, and there are only two turning

Sl

Ty . =—a 1+

and

i

points, z; . and x, .. The phase curve is then connected.
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S

Figure 17.10: Sketch of the double well potential U(x) = (Up/a*)(z? — a?)?, here with
distances in units of a, and associated phase curves. The separatrix is the phase curve
which runs through the origin. Shown in red is the phase curve for U = %Ug, consisting
of two deformed ellipses. For U = 2Uj, the phase curve is connected, lying outside the
separatrix.

(¢) The phase space dynamics are written as ¢ = V' (), where ¢ = <i) Find the upper

and lower components of the vector field V.

[10 points]
dt (x) B (—i U/@;)) - (_4_gox(xz _ a2)> : (17.69)

(d) Derive and expression for the period 7' of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]

Solution :
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Solution : Set © = +a + 7 and Taylor expand:

AU,
U(ka+1n) = a—;) n?+ O(P) . (17.70)

Equating this with %k n?, we have the effective spring constant k = 8U,/ a?, and the small

oscillation frequency
[k 18Uy

[2] An R-L-C circuit is shown in fig. 17.11. The resistive element is a light bulb. The
inductance is L = 400 uH; the capacitance is C' = 1 uF; the resistance is R = 32€). The
voltage V/(t) oscillates sinusoidally, with V' (t) = V|, cos(wt), where V[, = 4 V. In this problem,
you may neglect all transients; we are interested in the late time, steady state operation of
this circuit. Recall the relevant MKS units:

The period is 27 /w.

10=1V-s/C , 1F=1C/V , 1H=1V-s*/C.

R

£
L

Figure 17.11: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?
[10 points]

Solution : We have

wy = (LO)™ Y2 =5x10*s7! | pB= % =4 x10%s7t.

Thus, w3 > 3% and the circuit is underdamped.
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(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is
greater than a threshold P, = % W. For fixed V[, = 4V, find the frequency range for w over
which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
Py(t) = I*(t)R. (Average this over a cycle to get the average power dissipated.)

[20 points]

Solution : The charge on the capacitor plate obeys the ODE

LQ+RQ+%:V(t).

The solution is
Q(t) = Qo (t) + A(w) % cos (wt — 6(w)) ,
with
Alw) = [(w% —w?)? 4 452w2} e , O(w)=tan! <2ﬁ7w> .

wg — w?
Thus, ignoring the transients, the power dissipated by the bulb is
Py(t) = Q2 R
2

= w?A%(w) % sin® (wt — §(w)) -

Averaging over a period, we have (sin?(wt —d)) = 1, so

Vi¢R  V§ 432w?
_ 242 ot _ Yo |
(Fr) ="M@ 55 = 35 (W§ — w2 +45%02

Now VZ/2R = 1+ W. So P, = aV{@/2R, with a = §. We then set (Py) = P, whence
(1—a)-46%w° = a (W} —w?)?.

The solutions are

w:i\/l;aﬁ+\/<1;a>ﬁ2+w§: (3V3 + v/2) x 10005 .

(c) Compare the expressions for the instantaneous power dissipated by the voltage source,
P, (t), and the power dissipated by the resistor Pp(t) = I?(t)R. If P, (t) # Py(t), where
does the power extra power go or come from? What can you say about the averages of Py,

and Pp(t) over a cycle? Explain your answer.
[20 points]

Solution : The instantaneous power dissipated by the voltage source is
Vo .
P,(t)=V(#)I(t)=-wA T sin(wt — 9) cos(wt)

_ Vo (. .
=wA oI (Slné—sm(th —5)) .
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As we have seen, the power dissipated by the bulb is

2

Pp(t) = w?A? szR sinf(wt — 6) .

These two quantities are not identical, but they do have identical time averages over one
cycle:

‘/02 2 2 42
(Py(t)) = (Palt)) = 5% - 46° 2 A%()

Py(t) = Pylt) + E(t) .

where . )
- LQ°  Q
E(t) = 2 Tac

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of E over a
cycle must vanish, which guarantees ( Py, (t)) = ( Py(t)).
What was not asked:

(d) What is the maximum charge @_._on the capacitor plate if w = 3000s~'?

[10 points]

max

Solution : Kirchoff’s law gives for this circuit the equation

Q+25Q+MSQ=% cos(wt) ,

with the solution

Q1) = @y (1) + Aw) 22 cos (w1~ 5(w)) |

where @, .. (t) is the homogeneous solution, i.e. the transient which we ignore, and

~1/2 2
Alw) = [(wg — w?)? 4 45202 , O(w)=tan! <2Lw2> .
Then v
= Aw) 2.
Qmax (w) L

Plugging in w = 3000s~!, we have

- 1
Aw) = [(52 =422 +4.42.32] V2 10732 = —— x 10732 .
@) =[5 - ) ] e

Since V,/L = 10% C/s?, we have

= ———Coul .
Qmax 4\/ﬁ
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17.5 FO7 Physics 110A Midterm #2

[1] A point mass m slides frictionlessly, under the influence of gravity, along a massive ring
of radius ¢ and mass M. The ring is affixed by horizontal springs to two fixed vertical
surfaces, as depicted in fig. 17.12. All motion is within the plane of the figure.

