Chapter 16

Hamiltonian Mechanics

16.1 The Hamiltonian

Recall that L = L(q, ¢,t), and
OL

Po =5
7 0o
The Hamiltonian, H(q,p) is obtained by a Legendre transformation,

H(g,p) = p,dy— L.
o=1

Note that

- oL oL oL
dH = <padqa + 4, dp, — = dq, — —,dq0> — —dt
= 04 4o ot

/. oL oL
_OZ::I<q0de_a—quqU> _Edt .

Thus, we obtain Hamilton’s equations of motion,

om _. oM _ 9L _
A PR PR
and

dH _0H _ 0L

a ot ot

Some remarks:

(16.1)

(16.2)

(16.3)

(16.4)

(16.5)

e As an example, consider a particle moving in three dimensions, described by spherical

polar coordinates (r, 6, ¢). Then
L= %m (7"2 + 2% 42 Sin29q32) —U(r,0,0) .

(16.6)



CHAPTER 16. HAMILTONIAN MECHANICS

We have
L L . L .
prz%:mr , pez%:mr26 , p¢:%:mr25in29¢, (16.7)
and thus
H=p,i+py0+pso—L
2 2 2
P Y L U(r6,0). (16.8)

2m 2mr?  2mr2sind

Note that H is time-independent, hence %—If = %—If = 0, and therefore H is a constant

of the motion.

In order to obtain H(q,p) we must invert the relation p, = BBTLU = po(q, q) to obtain

Gs(q,p). This is possible if the Hessian,

Opa _ 0L
O0qg  04a 0qg

(16.9)

is nonsingular. This is the content of the ‘inverse function theorem’ of multivariable
calculus.

Define the rank 2n vector, &, by its components,

, ifl1 <<
g=q% o=t (16.10)
i, ifn<i<2n.

Then we may write Hamilton’s equations compactly as

& = Jij g—g : (16.11)
where
J = <©"X" HW") (16.12)
~Lixn Onxy
is a rank 2n matrix. Note that J' = —J, i.e. J is antisymmetric, and that J? =

—I5,, «on- We shall utilize this ‘symplectic structure’ to Hamilton’s equations shortly.



16.2. MODIFIED HAMILTON’S PRINCIPLE 3

16.2 Modified Hamilton’s Principle

We have that

ty ty
Ozé/dtL:cS/dt(pgqo—H) (16.13)
ta ta
T OH OH
= /dt Dy 04y + 4y 0D, — =— 0q, — =— 0D,
8QU apa
tp

ty

. OH . oH
— /dt{ — <p(, + a—qa> 5q0. + <q0— - a—pa> 5110} + (paéqa) t

a

)

assuming 6qo (ta) = dq,(t,) = 0. Setting the coefficients of dg, and ép, to zero, we recover
Hamilton’s equations.

16.3 Phase Flow is Incompressible

A flow for which V - v = 0 is incompressible — we shall see why in a moment. Let’s check
that the divergence of the phase space velocity does indeed vanish:

04s ~ Opo
voé= Z {3% 3pa}

oé; O°H
Zag, > i 36,0, =0. (16.14)

i?

Now let p(&,t) be a distribution on phase space. Continuity implies

0 .
P v (pé)=0. (16.15)
ot
Invoking V - € = 0, we have that
Dp _ dp
g - 16.1
Dt ot +£€-Vp=0, (16.16)

where Dp/Dt is sometimes called the convective derivative — it is the total derivative of the
function p(E (1), t), evaluated at a point £(¢) in phase space which moves according to the
dynamics. This says that the density in the “comoving frame” is locally constant.



4 CHAPTER 16. HAMILTONIAN MECHANICS

16.4 Poincaré Recurrence Theorem

Let g, be the ‘T-advance mapping’ which evolves points in phase space according to Hamil-

ton’s equations
OH ) OH

q; =+ Op; > bi = En (16'17)
for a time interval At = 7. Consider a region {2 in phase space. Define ¢g*{2 to be the
n™ image of 2 under the mapping g,. Clearly g, is invertible; the inverse is obtained by
integrating the equations of motion backward in time. We denote the inverse of g, by g-!.
By Liouville’s theorem, g, is volume preserving when acting on regions in phase space, since
the evolution of any given point is Hamiltonian. This follows from the continuity equation
for the phase space density,

do B
5t +V - (uo)=0 (16.18)

where u = {q,p} is the velocity vector in phase space, and Hamilton’s equations, which
say that the phase flow is incompressible, i.e. V- u = 0:

= [ 0d | O
Vou = Z{3Qi+5pi}

i=1

" (o (oH\ o ( 0H
SR ea(-E) e e

Thus, we have that the convective derivative vanishes, viz.

Do _ 0o B

which guarantees that the density remains constant in a frame moving with the flow.

The proof of the recurrence theorem is simple. Assume that g, is invertible and volume-
preserving, as is the case for Hamiltonian flow. Further assume that phase space volume
is finite. Since the energy is preserved in the case of time-independent Hamiltonians, we
simply ask that the volume of phase space at fized total energy E be finite, i.e.

/du §(E—H(q,p)) < oo, (16.21)
where du = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood €2 of phase space there exists a point ¢, which will
return to ) after n applications of g, where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction.
Consider the set T formed from the union of all sets ¢ 2 for all m:

T=Jgro (16.22)
m=0
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We assume that the set {¢g7* Q| m € Z ,m > 0} is disjoint. The volume of a union of disjoint
sets is the sum of the individual volumes. Thus,

vol(T) = Zvol(g;” )
m=0

o0
= vol(Q)- > 1=00, (16.23)
m=1
since vol(g!" 2) = vol(£2) from volume preservation. But clearly T is a subset of the entire
phase space, hence we have a contradiction, because by assumption phase space is of finite
volume.

Thus, the assumption that the set {¢* Q| m € Z ,m > 0} is disjoint fails. This means that
there exists some pair of integers k and [, with k # [, such that g¥ QN gL Q # (. Without
loss of generality we may assume k > [. Apply the inverse g—! to this relation [ times to get
"t QNQ # (. Now choose any point ¢ € g* QNQ, where n = k—1[, and define Py = g5y .
Then by construction both ¢, and g ¢ lie within 2 and the theorem is proven.

Each of the two central assumptions — invertibility and volume preservation — is crucial.
Without either of them, the proof fails. Consider, for example, a volume-preserving map
which is not invertible. An example might be a mapping f: R — R which takes any real
number to its fractional part. Thus, f(7m) = 0.14159265.... Let us restrict our attention
to intervals of width less than unity. Clearly f is then volume preserving. The action of f
on the interval [2,3) is to map it to the interval [0,1). But [0,1) remains fixed under the
action of f, so no point within the interval [2,3) will ever return under repeated iterations
of f. Thus, f does not exhibit Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes
contract. For a one-dimensional oscillator obeying & +23%+ 23z = 0 one has V-u = —23 <
0 (8 > 0 for damping). Thus the convective derivative obeys Dyo = —(V-u)o = +2(0 which
says that the density increases exponentially in the comoving frame, as o(t) = €% p(0).
Thus, phase space volumes collapse, and are not preserved by the dynamics. In this case, it
is possible for the set T to be of finite volume, even if it is the union of an infinite number of
sets g {2, because the volumes of these component sets themselves decrease exponentially,
as vol(g? £2) = e=2"97 vol(£2). A damped pendulum, released from rest at some small angle
6y, will not return arbitrarily close to these initial conditions.