- x

Figure 17.12: A point mass m slides frictionlessly along a massive ring of radius a and mass
M, which is affixed by horizontal springs to two fixed vertical surfaces.

(a) Choose as generalized coordinates the horizontal displacement X of the center of the
ring with respect to equilibrium, and the angle 6 a radius to the mass m makes with respect
to the vertical (see fig. 17.12). You may assume that at X = 0 the springs are both
unstretched. Find the Lagrangian L(X, 0, X0, t).

[15 points]

The coordinates of the mass point are
r=X+asinf , y=—acosh .
The kinetic energy is
T= %MX2 + %m(X + acos@é)2 + %ma2 sin?6 62
=1(M + m) X2 4 %ma292 +macosf X6 .

The potential energy is
U =kX?—mgacosf .

Thus, the Lagrangian is

L=YM+m)X?+ %mazéz +macosf X — kX? + mgacosf .

b) Find the generalized momenta p, and p,, and the generalized forces F, and F,
X 0 X 0

[10 points]

We have

. . oL . .
=—=(M+m)X +macosfl = — =ma®0 +macosh X .
Px axX ( ) Py a0
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For the forces,

Fy oL kx| Fezg—g

= 5% = —masinf X 0 — mgasinf .

(c) Derive the equations of motion.
[15 points]

The equations of motion are
d (oL _ oL
dt \ 9, - 04y '

for each generalized coordinate g,. For X we have
(M +m)X 4+ macosf 6 —masinf 6> = —2kX .

For 6, ) )
ma® 0 + macos X = —mgasiné .

(d) Find expressions for all conserved quantities.

[10 points]

Horizontal and vertical translational symmetries are broken by the springs and by gravity,
respectively. The remaining symmetry is that of time translation. From dd—i] = —%—f, we have

that H = Y ps o — L is conserved. For this problem, the kinetic energy is a homogeneous
function of degree 2 in the generalized velocities, and the potential is velocity-independent.
Thus,

H=T+U=3M+m)X?+ %ma292+maCOSHX9+kX2 —mgacosf .
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[2] A point particle of mass m moves in three dimensions in a helical potential

Vi vy ).

We call b the pitch of the helix.

(a) Write down the Lagrangian, choosing (p, ¢, z) as generalized coordinates.
[10 points]

The Lagrangian is

. 2
L= %m(p'2 +p%9* + 22) — U,y p cos <¢ — %)

(b) Find the equations of motion.
[20 points]

Clearly
pp:mp ) p¢:mp2¢ ) pz:mz7
and
. 27z 21z 27U, 21z
o 2 o . o 0 .
F,=mp¢”=U, COS<¢—T> , F¢>—U0P sm<¢—T> , F,=-— 5 psm<q§—T

Thus, the equation of motion are

. 2
mp = mp ¢ - U, cos<<;5— %)

. . . 2mz
mp® ¢+ 2mp pd = Uy p sm(gb— T)

. 2rly . < 27TZ>
mi=— 2 p sin qﬁ—T .

(c) Show that there exists a continuous one-parameter family of coordinate transformations
which leaves L invariant. Find the associated conserved quantity, A. Is anything else
conserved?

[20 points]

Due to the helical symmetry, we have that

S L
2

is such a continuous one-parameter family of coordinate transformations. Since it leaves

).



30 CHAPTER 17. PHYSICS 110A-B EXAMS

the combination ¢ — 2%2 unchanged, we have that % =0, and

dp 0 0z
A=p — - i
Poacle_o TP aC |y TP AT
b
- mb .
:mp2¢+gz

is the conserved Noether ‘charge’. The other conserved quantity is the Hamiltonian,

. 2
H=1im(p* + p*¢* + #*) + U, p cos <¢— %) .

Note that H = T 4 U, because T is homogeneous of degree 2 and U is homogeneous of
degree 0 in the generalized velocities.
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17.6 FO07 Physics 110A Final Exam

[1] Two masses and two springs are configured linearly and externally driven to rotate with
angular velocity w about a fixed point on a horizontal surface, as shown in fig. 17.13. The
unstretched length of each spring is a.

wt

Figure 17.13: Two masses and two springs rotate with angular velocity w.

(a) Choose as generalized coordinates the radial distances 19 from the origin. Find the

Lagrangian L(ry, 7y, 7,7, t).
[5 points]

The Lagrangian is

L= %m(r% + r% + w? 7“% + w? 7“%) — %k (ry — CL)Q - %k (rg — 1) — a)2 . (17.72)

(b) Derive expressions for all conserved quantities.
[5 points]

The Hamiltonian is conserved. Since the kinetic energy is not homogeneous of degree 2 in
the generalized velocities, H # T+ U. Rather,

H=) p,4,—L (17.73)

= %m(r% + r%) — %mwQ (r% + 7’%) + %k’ (ry — a)2 + %k: (rog —ry — a)2 . (17.74)

We could define an effective potential
Us(ry,75) = —gmw?(rf +73) + 5k (r) — a)* + 3k (ry — 1y —a)* . (17.75)

Note the first term, which comes from the kinetic energy, has an interpretation of a fictitious
potential which generates a centrifugal force.



32 CHAPTER 17. PHYSICS 110A-B EXAMS

(c) What equations determine the equilibrium radii 7¥ and r9? (You do not have to solve
these equations.)
[5 points]

The equations of equilibrium are F, = 0. Thus,

oL

O:Flza—rl:mw2r1fk:(rlfa)Jrk:(errlfa) (17.76)
oL

0=F,= By mw?ry —k(ry — 7, —a) . (17.77)

(d) Suppose now that the system is not externally driven, and that the angular coordinate
¢ is a dynamical variable like r; and r,. Find the Lagrangian L(ry,7y, ¢, 71,79, ¢,1).
[5 points]

Now we have

L=im(3+ /3 +r3¢* +r3 %) — ik (ry —a)® — ik (ry — 7, —a)?. (17.78)

(e) For the system described in part (d), find expressions for all conserved quantities.
[5 points]

There are two conserved quantities. One is p s> owing to the fact the ¢ is cyclic in the
Lagrangian. l.e. ¢ — ¢+ ( is a continuous one-parameter coordinate transformation which
leaves L invariant. We have

oL :
=55 =mlt+ D)o 1719

The second conserved quantity is the Hamiltonian, which is now H = T + U, since T is
homogeneous of degree 2 in the generalized velocities. Using conservation of momentum,
we can write

Py

ZHEIEg*éMﬁ‘”V+%kW¢*HfaV. (17.80)

H=1im(i{+73) +

Once again, we can define an effective potential,

P

Ue(r1,75) = 2m(r} +13) + 5k (ry — a)? + 5k (ry — 7 — a)? (17.81)
which is different than the effective potential from part (b). However in both this case and

in part (b), we have that the radial coordinates obey the equations of motion

. 8Uff
mi, = ——— | (17.82)
J 87”]'

for j = 1,2. Note that this equation of motion follows directly from H = 0.
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Figure 17.14: A mass point m rolls inside a hoop of mass M and radius R which rolls
without slipping on a horizontal surface.

[2] A point mass m slides inside a hoop of radius R and mass M, which itself rolls without
slipping on a horizontal surface, as depicted in fig. 17.14.

Choose as general coordinates (X, ¢,7), where X is the horizontal location of the center of
the hoop, ¢ is the angle the mass m makes with respect to the vertical (¢ = 0 at the bottom
of the hoop), and r is the distance of the mass m from the center of the hoop. Since the
mass m slides inside the hoop, there is a constraint:

GX,p,r)=r—R=0.

Nota bene: The kinetic energy of the moving hoop, including translational and rotational
components (but not including the mass m), is T,,.,, = MX 2 (i.e. twice the translational
contribution alone).

(a) Find the Lagrangian L(X,¢,r, X, gﬁ,i’,t).
[5 points]

The Cartesian coordinates and velocities of the mass m are
z =X +rsin¢ &= X +7sing+ ro cos ¢ (17.83)
y=R—rcos¢ §=—rcos¢+rosing (17.84)

The Lagrangian is then
T U

L=(M+ %m)X2 + tm(* + r2¢%) + mX (7 sing + r¢ cos¢) — mg(R —rcos¢) (17.85)

Note that we are not allowed to substitute r = R and hence 7 = 0 in the Lagrangian prior
to obtaining the equations of motion. Only after the generalized momenta and forces are
computed are we allowed to do so.

(b) Find all the generalized momenta p,, the generalized forces F,, and the forces of
constraint Q).
[10 points]
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The generalized momenta are

L )

Py == =mi+mX sin¢g (17.86)

or

oL - . ;
Py = rra (2M + m)X + m7 sin ¢ + mreo cos ¢ (17.87)

oL . .

== =mr<¢+mrX cos 17.88

Dy 20 ¢ ¢ ( )

The generalized forces and the forces of constraint are

OL

F. = — = mr¢*+mX¢ cos ¢+ mgcos ¢ Q,=A—=2\ (17.89)
ar ar
oL oG
X = 5% 0 Qx =\ X 0 (17.90)
oL . - oG
F,= 9 =mX7r cosp —mX¢ sin¢p — mgrsin ¢ Q¢ =A R =0. (17.91)
The equations of motion are
Py =F,+Q, . (17.92)

At this point, we can legitimately invoke the constraint » = R and set 7 = 0 in all the p,
and Fj.