16.5 Poisson Brackets

The time evolution of any function F'(q,p) over phase space is given by
d OF [ OF oF
— F(q(t),p(t)t) =+ > S 5o+ 7P
g Pl pt),t) = +J:1{8qa q"+8pap"}

=_—+{FH}, (16.24)
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where the Poisson bracket {-,-} is given by

"\ (0A 9B 0A OB
= _—— 16.2
S ; <3qa s Ops 8qa> 16:25)
2n
0A OB
— Z y i (16.26)
2= 0g; og;
Properties of the Poisson bracket:
e Antisymmetry:
{f.9} =—{9.f}. (16.27)

e Bilinearity: if A is a constant, and f, g, and h are functions on phase space, then

{f+Xg,h} ={f,h}+Xg,h} . (16.28)
Linearity in the second argument follows from this and the antisymmetry condition.

e Associativity:

{fg9,h} = f{g.h} +g{f,h} . (16.29)

e Jacobi identity:

Some other useful properties:

o If {A,H} =0 and % =0, then % =0, i.e. A(q,p) is a constant of the motion.

o If {A,H} =0 and {B,H} =0, then {{A,B},H} = 0. If in addition A and B have
no explicit time dependence, we conclude that {A, B} is a constant of the motion.

o It is easily established that

{4045} =0, {Pasps} =0 {da:ps} =045 - (16.31)

16.6 Canonical Transformations

16.6.1 Point transformations in Lagrangian mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

ch = ch((hv ) t) . (1632)
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This is called a “point transformation.” The transformation is invertible if

det(%i]?;) £0. (16.33)

The t.ransformed Lagrangian, L, written as a function of the new coordinates Q and veloc-
ities @, is
L(Q.Q.1) = L(¢(Q.1),4(Q. Q.1)) - (16.34)

Finally, Hamilton’s principle,

tp
5/dt L(Q,Q,t) =0 (16.35)
t1

with 6Qs(ta) = 0Qs(t,) = 0, still holds, and the form of the Euler-Lagrange equations

remains unchanged:
oL  d [ 0L
0Q, dt (acz) - 1650

The invariance of the equations of motion under a point transformation may be verified
explicitly. We first evaluate

i(a0.) = o o6,) = it (i 06:) (1657
where the relation ‘
gg; - gg’i (16.38)
follows from
o = gg‘: Qo + % : (16.39)

Now we compute

6[: _8_[/ 0qa +6_L 04a
0Qs 040 0Qs 0o 0Q,

0L 3q0 | OL [ qa 0°qa

= 9. 0Q, | 0 <6QJ 00, % 5, at)

_d (9L O¢u , OL d ( O4a

T dt\9y) 0Qs  Fda dt\ OQ,

_d (0L dq.\ _ d [ OL

di <a_q'g a@) dt <6Q0> ’ oA

where the last equality is what we obtained earlier in eqn. 16.37.
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16.6.2 Canonical transformations in Hamiltonian mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations — ones
which mix all the ¢’s and p’s. The general form for a canonical transformation (CT) is

qcr:QU(le"'aQn;Pp'"apn;t) (1641)
po’:po'(Q17"'7Qn;P17"'7Pn;t) ) (1642)

with o € {1,...,n}. We may also write
& :fi(ElaquQn;t) ) (16.43)

with i € {1,...,2n}. The transformed Hamiltonian is H(Q, P,t).

What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain
invariant, then

. OH : o
- P =— 16.44
QO’ 8P0— ’ o 8@0— Y ( 6 )
which gives . ‘ ‘
0Q, O0F, 05
20, + op, 0= PER (16.45)

Le. the flow remains incompressible in the new (@, P) variables. We will also require that
phase space volumes are preserved by the transformation, i.e.

(g ) = |3 | = s4n

Additional conditions will be discussed below.

16.6.3 Hamiltonian evolution

Hamiltonian evolution itself defines a canonical transformation. Let § = &;(t) and & =
&;,(t+ dt). Then from the dynamics § = ” 65 , we have

0H

&(t+dt) =&(t) + J; 7 O€; dt + O(dt?) . (16.47)
Thus,
o 0 OH 5
% " o <§ +Jkag dt + O(dt ))
0’H )
=0+ I A 7€, 06, dt + O(dt?) . (16.48)

Now, using the result
det(1+eM) =1+eTr M+ O(e) , (16.49)
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we have
ol 0’H 9
L =14+J, ——dt+ O(dt 16.50
H 9¢; I+ 8¢5 O, (") (16.50)
=1+0(dt?) . (16.51)
16.6.4 Symplectic structure
We have that
. OH
= — . 16.52
éz i 8§j ( )

Suppose we make a time-independent canonical transformation to new phase space coordi-
nates, =, = Z,(§). We then have

05 _ 95, o

1-

[1

= aE Tit o, (16.53)

But if the transformation is canonical, then the equations of motion are preserved, and we
also have

= . OH _ 04 OH
Z.=J, e I 95, 06, (16.54)

Equating these two expressions, we have

where
M =25 (16.56)
W0 '

is the Jacobian of the transformation. Since the equality must hold for all £, we conclude
MJ=J(MY' = MJM'=J. (16.57)

A matrix M satisfying M M"® =1 is of course an orthogonal matrix. A matrix M satisfying
MJM" = J is called symplectic. We write M € Sp(2n), i.e. M is an element of the group
of symplectic matrices' of rank 2n.

The symplectic property of M guarantees that the Poisson brackets are preserved under a

!Note that the rank of a symplectic matrix is always even. Note also MJM" = J implies M*JM = J.
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canonical transformation:

0A OB
A BY, = J, 2 22
{A Bl =7y 9&; ¢

_, 0492, 9B 05,

i1 9Z, 0&; 0=, 0§
DA OB
0=, 05,

— (1,7, M)

ai Vij
_, A 0B
- 9=, 05,

={A,B}_ . (16.58)

16.6.5 Generating functions for canonical transformations

For a transformation to be canonical, we require

ty ty
5/dt {psis— Hig.p.H)} = 0= 5/dt [P, HQ.PD} . (16.59)
ta ta

This is satisfied provided

dF

{pa g, — H(q,p,t)} — A {PJ O, — HQ,P,t) + E} , (16.60)

where \ is a constant. For canonical transformations, A = 1.2 Thus,

HQP.0) = Hlg.p0) + Py Qy by + o + 5= Qo
+%po+g—£f}+a@—f. (16.61)
Thus, we require
g_izpa , ;Ci:_pa , g_i: , g]f;:o. (16.62)
The transformed Hamiltonian is
H(Q P,t) = H(g,pt) + - - (16.63)

2Solutions of eqn. 16.60 with X # 1 are known as extended canonical transformations. We can always
rescale coordinates and/or momenta to achieve A = 1.
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There are four possibilities, corresponding to the freedom to make Legendre transformations
with respect to each of the arguments of F'(¢q,Q) :

(Fi(g,Q;t) . Pe=+FL . Po=—55 (typel)
Fy(q, P,t) = P Qo D po=+32 Qo =+5p (typell)
F(q,Q.t) =
F3(p, Q,t) + po 4o D Go=—52 , Pr=—&5 (type D)
Fylp, P,t) +PoGo — Po Qo 5 Go=—32 . Qo=+55+ (type1V)
In each case (y =1,2,3,4), we have
H(Q,P,t) = H(q,p,t) + % . (16.64)

Let’s work out some examples:

e Consider the type-1I transformation generated by

Fy(q,P) = Ay(0) P, (16.65)
where Ay (q) is an arbitrary function of the {¢,}. We then have
8F2 8F2 8Aa
= == = A = = . 1 .
Co=gp =4l ro=p =3l (16.66)
Thus,
Q, = A,(q) p, = Yo (16.67)
o — Ag\4 ; o — 8@0— Pa - .