(c) Derive expressions for all conserved quantities.
[5 points]

There are two conserved quantities, which each derive from continuous invariances of the
Lagrangian which respect the constraint. The first is the total momentum p:

Fy=0 = P =py, = constant . (17.93)

The second conserved quantity is the Hamiltonian, which in this problem turns out to be
the total energy ¥ =T + U. Incidentally, we can use conservation of P to write the energy
in terms of the variable ¢ alone. From

P mR cos¢ .

= - 17.94
2M+m  2M+m (17.94)
we obtain
E=12M +m)X? + LmR?¢? + mRX¢ cos ¢ +mgR(1 — cos ¢)
aP? | o1+ asin?e) .,
_ LR -~ " maR(1 — 17.95
2m(1+oz)+2m ( 1+« ¢" +mgR(1 = cosg) (17.95)

where we've defined the dimensionless ratio o« = m/2M. It is convenient to define the
quantity
02 = (1 + a sin%¢

o > ¢* + 2w (1 — cos @) | (17.96)
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with wy, = /g/R. Clearly 2? is conserved, as it is linearly related to the energy E:

aP?

E=—— +1pmR%20%. 17.97
2m(1 + «) Tam ( )

(d) Derive a differential equation of motion involving the coordinate ¢(t) alone. Ie. your
equation should not involve r, X, or the Lagrange multiplier A.
[5 points]

From conservation of energy,

d(_QQ)_ 1+ asin?g\ - o sin ¢ cos ¢
dt =0 = < 1+ o o+ 1+ a

) P+ wdsing=0, (17.98)

again with o = m/2M. Incidentally, one can use these results in eqns. 17.96 and 17.98 to
eliminate ¢ and ¢ in the expression for the constraint force, Q, = A = p, — F-. One finds

¢* + w% cos ¢
1+ asin?¢

R 2 92
— —(1:;#@2 {(1 + 04)<W—8 —4 sin2(%<;5)> +(1+ asin2q§) cos (b} . (17.99)

A=-—-mR

This last equation can be used to determine the angle of detachment, where A vanishes and
the mass m falls off the inside of the hoop. This is because the hoop can only supply a
repulsive normal force to the mass m. This was worked out in detail in my lecture notes on
constrained systems.

[3] Two objects of masses m; and m, move under the influence of a central potential
1/4

U=k ‘rl — 1“2‘ .

(a) Sketch the effective potential U,;(r) and the phase curves for the radial motion. Identify
for which energies the motion is bounded.

[5 points]

The effective potential is
2

l
Ug(r) = o + kr™ (17.100)

with n = %. In sketching the effective potential, I have rendered it in dimensionless form,
Uea(r) = EgUer(r/79) (17.101)

where r, = (2 /nkp) 27" and Ey = (3 + 1)¢2/urd, which are obtained from the results
of part (b). One then finds
nr=2 422"

(17.102)
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(B*x"~(1/4)+1/x"~2) /9 ( Grap
i aximum X: (20 | X Tieks:
i —

Figure 17.15: The effective Ug(r) = Eo U.s(r/10), where 1y and Ey are the radius and
energy of the circular orbit.

Although it is not obvious from the detailed sketch in fig. 17.15, the effective potential does
diverge, albeit slowly, for r — oo. Clearly it also diverges for » — 0. Thus, the relative
coordinate motion is bounded for all energies; the allowed energies are I/ > Fj,.

(b) What is the radius r, of the circular orbit? Is it stable or unstable? Why?
[5 points]

For the general power law potential U(r) = kr", with nk > 0 (attractive force), setting
Uls(ry) = 0 yields

£2
——— +nkrj ' =0. (17.103)
KTy
Thus,
2 \wE (42N

The orbit r(t) = r, is stable because the effective potential has a local minimum at r = r,
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i.e. UlL(ry) > 0. This is obvious from inspection of the graph of U (r) but can also be
computed explicitly:

3
Ul(rg) = p +n(n — 1)kry
—(n+2)— . (17.105)

Thus, provided n > —2 we have U/ (r,) > 0.

(c) For small perturbations about a circular orbit, the radial coordinate oscillates between
two values. Suppose we compare two systems, with ¢//¢ = 2, but ¢/ = g and k¥’ = k. What
is the ratio w'/w of their frequencies of small radial oscillations?

[5 points]

From the radial coordinate equation pi* = —U/.(r), we expand 7 = r;, + 1 and find
pij = =Ul(ro) n + O(n) - (17.106)

The radial oscillation frequency is then

M

e n n—
w=(n+2)2 — = (n+2)/ 20wz knez w0 fees (17.107)
KT
The ¢ dependence is what is key here. Clearly
(O 17.108
w (z) | (17.108)
In our case, with n = i, we have w o< £~7/9 and thus

!/
Yoo (17.109)
w

(d) Find the equation of the shape of the slightly perturbed circular orbit: r(¢) = ry+n(¢).
That is, find n(¢). Sketch the shape of the orbit.
[5 points]

We have that 1(¢) = 7, cos(8¢ + 0,), with
a2
ﬁ—%—%-w—\/n—%Q. (17.110)

With n = %, we have 3 = % Thus, the radial coordinate makes three oscillations for every
two rotations. The situation is depicted in fig. 17.21.