This is a general point transformation of the kind discussed in eqn. 16.32. For a general
linear point transformation, QQ, = Maﬁ 43, we have P, = Ps Mﬁ_al, i.e. Q = Mg,
P=pM1' If Maﬁ = 50437 this is the identity transformation. F, = ¢, P + q3 P,
interchanges labels 1 and 3, etc.

e Consider the type-I transformation generated by

Fl ((L Q) = AU(Q) QO’ . (1668)
We then have
0 0A,
Pe= 500 = Ban Qo (16.69)
_ 0F B
P = 20, A, (q) . (16.70)

Note that As(q) = g, generates the transformation

(g) — (;g) . (16.71)
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e A mixed transformation is also permitted. For example,

F(q,Q) = ¢, Q + (a3 — Q) Py + (a0 — Q3) Py (16.72)

is of type-I with respect to index o = 1 and type-1I with respect to indices o = 2, 3.
The transformation effected is

Qr=n Qy = g3 Q3= ¢y (16.73)
Consider the harmonic oscillator,

»

5+ Ska® . (16.75)

H(q,p) =

If we could find a time-independent canonical transformation such that

p=+/2mf(P) cosQ , q:\/%(P) sin@ , (16.76)

where f(P) is some function of P, then we’d have H(Q, P) = f(P), which is cyclic in
Q. To find this transformation, we take the ratio of p and ¢ to obtain

p=vVmkqctnQ , (16.77)
which suggests the type-I transformation
Fi(q,Q) = %qu ctn@ . (16.78)
This leads to
p:aa—il:chth , P:—%—g:ﬁg . (16.79)
Thus, /2P
2P k
q= msin@ = f(P):\/;P:wP, (16.80)

where w = y/k/m is the oscillation frequency. We therefore have
H(Q,P)=wP, (16.81)
whence P = E/w. The equations of motion are
P=—""=0, Q====w, (16.82)

which yields

Qit)=wt+¢, , q(t)= 252 sin (wt + @) - (16.83)
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16.7 Hamilton-Jacobi Theory

We’ve stressed the great freedom involved in making canonical transformations. Coordi-
nates and momenta, for example, may be interchanged — the distinction between them is
purely a matter of convention! We now ask: is there any specially preferred canonical trans-
formation? In this regard, one obvious goal is to make the Hamiltonian H (Q, P,t) and the
corresponding equations of motion as simple as possible.

Recall the general form of the canonical transformation:

- oF
with
OF OF
Fo =P e =" (16.85)
OF oF
50, = T 55 =0 (16.86)

We now demand that this transformation result in the simplest Hamiltonian possible, that
is, H(Q, P,t) = 0. This requires we find a function F' such that

OF _ .  OF _

The remaining functional dependence may be taken to be either on @ (type I) or on P
(type II). As it turns out, the generating function F we seek is in fact the action, S, which
is the integral of L with respect to time, expressed as a function of its endpoint values.

16.7.1 The action as a function of coordinates and time

We have seen how the action S[n(7)] is a functional of the path n(7) and a function of the
endpoint values {qa,%.} and {g,,t,}. Let us define the action function S(q,t) as

S(q,t) = /dTL(n,ﬁ,T) , (16.88)

where n(7) starts at (qq,tq) and ends at (q,t). We also require that n(7) satisfy the Euler-

Lagrange equations,
oL d (0L
—— _ (=) =0 16.89

on, dr (8770) ( )

Let us now consider a new path, 7(7), also starting at (qq,tq), but ending at (¢ + dg, t + dt),
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and also satisfying the equations of motion. The differential of S is

dS = S[ﬁ(T)] — S[T](T)]

t+dt t

= /dTL(ﬁ,ﬁ,T) — /dTL(n,f;,T) (16.90)

ta

= t/dT {S—ULU [0(7) = (7)) + g—ﬁi [0 (7) = ()] } + L((t),0(t).t) dt

- Jur {STL -+ (5 } [r(7) = 1,7

la

oL .
— [n,(t) — t L(n(t),n(t),t)dt
+ a0 =1 0] + LG, 70).)
=0+ 7, (t) 0, (t) + L(n(t),n(t), t) dt + O(5q - dt) , (16.91)
where we have defined
_or (16.92)
7Tcr - 6770 ’ .
and
5770(7—) = ﬁo‘(T) - 7]0’(7-) . (1693)
Note that the differential dg, is given by
dqo = ﬁo‘(t + dt) - na(t) (1694)
= ﬁo‘(t + dt) - ﬁo‘(t) + 770(75) - no(t)
= 15(t) dt + 61, (t)
= ¢, (t)dt + on,(t) + O(dq - dt) . (16.95)
Thus, with 7,(t) = ps, we have
dS =p,dq, + (L — p, 4,) dt
=p,dq, — Hdt . (16.96)
We therefore obtain oy oS s
- = _ = —H _— = L . 1 .
2 P @ (16.97)

What about the lower limit at ¢,7 Clearly there are n + 1 constants associated with this
limit: {ql (ta)s .- qn(ta); ta}. Thus, we may write

S=58q1, @i Ays o A )+ A (16.98)
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qtdq
g
LA s t trdt
Figure 16.1: A one-parameter family of paths ¢(s;¢).
where our n + 1 constants are {A;,..., 4, ;}. If we regard S as a mixed generator, which

is type-I in some variables and type-II in others, then each A, for 1 < o < n may be chosen
to be either (), or P,. We will define

oS +Qs it Ay =P,
FO' = = .
8/10' —Po— if Ao— = QO’

(16.99)

For each o, the two possibilities A, = Q, or A, = P, are of course rendered equivalent by
a canonical transformation (Q, Py) — (Pr, — Qo).

16.7.2 The Hamilton-Jacobi equation

Since the action S (g, A, t) has been shown to generate a canonical transformation for which
H(Q, P) = 0. This requirement may be written as
oS oS ) as

oy 2500 05 ) 195

0. (16.100)

This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation
in n + 1 variables, and in general is nonlinear (since kinetic energy is generally a quadratic
function of momenta). Since H(Q, P,t) = 0, the equations of motion are trivial, and

Q,(t) = const. , P_(t) = const. (16.101)

Once the HJE is solved, one must invert the relations I, = 95(q, A4,t)/0A, to obtain
q(Q, P,t). This is possible only if

det<ﬂ> 40, (16.102)
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which is known as the Hessian condition.

It is worth noting that the HJE may have several solutions. For example, consider the case
of the free particle, with H(q,p) = p?>/2m. The HJE is

2
ﬁ <g—§> + aa—f =0. (16.103)
One solution of the HJE is
S(q, A,t) = Mq27;/1)2 . (16.104)
For this we find Py . r
FZO_A:_7((]—A) = q(t):/l—at. (16.105)
Here A = ¢(0) is the initial value of ¢, and I" = —p is minus the momentum.
Another equally valid solution to the HJE is
S(q,A,t) = gV2mA — At . (16.106)
This yields
F:g—i:q 27"”—1: N q(t):\/%(t+F). (16.107)

For this solution, A is the energy and I' may be related to the initial value of ¢(t) =

r/A/2m.

16.7.3 Time-independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one,
writing

S(q, A, t) =W(q, A) +T(At) . (16.108)
The HJE becomes o T

Note that the LHS of the above equation is independent of ¢, and the RHS is independent
of ¢q. Therefore, each side must only depend on the constants A, which is to say that each
side must be a constant, which, without loss of generality, we take to be A;. Therefore

S(q, A, t) =W(q, A) — Ayt . (16.110)

The function W(q, A) is called Hamilton’s characteristic function. The HJE now takes the
form oW oW

H(qy, .. gy, —, ..., — ) =4, . 16.111

<q1 q 8Q1 aQn > 1 ( )

Note that adding an arbitrary constant C to S generates the same equation, and simply
shifts the last constant A, ; — A, ; + C. This is equivalent to replacing ¢ by ¢ — ¢, with

to = C/A,, i.e. it just redefines the zero of the time variable.
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16.7.4 Example: one-dimensional motion

As an example of the method, consider the one-dimensional system,

p
H = — . 16.112
(@p) = 5~ +Ulq) (16.112)
The HJE is )
1 [0S
— | = =A. 16.11
(%) v (16.113)
which may be recast as
oS
— =1/2m|A— 16.114
5o = \2m[a- V)] (16.114)
with solution
q
S(q, A, t) =v2m [dgd JA—-U(q)— At . (16.115)

We now have

p= g—‘j =/2m[A-U(q)] , (16.116)

oS fm (10 qq
I'=—=4/— _—— — . 16.117
oAV 2 / VA-U() -

Thus, the motion ¢(t) is given by quadrature:

as well as

I4t= (16.118)

q(t)
m / dq
2 ) \/A-U(d)’
where A and I are constants. The lower limit on the integral is arbitrary and merely shifts
t by another constant. Note that A is the total energy.

16.7.5 Separation of variables
It is convenient to first work an example before discussing the general theory. Consider the
following Hamiltonian, written in spherical polar coordinates:

potential U(r,0,¢)

2
H— i(;ﬁ + p_g + Py >_|_ A(r) + B(6) + C(¢) . (16.119)

2m r?2  r2gin20 72 r2 sin%6

We seek a solution with the characteristic function

W(r,0,¢) = W,(r) + Wy(0) + W,(¢) . (16.120)
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The HJE is then

1 8WT2+ 1 8W92+ 1 oW, \?
2m \ Or 2mr2 \ 90 2mr2sin?6 \ 9¢
B(6 C

© , 0w

r2 r2 sin26

+A(r) + — A =E. (16.121)

Multiply through by 72 sin?6 to obtain
LWL o= e L L (D0 g
2m \ 96 I [ WFoY?
1 (oW, \°
— 24in2 JE— r —
r“sin“6 {2m< o ) + A(r) /11} . (16.122)

The LHS is independent of (r,6), and the RHS is independent of ¢. Therefore, we may set

1 (OW,Y B
oh (a—¢> +C(¢) = A, . (16.123)

Proceeding, we replace the LHS in eqn. 16.122 with A,, arriving at

1 (oW, \ Ay L 1 (oW, Y
%<W> + B(@) + sin29 = —-T % or + A(?") - Al ' (16124)

The LHS of this equation is independent of r, and the RHS is independent of 8. Therefore,

1 (W, Ay
— | — B(6 =A. . 16.12
2m<89>+ ()+sin29 s (16.125)
We're left with ,
1 /oW, Az
%< ar > + A(T) + ﬁ =A; . (16.126)

The full solution is therefore

A3

- = (16.127)
.

S(g, A1) = \/%/Tdr’ \/A1 — A(r)

+ \/%/gde’ \/A3 — B(9') — =

sin2¢’

o
+ \/%/dgb/ \ Ay — C(¢) — Ayt . (16.128)
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We then have

/ T(;/A - \/Edr/ —t (16.129)

/17"2

85 o(t) Vg dy )/ Zdg
I, = Y / / ¢ (16.130)
2 sin?6’ \/ A — A, csc2f’ \/ Ay — C(¢)

Vg dr! Vg de

/ . (16.131)
— a2\ Jay - BO) - Ay escrer
The game plan here is as follows. The first of the above trio of equations is inverted to yield
r(t) in terms of ¢t and constants. This solution is then invoked in the last equation (the upper

limit on the first integral on the RHS) in order to obtain an implicit equation for #(t), which
is invoked in the second equation to yield an implicit equation for ¢(¢). The net result is

r(t)
5= 8/13 //2 \/A

the motion of the system in terms of time ¢ and the six constants (A, Ay, Ag, I, I, 15). A
seventh constant, associated with an overall shift of the zero of ¢, arises due to the arbitrary
lower limits of the integrals.

In general, the separation of variables method begins with?
=> W,(g,.4) . (16.132)

Each W, (g, A) may be regarded as a function of the single variable ¢,, and is obtained by
satisfying an ODE of the form*

dw,
H,(q,—2)=A4,. 16.133
(00 ) = 2 (16.133)
We then have . oW
= z I =—+6 ,t. 16.134
Py 8(]0 ’ o 8/10 + o,1 ( )

Note that while each W, depends on only a single ¢,, it may depend on several of the A,.

16.7.6 Example #2 : point charge plus electric field

Consider a potential of the form

k
Ur)=--Fz, (16.135)
r
which corresponds to a charge in the presence of an external point charge plus an external

electric field. This problem is amenable to separation in parabolic coordinates, (&,7, ¢):

:Ez@COSQD , y:\/asingo , z:%(é—n). (16.136)

3Here we assume complete separability. A given system may only be partially separable.
‘H,(¢y,p,) may also depend on several of the A, . See e.g. eqn. 16.126, which is of the form
HT.(T, 8TWT.,A3) =A,.
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Note that
p=Vr2+y? =& (16.137)
r=+p2+22=3(E+n). (16.138)

The kinetic energy is

_ 1 62 772 1 -2 16.139
=gm(€+n) €+; +5méne, (16.139)
and hence the Lagrangian is
& 1 o 2k
L=ImE+n)| >+~ |+imene* - ——+1F (-1 . 16.140
Thus, the conjugate momenta are
oL '
o L (€ + 77)% (16.141)
oL ]
Py = = im(é’+77)% (16.142)
oL .
Py = % =mény, (16.143)
and the Hamiltonian is
H=p+p,0n+p,¢ (16.144)
2 (EpE+np; P2 2%
= — + + —sF(&—n). 16.145
m ( £+ amén vy 2 &Y ( )

Notice that 0H/0t = 0, which means dH/dt = 0, i.e. H = E = /A is a constant of the
motion. Also, ¢ is cyclic in H, so its conjugate momentum p,, is a constant of the motion.

We write

S(q, A) =W(q,A) — Et (16.146)
= We(&, 4) + W,(n, 4) + W, (0, A) — Et . (16.147)

with &/ = A;. Clearly we may take

W, (e, A) =P, ¢, (16.148)
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where P, = A,. Multiplying the Hamilton-Jacobi equation by %m (£ +n) then gives

2
§<?£%> };+wnk 1F¢? — ImE¢

]”r 2 P2 . )
Y 1 1 =7
——77< ) 4F17 —|—2mE77_ ,

where 1" = A, is the third constant: A = (E, P,,7). Thus,

q
mk 2
(SU%E}’T /%V/mE+ +imF¢ — —2

n T P2
—l—/dn/ %mE—n——ian’— L4

+ P,p— Et.

16.7.7 Example #3 : Charged Particle in a Magnetic Field

The Hamiltonian is 1

1=l ta)

2m c
We choose the gauge A = Bxy, and we write
S(way7P17P2) = Wx(w7P17P2) +Wy(y7P17P2) - Plt
Note that here we will consider S to be a function of {¢,} and {F}.

The Hamilton-Jacobi equation is then

oW, 2 ow, eBzx 2
—— ) =2mP, .
(5) + (G -2) -2m
We solve by writing

AW, \? eBx\?
Wy:P2y = (dx>+<P2_7> :2mP1

This equation suggests the substitution

P.
T = c—2+iB\/2mP1 sinf .

eB

in which case

ox c
% B v/ 2mP; cos 6

(16.149)

(16.150)

(16.151)

(16.152)

(16.153)

(16.154)

(16.155)

(16.156)
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and

oW, oW, ‘ @ ~eB 1 oW,
dr 00 Or  c¢/2mP; cosf 00
Substitution this into eqn. 16.154, we have

09 eB ’
with solution
P P,
W, = "% g4 M in(20)

£ eB 2eB

oW, oW, [ox
Py = 5 — 90/ 30 = \/2mP; cos

We then have

and GW.

Y

= =PF,.
The type-II generator we seek is then
mcP mcP;
S(q, P, t) = eBl 0+ 5o sin(20) + P,y — P, t,
where
0= _ B sin™! [z — chy
e/2mP; eB )’

Note that, from eqn. 16.155, we may write

1
de = < dp, + ¢ sinf dP; + < v 2mP; cos0db

eB 2 * eB V2mPy eB
from which we derive
ﬁ B _tan@ a0 B 1
opP, 2P, ’ oPy,  \/2mP; cosf
These results are useful in the calculation of @); and Q,:
oS
Q= P
_mc melP; 00 mec mcP; 00
= EQ + B 0P + 50 sin(260) + B cos(20) =— —t
me
=—60-—t
eB
and
oS
Qs op,
0
=y+ e [1 -+ cos(20)] ;—132

0P

(16.157)

(16.158)

(16.159)

(16.160)

(16.161)

(16.162)

(16.163)

(16.164)

(16.165)

(16.166)

(16.167)



16.8. ACTION-ANGLE VARIABLES 23

Now since H (P,Q) = 0, we have that Qo = 0, which means that each Q, is a constant. We
therefore have the following solution:

x(t) = o+ A sin(w.t + 0) (16.168)
y(t) =y + A cos(w.t +6) , (16.169)

where w. = eB/mc is the ‘cyclotron frequency’, and

P
Lo = Ce—_g v Yo = Q2 ) 0= We Ql ) A= i 2mP1 . (16170)

16.8 Action-Angle Variables

16.8.1 Circular Phase Orbits: Librations and Rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separa-
tion of variables. Each momentum p, is a function of only its corresponding coordinate ¢,
plus constants — no other coordinates enter:

oW,
s = B P45, A) (16.171)

The motion satisfies
H,(¢5:p,) = 4, - (16.172)

The level sets of H, are curves C,. In general, these curves each depend on all of the
constants A, so we write C, = C»(A). The curves C, are the projections of the full motion
onto the (¢o,po) plane. In general we will assume the motion, and hence the curves C,,
is bounded. In this case, two types of projected motion are possible: librations and rota-
tions. Librations are periodic oscillations about an equilibrium position. Rotations involve
the advancement of an angular variable by 27 during a cycle. This is most conveniently
illustrated in the case of the simple pendulum, for which

2

H(p¢,¢) = % + %Iw2 (1 — oS (b) . (16.173)

e When E < Jw?, the momentum py vanishes at ¢ = + cos }(2E/Iw?). The system
executes librations between these extreme values of the angle ¢.

e When E > I w?, the kinetic energy is always positive, and the angle advances mono-

tonically, executing rotations.