(e) What value of n would result in a perturbed orbit shaped like that in fig. 17.227
[5 points]
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Figure 17.16: Radial oscillations with g = %

[l
N

Figure 17.17: Closed precession in a central potential U(r) = kr".

Clearly f = v/n + 2 = 4, in order that 1(¢) = n, cos(Sd+¢,) executes four complete periods
over the interval ¢ € [0,27]. This means n = 14.

[4] Two masses and three springs are arranged as shown in fig. 17.18. You may assume
that in equilibrium the springs are all unstretched with length a. The masses and spring
constants are simple multiples of fundamental values, viz.

my=m , my=4m , k =k , ky=4k , kq=28k. (17.111)
SRR i Bt
my My

Figure 17.18: Coupled masses and springs.

(a) Find the Lagrangian.
[5 points]
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Choosing displacements relative to equilibrium as our generalized coordinates, we have

T = Imni + 2manj (17.112)
and
U = gkni + 2k (n2 —m)* + 14k . (17.113)
Thus,
L=T-U=imni +2mn3 — Skni — 2k (ne —m)* — 14k n3 . (17.114)

You are not required to find the equilibrium values of z; and z,. However, suppose all the
unstretched spring lengths are a and the total distance between the walls is L. Then, with
z o being the location of the masses relative to the left wall, we have

U =3k (2, —a) + 3ky (my — 2 — a)* + kg (L — 2y — a)? . (17.115)

Differentiating with respect to o then yields

oU
pr ki (zqy —a) — ky (zy — x; — a) (17.116)
U _ ky(xg —xy —a) —kg (L —xy—a) . (17.117)
8%2

Setting these both to zero, we obtain
—kyxy + (kg + kg) 2o = (kg — k3)a + kgL . (17.119)

Solving these two inhomogeneous coupled linear equations for 5 then yields the equilib-
rium positions. However, we don’t need to do this to solve the problem.

(b) Find the T and V matrices.

[5 points]
o - o = <m § ) (17.120)
70" O, Oy \ 0  4m :
and . o
o OO <—4k 32k> ‘ (17.121)

(c) Find the eigenfrequencies w; and w,.
[5 points]

We have

2
_ 2m v _ [mw”—5k 4k
Q) =T -V = ( 4k 4mw® — 32k

A—5 4
_k:< . 4)\_32>, (17.122)
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where A = w? /w?, with w, = \/k/m. Setting det Q(w) = 0 then yields

M 130 +36=0, (17.123)
the roots of which are A\_ =4 and A\, = 9. Thus, the eigenfrequencies are
w_ = 2w, , wy = 3wy - (17.124)

(d) Find the modal matrix A _,.
[5 points]

To find the normal modes, we set

Ar—5 4 ()
=0. 17.125
( 4 AN - 32) ( S ( )

This yields two linearly dependent equations, from which we can determine only the ratios
wgi)/wgi). Plugging in for A, we find

ne 4 e 1
(e (D)) o

We then normalize by demanding w((:) T, . 1/}3];) = 4,

i We can practically solve this by
inspection:

20miC_*=1 , 5m|CP=1. (17.127)

We may now write the modal matrix,

1 /2 1
A= . 17.128
Vom <% —1> ( )

(e) Write down the most general solution for the motion of the system.
[5 points]

The most general solution is

(1) 4 1y
(Z;(@) =B_ <1> cos(2wyt +¢_) + B, (_J cos (3wt + ¢.y) - (17.129)

Note that there are four constants of integration: B and ¢,.
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17.7 WO8 Physics 110B Midterm Exam

[1] Two identical semi-infinite lengths of string are joined at a point of mass m which
moves vertically along a thin wire, as depicted in fig. 17.21. The mass moves with friction
coefficient , i.e. its equation of motion is

mi+yi=F, (17.130)

where z is the vertical displacement of the mass, and F' is the force on the mass due to
the string segments on either side. In this problem, gravity is to be neglected. It may be
convenient to define K = 27/mc? and Q = v/me.

f(et — z) h(ct — x)
I P
T
g(ct +z)

Figure 17.19: A point mass m joining two semi-infinite lengths of identical string moves
vertically along a thin wire with friction coefficient ~.

(a) The general solution with an incident wave from the left is written

) flet —z)+glct+x) (x<0)
y(x’t)_{h(ct—x) (z>0).

Find two equations relating the functions f(£), g(£), and h(§).
[20 points]

The first equation is continuity at x = 0:

f(&) = g(&) + (&)

where £ = ct ranges over the real line [—00, 00]. The second equation comes from Newton’s
2nd law F' = ma applied to the mass point:

m(0,t) +vy(0,¢) =7y (07, ¢) = 74/(07,1) .