In a completely integrable system, each C, is either a libration or a rotation®. Both librations
and rotations are closed curves. Thus, each C, is in general homotopic to (= “can be

5 . . . . .
°C, may correspond to a separatrix, but this is a nongeneric state of affairs.
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rotations

=t O T

Figure 16.2: Phase curves for the simple pendulum, showing librations (in blue), rotations
(in green), and the separatrix (in red). This phase flow is most correctly viewed as taking
place on a cylinder, obtained from the above sketch by identifying the lines ¢ = w and

¢ = —m.

continuously distorted to yield”) a circle, S'. For n freedoms, the motion is therefore
confined to an n-torus, T™:

n times
.

™ =S' xSt x... xSt . (16.174)

These are called invariant tori (or invariant manifolds). There are many such tori, as there
are many C, curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the
dynamical system, expressed as a set of coupled ordinary differential equations.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension n.
Phase space is ‘covered’ by the invariant tori, but it is in general difficult to conceive of how
this happens. Perhaps the most accessible analogy is the n = 1 case, where the ‘1-tori’ are
just circles. Two-dimensional phase space is covered noninteracting circular orbits. (The
orbits are topologically equivalent to circles, although geometrically they may be distorted.)
It is challenging to think about the n = 2 case, where a four-dimensional phase space is
filled by nonintersecting 2-tori.

16.8.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (g,p) to new co-
ordinates (¢, J) which specify a particular n-torus T" as well as the location on the torus,
which is specified by n angle variables. The {J,} are ‘momentum’ variables which specify
the torus itself; they are constants of the motion since the tori are invariant. They are
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called action variables. Since J, = 0, we must have

. OH

J,=—7=—=0 = H=H(J). (16.175)
0o

The {¢,} are the angle variables.

The coordinate ¢, describes the projected motion along C,, and is normalized by

j{dqﬁg =27 (once around Cy) . (16.176)
Co

The dynamics of the angle variables are given by

. om
by =55 =ve0). (16.177)

Thus,
¢J(t) = (250(0) + VU(J) t. (16178)

The {vs(J)} are frequencies describing the rate at which the C, are traversed; T,(J) =
27 /vg(J) is the period.

16.8.3 Canonical Transformation to Action-Angle Variables

The {J,} determine the {C,}; each ¢, determines a point on C,. This suggests a type-II
transformation, with generator F,(q, J):

8F2 8F2
= == 16.1
S R (16.179)
Note that®
OF, O%Fy )
2r = ¢ dop, = Pd = dq, = — d 16.180
v=faon= fa(372) = § 55,50, 0= g3, o (160.150)
Co Co Co Co
which suggests the definition
1
J, = %]épa dq, . (16.181)
Co
Le. Jy is (2m)~! times the area enclosed by C,.
If, separating variables,
Wi, 4) =) W,(g,.4) (16.182)

Bﬂ) _ _9%Fy
0Js) T 0Js 0qa
coordinates and momenta other than ¢, and p, are held fixed. Thus, @ = o is the only term in the sum

which contributes.

5In general, we should write d( dq, with a sum over a. However, in eqn. 16.180 all
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is Hamilton’s characteristic function for the transformation (¢,p) — (Q, P), then

oW,

S lo = T () (16.183)

a 27T g

Co

is a function only of the {A,} and not the {I,}. We then invert this relation to obtain
A(J), to finally obtain

Fy(q, J) = W(q, A(T)) = W, (q,, A(J)) . (16.184)

Thus, the recipe for canonically transforming to action-angle variable is as follows:

(1) Separate and solve the Hamilton-Jacobi equation for W(q, A) = > W5(qs, A).
(2) Find the orbits C, — the level sets of satisfying Hy(¢s, po) = Ao

(3) Invert the relation J,(A) = 55 an dgs to obtain A(J).

(4) Fy(q,J) =Xy Wo(go, A(J)) is the desired type-II generator”.

16.8.4 Example : Harmonic Oscillator

The Hamiltonian is )

p
H=o—+ tmwie® (16.185)
hence the Hamilton-Jacobi equation is
dw\’ 2 2 2
a0 + mwiq” =2mA . (16.186)
Thus,
dW
p= o :I:\/Zm/l m2wiq? (16.187)
We now define
oA \1/2
qg= <—2> sinf = p=+v2mA cosf , (16.188)
mwg
in which case
2w
/1
= — df cos?0 = — . (16.189)
wo
0

"Note that F,(q,.J) is time-independent. I.e. we are not transforming to H = 0, but rather to H = H(J).
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Solving the HJE, we write
dW  0q dW

— = . —— =2Jcos%0 . 16.190
a9~ 90 dg o8 ( )
Integrating,
W =J0+3Jsin20 (16.191)
up to an irrelevant constant. We then have
ow . 00
¢:Wq:9+%sm29+,](1+cos29)$q. (16.192)

To find (00/0J), we differentiate ¢ = /2.J/mwy sin:

sin 6 2J 00 1
dqg = ———dJ —_— 0 do —| = —— tanf . 16.193
U= Tamnd N i 0= Gy =gt (16.193)

Plugging this result into eqn. 16.192, we obtain ¢ = . Thus, the full transformation is
97 \1/2
q= <—> sing ., p=+/2mwyJ cos¢ . (16.194)
mwo

The Hamiltonian is
H=uw,J, (16.195)

hence ¢ = %—If =w, and J = —%—g = 0, with solution ¢(t) = ¢(0) + wyt and J(t) = J(0).

16.8.5 Example : Particle in a Box

Consider a particle in an open box of dimensions L, x L, moving under the influence of
gravity. The bottom of the box lies at z = 0. The Hamiltonian is

2 2 2

Pz By + P2 +mgz . (16.196)

H =
2m  2m  2m

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The Hamilton-
Jacobi equation is written

1 (oW, 1 (oW, ¥ 1 (oW, _
—<W> +—<a—y> +—< 92 ) +mgz=E=A,. (16.197)

2m 2m 2m

We can solve for W, , by inspection:

Wy(r) =~2mA z , W,(y)=2mA,y . (16.198)

We then have®

Wi(z) = —y/2m(4: — A, — A, —mgz) (16.199)
2v/2 3/2
A Ty - . 16.2
W, (z) 3\/%9( y — Mgz) (16.200)

80ur choice of signs in taking the square roots for W2, W?j, and W, is discussed below.
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2. 2,

% motioh Zz motion

Figure 16.3: The librations C, and C,. Not shown is C,, which is of the same shape as C,.

Step two is to find the C,. Clearly p;, = /2mA; . For fixed p;, the x motion proceeds
from x = 0 to x = L, and back, with corresponding motion for y. For x, we have

p.(2) = W.(2) = \/2m(/1z — Ay — Ay —mgz) | (16.201)

and thus C. is a truncated parabola, with z = (A4, — A, — Ay)/mg.

Step three is to compute J(A) and invert to obtain A(J). We have

Ly
7'(' T

2w
Ca 0
Ly
1 1 L
J, = %jépy dy = ;/dy,/2m/1 = f,/zm/ly (16.203)
Cy 0
and
1 1 max
J, = %?{pzdz = ;/dx \/2m(/lz — Ay — Ay —mgz)
C. 0
2v2
_ 2 (A — A, — A,)** . (16.204)
3my/mg
We now invert to obtain
2 2
Ap=——J? Ay=——J? 16.2
2mL2 Ja ’ Y 2mL§ Ty (16.205)
3my/myg 2/3 9 2 w2
A, = (22} g3 J? J? 16.206
< 2V2 > = T omrz e T ompz v (16.206)
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. Ty 2m2/3gl/32 3/2
Fy(z,y,2,J,,J,,J,) = I Jy + I, Jy, + 7T<J22/3 — 7(3@2/3 , (16.207)
We now find 5 5
F, 7 Fy  my
_ _ — = _J 16.2
=7 7L b =73 7, " 1L, (16.208)
and
6F2 2’171,2/391/32 z
= = 1= 4 = _ 1— 16.2
¢z an 7T\/ (37TJz)2/3 " Zmax 7 ( 6 09)
where y
_ (3wJ,)?/3
max(JZ) _— W . (16.210)
The momenta are OF J OF 7
2 Ty 2 Ty
e _ Yz =_2__79 16.211
PSS L, BTy L, (16.211)
and y
1/2
_O0Fy 3myvmyg 273 2/3
P= 5o = —V2m <<W JZ° —mgz . (16.212)

We note that the angle variables ¢, . seem to be restricted to the range [0, 7], which
seems to be at odds with eqn. 16.180. Similarly, the momenta p, 4 . all seem to be positive,
whereas we know the momenta reverse sign when the particle bounces off a wall. The origin
of the apparent discrepancy is that when we solved for the functions W, , ., we had to take

a square root in each case, and we chose a particular branch of the square root. So rather
than Wy (x) = v/2mA, x, we should have taken

V2mA, if py >0
W (z)=4 V"0t P = (16.213)
V2mAy 2L, —x) ifp, <O0.
The relation J, = (L, /m)v/2mA, is unchanged, hence
LZC xT .f x
W, (z) = (nw/Le) N ! (16.214)
2nJy — (mx/Ly) Jp  if pp <O .
and
L, if pr >0
o, =™/ np (16.215)
m(2Ly —x)/Ly if pp <O .

Now the angle variable ¢, advances by 27 during the cycle C,. Similar considerations apply
to the y and z sectors.
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16.8.6 Kepler Problem in Action-Angle Variables

This is discussed in detail in standard texts, such as Goldstein. The potential is V(r) =
—k/r, and the problem is separable. We write”

W(r,60,0) = W,(r) + Wy(60) + W, () , (16.216)
hence
1 8Wr . 1 8W9 2 1 aW@ 2
2m =E=A, . 16.21
2m< or > i 2mr2< 90 ) i 2m7’2sin29< D ) +Vir) r (16.217)
Separating, we have
1 (dW,\ B aw,
%( dp > =4, = J,= ]édso o 2m\/2mA, . (16.218)

©

Next we deal with the 6 coordinate:
1 [(dWy\ A
e e
2m< do > " sin%9 -
0o
J, = 4y/2mAq /d@ V1 (Ag/4g) esc2
0

- 277\/2771(\//1 - \/ASD) , (16.219)
where 0y = sin~!(A,/4p). Finally, we have!”

2
1 <dWT> gk

om \ dr

2
= —(Jy + J,) + 7k, /% , (16.220)

where we’ve assumed F < 0, i.e. bound motion.

Thus, we find
2 2
Hep—___2Tmk - (16.221)
(JT + Jo + Jgo)

Note that the frequencies are completely degenerate:

1/2
OH dnPmk? <712m/<;2>/

1% = = -
r,0,0 &]ﬁ@,sﬂ (JT+J6+J¢)3 2‘E’3

v= (16.222)

9We denote the azimuthal angle by ¢ to distinguish it from the AA variable ¢.
9The details of performing the integral around C, are discussed in e.g. Goldstein.
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This threefold degeneracy may be removed by a transformation to new AA variables,

(O ANCIANCIVAL SR CAFANCA SRS (16.223)
using the type-II generator
F2(¢7“7 ¢9, ¢goa J17 J27 J3) = (gb@ - ¢9) Jl + (¢9 - gbr) ']2 + qbr J3 ) (16224)

which results in
OF: 2 OF: 2

8F2 aF2
_ Y2 =2 _J — 16.22
b= 57 =% Ty = Ggr =2 (16.226)
8F2 8F2
_ Y2 Sl . 16.22
¢3 8J3 (br Jgo aqb@ Jl ( 6 7)
The new Hamiltonian is —
H( Ty Jy) = -2 (16.228)
3

whence v = v, =0 and vy = v.

16.8.7 Charged Particle in a Magnetic Field

For the case of the charged particle in a magnetic field, studied above in section 16.7.7, we
found

B chPs c .
and
Dy = \/2mP; cosf , py=D. (16.230)
The action variable J is then
2
B ~ 2mcPy 9, mch
J—}{pxdw— B /d@ cos“f = B (16.231)
0
We then have
W = J0 + 3Jsin(20) + Py , (16.232)
where P = P,. Thus,
ow
Y
1. 00
=0+ £sin(260) + J[1 + cos(26)] 37
tan 6
=0+ $sin(20) +2J cos? - <— a;{a} >

—9. (16.233)
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The other canonical pair is (Q, P), where

oW 2cJ

Q_a—P:y eB

Therefore, we have

and

The Hamiltonian is
2 2
Dz 1 eBx
H=1te y — (p 22
2m i 2m <py c >

eBJ
me

B

_ 27 cos?¢ + sin?¢
mc

=w,J ,

where we, = eB/mec. The equations of motion are

OH . OH

¢:W:wc s J:—%:0
and OH OH
@ oP 0 ' oQ 0

Thus, @, P, and J are constants, and ¢(t) = ¢, + wct.

16.8.8 Motion on Invariant Tori

The angle variables evolve as

¢ (t) = vo(J) t 4 ,(0) .

(16.234)

(16.235)

(16.236)

(16.237)

(16.238)

(16.239)

(16.240)

Thus, they wind around the invariant torus, specified by {.J,} at constant rates. In general,

while each ¢, executed periodic motion around a circle, the motion of the system as a whole
is not periodic, since the frequencies v,(.J) are not, in general, commensurate. In order for

the motion to be periodic, there must exist a set of integers, {l,}, such that

2": lyv,(J)=0.
o=1

(16.241)
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This means that the ratio of any two frequencies vy /v, must be a rational number. On a
given torus, there are several possible orbits, depending on initial conditions ¢(0). However,
since the frequencies are determined by the action variables, which specify the tori, on a
given torus either all orbits are periodic, or none are.

In terms of the original coordinates ¢, there are two possibilities:

4, (1) = Z Z AZIZHZH c1o1(t) . ilndn(t)
l1=—0o0 lp=—00
=Y " Aze*?"  (libration) (16.242)
)
or
q,(t) = ¢ o, (t) + Z By ¢ (rotation) . (16.243)
P

For rotations, the variable ¢,(t) increased by Ag, =27 ¢S . R

16.9 Canonical Perturbation Theory

16.9.1 Canonical Transformations and Perturbation Theory

Suppose we have a Hamiltonian
H(Evt) = H(](gvt) +€H1(£7t) ’ (16244)

where € is a small dimensionless parameter. Let’s implement a type-II transformation,
generated by S(q, P, t):!!

~ 0
A(Q. P.t) = H{g.p.t) + 1 S(a, P.t) (16.245)
Let’s expand everything in powers of e:
qde = Qo’ + qu,o + 62 Q2,U RREE (16246)
pe =P, +ep,+ e Doyt .- (16.247)
H=H,+eH + e Hy+... (16.248)
S= Gl +eS +S,+... . (16.249)
———
identity
transformation
Then
oS 651 2 8512
= = e 16.2
Qs op, Yo teap teap (16.250)

. 051 95
—QJ+ <q1,0+ 8P0.>6+ (qlo“‘ an)E + ...

" Here, S(q, P,t) is not meant to signify Hamilton’s principal function.