Expressed in terms of the functions f(£), g(¢), and h(¢), and dividing through by mc?,
this gives

O +d"€O+Qf () +Qy () =3 KNE) + 3K f(§)—5K4().
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Integrating once, and invoking h = f + g, this second equation becomes

FE+Qf(E)=—-g'() - (K+Q)g(&)

(b) Solve for the reflection amplitude r(k) = g(k)/ f(k) and the transmission amplitude
t(k) = h(k)/f(k). Recall that

O = [0 e fh) = [ag fle) e

et cetera for the Fourier transforms. Also compute the sum of the reflection and transmission
coefficients, ‘7‘(!2:)‘2 + ‘t(k‘)‘2 Show that this sum is always less than or equal to unity, and
interpret this fact.

[20 points]

Using d/d§ — ik, we have

(Q +ik) f(k) = —(K + Q +ik) g(k) . (17.131)
Therefore,
. gk) — Q+ik
(k) i QK ik (17.132)

K

t(k) = = = — 17.1
(k) f(k) Q+ K+ ik (17.133)
The sum of reflection and transmission coefficients is
2 o QP+ K%+ k?

Clearly the RHS of this equation is bounded from above by unity, since both @ and K are
nonnegative.

(¢) Find an expression in terms of the functions f, g, and h (and/or their derivatives) for
the rate E at which energy is lost by the string. Do this by evaluating the energy current
on either side of the point mass. Your expression should be an overall function of time ¢.
[10 points]

Recall the formulae for the energy density in a string,

E(x,t) = L pvP(x,t) + %Ty'z(.r,t) (17.135)
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and
Je(z,t) = =1 y(x,1) y'(z,t) . (17.136)

The energy continuity equation is 9,€ 4 0zje = 0. Assuming jg(+o0,t) = 0, we have

0~ 9]
B ot )
—00 ot

dt at
= —Jg(00,1) + je (07, ) + je(—o00,t) = je(07, 1) - (17.137)
Thus,
Z_f = or([g/(en]® + [B(en)]® = [F'(et)]?) (17.138)

Incidentally, if we integrate over all time, we obtain the total energy change in the string:

o

ag =7 o ([4©) + ) - [F))
C Tdk 2QKE
Note that the initial energy in the string, at time ¢t = —o0, is
Tdk o
E, = 7/% K| f (k) (17.140)

If the incident wave packet is very broad, say described by a Gaussian f(¢) = A exp(—x2/20?%)
with 0 K > 1 and 6@ > 1, then k? may be neglected in the denominator of eqn. 17.139,

in which case
20K

AFE ~ _7(Q R

E, > —31E, . (17.141)
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[2] Consider a rectangular cube of density p and dimensions a x b x ¢, as depicted in fig.
17.22.

fiber

//

C

Figure 17.20: A rectangular cube of dimensions a x b x ¢. In part (c), a massless torsional
fiber is attached along the diagonal of one of the b x ¢ faces.

(a) Compute the inertia tensor I o along body-fixed principle axes, with the origin at the
center of mass.

[15 points]
We first compute I,.:

a/2 b/2 c¢/2

oM = ,o/dw/dy/dz (z° + %) = 15 M (a® + %), (17.142)
—a/2 —b/2 —c/2

where M = pabc. Corresponding expressions hold for the other moments of inertia. Thus,

b2+ c? 0 0
I™M= LM 0 a? + c? 0 (17.143)
0 0 a? + b?

(b) Shifting the origin to the center of either of the b x ¢ faces, and keeping the axes parallel,
compute the new inertia tensor.
[15 points]

We shift the origin by a distance d = —1a & and use the parallel axis theorem,
Lop(d) = I,5(0) + M(d*6, ;5 — dody) (17.144)
resulting in
b2 + 2 0 0
I= 0 4a? + 2 0 (17.145)
0 0 4a® + b?

(c) A massless torsional fiber is (masslessly) welded along the diagonal of either b x ¢ face.
The potential energy in this fiber is given by U(6) = %Y@z, where Y is a constant and 6 is
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the angle of rotation of the fiber. Neglecting gravity, find an expression for the oscillation
frequency of the system.
[20 points]

Let 6 be the twisting angle of the fiber. The kinetic energy in the fiber is

1
T:§Ia5wawﬁ

= g0 I gng0° (17.146)
where . X
. Y cz
n = + . 17.147
V2 +e2 V242 ( )
We then find
— 1 2 1 b? ¢?
Iaxis :na Iaﬁnﬁ = g]\/[(l +6]\/lm . (17148)
The frequency of oscillation is then 2 = /Y/I ., or
6Y b2 + 2
Q=47 17.149
M 2a%(b? + ) + b2 2 ( )
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17.8 WO8 Physics 110B Final Exam

[1] Consider a string with uniform mass density 1 and tension 7. At the point 2z = 0, the
string is connected to a spring of force constant K, as shown in the figure below.

flet —2)
h(ct — z)
z=20 .
= K
o~
— -
g(ct + ) =

Figure 17.21: A string connected to a spring.