34 CHAPTER 16. HAMILTONIAN MECHANICS

and
oS 851 9 052
=P + 16.251
o = 4s O g ( )
=P, +€ep,+ e Pogtooe - (16.252)

We therefore conclude, order by order in e,

Qoo = _g}sji . Dho = +g—‘§j . (16.253)
Now let’s expand the Hamiltonian:
H(Q, Pt) = Hy(q,p,1) + € Hy (q,0,1) + 5 (16.254)
— (@ P.0)+ 50 (4, Qo) + 522 (0, — )
e QP + €2 5,(Q. Pt) + O()

ot
- OH, 0S5, OH, 05,
_HO(Q7P7t)+ < aQo’ 8Po— + aP aQo’

oS
+ 8—751 +H1> 6+O(62)
851 2
= Hy(Q,P,t)+ <H + {5, Hy} + >e+0(e ). (16.255)

In the above expression, we evaluate H,(q,p,t) and S, (q,P,t) at ¢ = Q and p = P and
expand in the differences ¢ — @ and p — P. Thus, we have derived the relation

H(Q,P,t) = Hy(Q,P,t) + eH,(Q,Pt) + ... (16.256)

with
Hy(Q, P,t) = Hy(Q, P;t) (16.257)
H,(Q,Pt)=H, +{S,,Hy} + % . (16.258)

The problem, though, is this: we have one equation, eqn, 16.258, for the two unknowns H 1
and S|. Thus, the problem is underdetermined. Of course, we could choose ﬁ = 0, which
basmally recapitulates standard Hamilton-Jacobi theory. But we might just as well demand
that H satisfy some other requirement, such as that H + eH being integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary
transformation may be implemented to eliminate a perturbation to lowest order in a small
parameter. Consider the Schrodinger equation,

oY

hogy = Mo+ eH) v, (16.259)
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and define X by '
=S, (16.260)

with
S=eS +e2Sy+... . (16.261)

As before, the transformation U = exp(iS/h) collapses to the identity in the € — 0 limit.
Now let’s write the Schrodinger equation for X. Expanding in powers of €, one finds

X 1 05, e

where [A, B] = AB — BA is the commutator. Note the classical-quantum correspondence,
1
{A,B} «— = [A, B] . (16.263)

Again, what should we choose for S;7 Usually the choice is made to make the O(e) term
in H vanish. But this is not the only possible simplifying choice.

16.9.2 Canonical Perturbation Theory for n = 1 Systems

Henceforth we shall assume H (£, t) = H(§) is time-independent, and we write the perturbed
Hamiltonian as

H(§) = Hy(§) + eH, () - (16.264)
Let (¢g,J,) be the action-angle variables for H,. Then
ﬁO((bO’ JO) = HO(q(¢07 J0)7p(¢07 JO)) = ]SIO(JO) : (16265)
We define )
H, (69, Jy) = Hy (a(¢0: Jy): (¢, Jp)) - (16.266)

We assume that H = ﬁo + eﬁl is integrable!?, so it, too, possesses action-angle vari-
ables, which we denote by (¢, J)!3. Thus, there must be a canonical transformation taking

(b9, Jy) — (0, ), with

H($o(, J), J(@, J)) = K(J) = E(J) . (16.267)
We solve via a type-II canonical transformation:
S(bo, J) = bo + €51 (¢g, J) + € Sy, ) + - (16.268)
where ¢,J is the identity transformation. Then
oS 651 2 8512
Jy=5—=J+e—+e —+... 16.269
=360 "t 960 T B0 (16:269)
08 051 9 052
¢—8J—¢0+68J+6 8J+..., (16.270)

12This is always true, in fact, for n = 1.
13We assume the motion is bounded, so action-angle variables may be used.
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and

E(J) = Ey(J) + e E{(J) + € Ey(J) + ... (16.271)
= Hy(6g, Jo) + Hy (¢, o) - (16.272)

We now expand H (g, Jy) in powers of J, — J:

JZI((bO?JO) :ﬁo((bow]o) +6ﬁ1(¢07J0) (16.273)
- oH, o%H
= O(J)+W(JO—J)+% 8J20 (Jo—J)*+...
OH
e dH, 95
= Hy(J) + < 1(%0:J0) + 55 (%0) (16.274)
0y 08, |1 Py (05)\* 0, 051\
dJ Opg 2 0J% \ Do dJ Oy
Equating terms, then,
Ey(J) = Hy(J) (16.275)
- OH, 05,
E\(J) = Hy(do,J) + 57 90 (16.276)
COH, 98, 1 &H, (98 OH, 95
BT =57 by 2 0J% \ ¢y dJ 9o (16:277)

How, one might ask, can we be sure that the LHS of each equation in the above hierarchy
depends only on J when each RHS seems to depend on ¢, as well? The answer is that we

use the freedom to choose each S, to make this so. We demand each RHS be independent
of ¢y, which means it must be equal to its average, (RHS(¢,) ), where

(f(¢0)) = /dq50 (%) - (16.278)

0

The average is performed at fized J and not at fixed J,. In this regard, we note that holding
J constant and increasing ¢, by 27 also returns us to the same starting point. Therefore,
J is a periodic function of ¢,. We must then be able to write

S, (¢, ) Z S,.(J;m) 'm0 (16.279)

m=—00

for each k£ > 0, in which case

OSk\ _ 1 g oy _
<8750> = —[S,(2m) = S,(0)] =0 (16.280)
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Let’s see how this averaging works to the first two orders of the hierarchy. Since ﬁO(J ) is
independent of ¢, and since 95,/0¢, is periodic, we have

this vanishes!

Ey(J) <ﬁ1(¢o,J)>+%<%> (16.281)

and hence S| must satisfy
o8, _ (M) - H,
O¢o vo(J)

where vy(J) = dH,/dJ. Clearly the RHS of eqn. 16.282 has zero average, and must be a
periodic function of ¢,. The solution is S; = S, (¢, J) + g(J), where g(J) is an arbitrary
function of J. However, g(J) affects only the difference ¢ — ¢, changing it by a constant
value ¢'(J). So there is no harm in taking g(J) = 0.

(16.282)

Next, let’s go to second order in e. We have

Of, 95 0 251\ k’l—a’gé

— (gL 190 [ (901 55,

Ey(J) = < aJ 6¢0> T2 <<8¢1> > +vy(J) <a¢0> : (16.283)
The equation for S, is then

08y _ 1 JJOH\N oy [OHy 5\ OH, . OH)
90 ug(J){< a7 ><H0> < a7 H0> a7 )+ 57

+ % 831;0 <<F112> — o, 4 2(H,) - ﬁ%) } : (16.284)

The expansion for the energy F(J) is then

- . €2 OH - OH, -
E(J) = H, H — )V (H) - (= H
= ool s s (5 iy - ()
10nyy 7/, ~ ~ 9
+5 5 <<H12 — (H,) )} + 0O . (16.285)
Note that we don’t need S to find E(J)! The perturbed frequencies are

v(J) = (16.286)

aJ
Sometimes the frequencies are all that is desired. However, we can of course obtain the full
motion of the system via the succession of canonical transformations,

(@, J) — (dg,Jy) — (a.p) - (16.287)
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\/J—O mu

Figure 16.4: Action-angle variables for the harmonic oscillator.

16.9.3 Example : Nonlinear Oscillator

Consider the nonlinear oscillator with Hamiltonian

HO
—N—
p2
H(q,p) =5— + smugq” +jeaq” . (16.288)

2m

The action-angle variables for the harmonic oscillator Hamiltonian H, are

p2

0 2muy

¢y = tan"! (mvg/p) + smyyd® (16.289)

and the relation between (¢, J;,) and (g, p) is further depicted in fig. 16.4. Note H, = v, J,.
For the full Hamiltonian, we have

N 127, .
H(py, Jy) = vydy + iea( m—uo sin ¢0>

€@ o .y
= VOJO + mleg JO sin ¢0 . (16290)
We may now evaluate
72 fas J?
~ o 0 . 4 3o

E(J)=(H,) = — =— . 16.291
1( ) < 1> m2y§ / 2 St % 8m21/§ ( )

The frequency, to order e, is

3ead

v(J) =1y, R (16.292)

Now to lowest order in €, we may replace J by J;, = %TTLI/(]A2, where A is the amplitude of

the ¢ motion. Thus,
Jex

V(A) =1, + (16.293)

8771,1/0 '



16.9. CANONICAL PERTURBATION THEORY 39

This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt
method.