(a) The general solution with an incident wave from the left is written

) flet—z)+glct+z) (x<0)
y(x’t)_{h(ct—x) (z>0).

Find two equations relating the functions f(&), g(£), and h(§). [10 points]

SOLUTION : The first equation is continuity at x = 0:

f(&) +9(&) = R(&)

where & = ct ranges over the real line [—o00, 00]. The second equation comes from Newton’s
2nd law F' = ma applied to the mass point:

79/ (07,t) —79/(07,t) — Ky(0,t) =0 ,

or

—Th(€) +7 (&) —7d () — K [f(&)+9(8)] =0

(b) Solve for the reflection amplitude (k) = g(k)/ f(k) and the transmission amplitude
t(k) = h(k)/f(k). Recall that

O = [ faes = = [as feee

—00
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et cetera for the Fourier transforms. Also compute the sum of the reflection and
transmission coefficients, |r(k:)|2 + ‘t(k‘)‘2 [10 points]

SOLUTION : Taking the Fourier transform of the two equations from part (a), we have

f(k) + g(k) = h(k)
A itk | 4

FR) + g(k) = —= | f(k) = §(k) — h(k)

Solving for §(k) and h(k) in terms of f(k), we find

where the reflection coefficient r(k) and the transmission coefficient ¢(k) are given by

K 2itk

B)= ——— tk) = —2T%
G s Py *) = o

Note that

r(B)|” + [t(R)]P =1

which says that the energy flux is conserved.
(c) For the Lagrangian density
oy \* oy\? oy \*
L=, (L) 1 (D) 1 (L)
2t <8t> 2T<am 1\ 9z
find the Euler-Lagrange equations of motion. [7 points]

SOLUTION : For a Lagrangian density £(y,9,%’), the Euler-Lagrange equations are

oL 90 (oL i 0 (0L

oy  Ot\ 0y ox \oy' )~

Thus, the wave equation for this system is

pij=ry"+3v )"y
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(d) For the Lagrangian density
ay\? ay\? 0%\
_1 1,2 1 1
e=tu(gr) —dov -1 (5) ~1o(58)
find the Euler-Lagrange equations of motion. [7 points]
SOLUTION : For a Lagrangian density L(y,y,y’,vy”), the Euler-Lagrange equations are
0L _ 0 (0L o (o) & (ot
Oy  Ot\ 0y Ox \ Oy ox2\oy" )

The last term arises upon integrating by parts twice in the integrand of the variation of the
action 05. Thus, the wave equation for this system is

pij=—ay+7y" —p5y"
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[2] Consider single species population dynamics governed by the differential equation

AN N2 HN
—— =N — — — ;
dt K N+L

where v, K, L, and H are constants.

(a) Show that by rescaling N and t that the above ODE is equivalent to

du 9 hu
— =ru—u" — .
ds u+1
Give the definitions of u, s, r, and h. [5 points]

SOLUTION : From the denominator u+ 1 in the last term of the scaled equation, we see that
we need to define N = Lu. We then write ¢t = 7s, and substituting into the original ODE
yields

rds YT RY T U+l
Multiplying through by 7/L then gives
ds | K L u+1

We set the coefficient of the second term on the RHS equal to —1 to obtain the desired
form. Thus, 7 = K/L and

N Lt oK _KH
“= T Tk > "TT 2
(b) Find and solve the equation for all fixed points u*(r, h). [10 points]

SOLUTION : In order for u to be a fixed point, we need u = 0, which requires

One solution is always [u* = 0|. The other roots are governed by the quadratic equation

(u—r)(u+1)+h=0,

with roots at

u*:%(r—li (r—|—1)2—4h)
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2 | T T T T I T T T T F T T T T I T T T 7|
| I‘V' saddle-_;node 3—"' III il
1.5 |— B r)= 3(r+1)
= 1 =

- «— transcritical

hoar)=r

II ]

Figure 17.22: Bifurcation curves for the equation @ = ru — u? — hu/(u + 1). Red curve:
hsn(r) = %(7’ + 1)2, corresponding to saddle-node bifurcation. Blue curve: h.(r) = r,

corresponding to transcritical bifurcation.

(c) Sketch the upper right quadrant of the (r, h) plane. Show that there are four distinct

regions:
Region I : 3 real fixed points (two negative)
Region IT : 3 real fixed points (one positive, one negative)
Region IIT  : 3 real fixed points (two positive)
Region IV : 1 real fixed point

Find the equations for the boundaries of these regions.
locations of bifurcations. Classify the bifurcations. (Note that negative values of u
are unphysical in the context of population dynamics, but are legitimate from a purely

mathematical standpoint.)

These boundaries are the

[10 points]

SOLUTION : From the quadratic equation for the non-zero roots, we see the discriminant
vanishes for h = %(7‘ + 1)%2. For h > %(7‘ +1)2, the discriminant is negative, and there is

one real root at u* = 0. Thus, the curve

hsx (1) = %(r +1)?

corresponds to a curve of

saddle-node bifurcations. Clearly the largest value of u* must be a stable node, because
for large u the —u? dominates on the RHS of 4 = f(u). In cases where there are three
fixed points, the middle one must be unstable, and the smallest stable. There is another
bifurcation, which occurs when the root at u* = 0 is degenerate. This occurs at

r—1=+/(r+1)2—4h = h =

.
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Figure 17.23: Examples of phase flows for the equation % = ru —u? — hu/(u+1). (a) r = 1,
h = 0.22 (region I) ; (b) » =1, h = 0.5 (region II) ; (¢) » = 3, h = 3.8 (region III) ; (d)
r =1, h = 1.5 (region IV).

This defines the curve for transcritical bifurcations: | hy(r) = 7 | Note that h(r) < hgy(r),

since hey(r) — ho(r) = 2(r — 1)2> > 0. For h < r, one root is positive and one negative,
corresponding to region II.

The (r, h) control parameter space is depicted in fig. 17.22, with the regions I through IV
bounded by sections of the bifurcation curves, as shown.

(d) Sketch the phase flow for each of the regions I through IV. [8 points]

SOLUTION : See fig. 17.23.
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[3] Two brief relativity problems:

(a) A mirror lying in the (z,y) plane moves in the 2 direction with speed u. A monochro-
matic ray of light making an angle 6 with respect to the £ axis in the laboratory
frame reflects off the moving mirror. Find (i) the angle of reflection, measured in the
laboratory frame, and (ii) the frequency of the reflected light. [17 points]

SOLUTION : The reflection is simplest to consider in the frame of the mirror, where p, — —p.
upon reflection. In the laboratory frame, the 4-momentum of a photon in the beam is
PF = (E, 0, Esinf, Ecos@) ,

where, without loss of generality, we have taken the light ray to lie in the (y, z) plane, and
where we are taking ¢ = 1. Lorentz transforming to the frame of the mirror, we have

PF = (YE(1 —ucosf), 0, Esing, yE(—u+ cosf)) .

which follows from the general Lorentz boost of a 4-vector Q*,

QO = ’VQO - 'VUQ”
Q” = _'VUQO + ’YQ”
QJ_ = QJ_ )

where frame K moves with velocity w with respect to frame K.

Upon reflection, we reverse the sign of P? in the frame of the mirror:
P'" = (yE(1 —ucosf), 0, Esin6, yE(u — cos b)) .
Transforming this back to the laboratory frame yields
E'=P°%=+2E (1 —ucosf) +~*Eu(u— cosb)
=~*F (1 —2u cosf + u2)

Pt =0
P'? = Esing

P =+2Eu(l —ucos) +~*F (u — cos )
=—2E ((1+ u?) cos § — 2u)

Thus, the angle of reflection is

P/3
20

(1 +u?)cosf — 2u
1 — 2ucosf + u?

cos @ =
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and the reflected photon frequency is v/ = E’/h, where

1 — 2u cosf + u?
/I
E _< Lot >E

(b) Consider the reaction 7+ 4+n — K+ 4+ A%, What is the threshold kinetic energy of the
pion to create kaon at an angle of 90° in the rest frame of the neutron? Express your
answer in terms of the masses m, m,, my, and m,. [16 points]

SOLUTION : We have conservation of 4-momentum, giving
P!+ Pl = Pl + P} .
Thus,
Py =(E,+E,— Ey)*— (P, + P, — Py)*

= (Ef — P7) + (B} — PY) + (B} — Pg)
+2E,E, — 2B, Ey — 2E,Ey — 2P, - P, + 2P, - P + 2P, - Py

=E} - P{=mj .
Now in the laboratory frame the neutron is at rest, so
Pl = (my, 0) .

Thus, Pr - P, = Py - P = 0. We are also told that the pion and the kaon make an angle
of 90° in the laboratory frame, hence P, - P, = 0. And of course for each particle we have

E? —P? = m?. Thus, we have

mi = m2 +ma +mk — 2m, Ey +2(m, — Ey) B, |

or, solving for Fr,

2 2 2

m% —m2 —m2 —mi + 2m, Ey

2(mn - EK)

—

s

The threshold pion energy is the minimum value of E;, which must occur when Ey takes

its minimum allowed value, Ey = my.. Thus,

2 2 2
my — mi —my —

B 2(mn _mK)

2
mi, +2m.m
K LD Q.

Tﬂ':Eﬂ'_mﬂ'

K
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[4] Sketch what a bletch might look like. [10,000 quatloos extra credit]
[-50 points if it looks like your professor]

Figure 17.24: The putrid bletch, from the (underwater) Jkroo forest, on planet Barney.