Next, let’s evaluate the canonical transformation (¢, J,) — (¢,J). We have

851 OZJ2 .
A 900 = mTyg (% — 51n4<;50> =
ead?
S(pg,J) = ¢y J —|— P (3 + 2sin gbo) sin ¢ cos ¢y + O(e ) (16.294)
L0
Thus,
oS J
6= =0+ % (3 + 2sin’pp) sin ¢ cos ¢y + O(e?) (16.295)
2
Jy = 95 =J ca/ (4 COS 2¢y; — €Os 4¢0) +O(e?) . (16.296)

N * 8m2u3

Again, to lowest order, we may replace J by J, in the above, whence

cat? 9
J=J,— o2 8’(4 cos 2¢ — cos 4, ) + O(€”) (16.297)
¢ = ¢y + EaJO (3 +2 Sln2¢0) sin 2¢, + O(e 2. (16.298)

To obtain (g,p) in terms of ((b, J) is not analytically tractable — the relations cannot be
analytically inverted.

16.9.4 n > 1 Systems : Degeneracies and Resonances

Generalizing the procedure we derived for n = 1, we obtain

oS 851 9 052
Jy = =J%+ +€ +. 16.299
0 a(b() a(b() a(b() ( )
o« O0S 851 9 053
=g =t te ot (16.300)
and
Ey(J) = Hy(J) (16.301)
~ oS
Ey(J) = Hy(¢g, J) + v (J) 875; (16.302)
0
_OHy 05y |1 vy 981 05, 9%
Ey(J) = 97n 000 T2 97 dgp 8¢g + 15 a5 ° (16.303)
We now implement the averaging procedure, with
27Td¢1 27rd¢n
1 ny\ _ “vo ... | Z¥0 1 n 7l n
<f(J,...,J)>_/27T /% f(dg, .. 05,00, T") . (16.304)

0 0
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The equation for S| is

o 051

/1 T o— Zlf¢t
g = (H,)— H, = § Ve (16.305)
where £ = {¢* /% ... ("}, with each 7 an integer, and with £ # 0. The solution is
' Ve cito
16.
¢0, E 7 v (16.306)

where £ - v, = [“v§’. When two or more of the frequencies v, (J) are commensurate, there
exists a set of integers [ such that the denominator of D(l) vanishes. But even when the
frequencies are not rationally related, one can approximate the ratios v§'/ 1/00/ by rational
numbers, and for large enough [ the denominator can become arbitrarily small.

Periodic time-dependent perturbations present a similar problem. Consider the system

H(p,J,t) =Hy(J)+eV(p,J,t), (16.307)

where V(t 4+ T) = V(¢). This means we may write

V(p,J,t) Z V. (¢, J) e e (16.308)
= Z D Vo) et o ek (16.309)
k £

by Fourier transforming from both time and angle variables; here {2 = 27/T. Note that
V(e,d,t) is real if V}*, = V_, _,. The equations of motion are

J7 == gw = i€ ) 1V g (J) P e (16.310)

. OH ov, (J) .

P = =+p = Ve (J) + € %ﬁy) et =R (16.311)
k.l

We now expand in e:

P =P +ed + 2T + ... (16.312)
JY=J8+ e+ T8+ ... (16.313)

To order €°, J* = J§ and ¢§ = v§t + 5. To order €,

— —ZZla kg ﬂl/o k)t Zﬁﬂo (16314)
and .
. « av, (J) . .
¢% = % Jlﬁ g%i) ez(z.yo—kﬂ)t ewﬁo , (16.315)

k.2
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where derivatives are evaluated at J = Jj,. The solution is:

1°Vie(Jo) pi(Evy—kD)t il
Z o 0 %Po (16.316)
ovg 1P Vie(Jo) OV, o(J) 1 (L, —kQ)t _ilB
o ) J wey v . 16.31
§ {8,]5 ko—Cwp "o ke ¢ 16D
When the resonance condition,
k2 =£-vy(Jy) (16.318)

holds, the denominators vanish, and the perturbation theory breaks down.

16.9.5 Particle-Wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic field B = B2
and a space- and time-varying electric field E(x,t), described by the Hamiltonian

1
H = %(p - %A)2 +eeV cos(k, v+ k, z — wt) , (16.319)

where € is a dimensionless expansion parameter. Working in the gauge A = Bzxy, from our
earlier discussions in section 16.7.7, we may write
k. P 2J

+k;
MWe Mwe

P 2 2
T = +14/ J sin ¢ , y=Q+/ J cos ¢ , (16.321)
Mwe Mwe Mwe

with w. = eB/me, the cyclotron frequency. We now make a mixed canonical transformation,
generated by

%
H=uw J—I—Zm—l—eeVO cos<k‘zz+

sin ¢ — wt> . (16.320)

Here,

kP
F=J + (kzz n me - wt) K' - PQ', (16.322)

C

where the new sets of conjugate variables are {(¢/,J'), (@', P"), (¢/,K')}. We then have

or oFr
o 57 =¢ J = 8_¢ =J (16.323)
o 8F o ]{TJ_KI / / 8F _
Q__8_P__mwc +Q P __O—Q’_P (16.324)
oF kP oF
’l/}/ — 8K/ — kZZ + ,ni-wc _ wt pz = 5 = kZK/ . (16325)
The transformed Hamiltonian is
oF
H =H+=—
o

k2 2J'
=wJ + ﬁ K? —wK +e¢ eV, cos <¢’ +k sin ¢/> . (16.326)
mw,

C
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We will now drop primes and simply write H = H, 4 ¢ H,, with

k‘2
Hy = weJ + ﬁ K? —wK (16.327)

2
H, =€V, cos <1/J +k 4/ mi sin <;S> . (16.328)

When e = 0, the frequencies associated with the ¢ and 1 motion are

o _ 9Hy _ L
¢~ ’ YT m

6

—w=kuv, —w, (16.329)
where v, = p,/m is the z-component of the particle’s velocity. Now let us solve eqn. 16.305:

aS as
0 1 0 1
S Tl (H,)—H, . (16.330)

This yields

051 (KK \9S 2] .
5 ()52 o 01 )

= —eA, Z J, <k‘l\/%> cos(¢ +ng) , (16.331)

n=—oo

where we have used the result

o0
O (16.332)

n=—oo

The solution for S, is

_ eVo [ 2J )
= Zn: w—nwe — k2K /m In (kL mwc) sin(y) +ng) . (16.333)

We then have new action variables J and K, where

J=J+e % + O(e?) (16.334)
K=K +e 951 +O(e?) . (16.335)
o
Defining the dimensionless variable
2J
= 16.
A=k, e (16.336)
we obtain the result
mw? <o mw? '\ | ndn(X) cos(y + ne) 5
C — c _ n 16.
<2€V0ki>A <2€V0ki>A ey — g~ TO), (16.337)

n We mwe
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Figure 16.5: Plot of A versus 1 for ¢ = 0 (Poincaré section) for w = 30.11 w, Top panels are
nonresonant invariant curves calculated to first order. Bottom panels are exact numerical
dynamics, with x symbols marking the initial conditions. Left panels: weak amplitude
(no trapping). Right panels: stronger amplitude (shows trapping). From Lichtenberg and
Lieberman (1983).

where A = k| \/2J /mwc.

We see that resonances occur whenever

w kK

We  MWwe

=, (16.338)

for any integer n. Let us consider the case k, = 0, in which the resonance condition is
w = nw.. We then have

N2 02~ (M) cos(y + ng) (16.339)
20 20~ o 7 |
where E, k
0 CRL
_ Eo 16.34
“TB o

MNote that the argument of J,, in eqn. 16.337 is A and not X. This arises because we are computing the
new action J in terms of the old variables (¢, J) and (¢, K).
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is a dimensionless measure of the strength of the perturbation, with £, = k, V. In Fig.
16.5 we plot the level sets for the RHS of the above equation A(¢)) for ¢ = 0, for two different
values of the dimensionless amplitude «, for w/w, = 30.11 (i.e. off resonance). Thus, when
the amplitude is small, the level sets are far from a primary resonance, and the analytical and
numerical results are very similar (left panels). When the amplitude is larger, resonances
may occur which are not found in the lowest order perturbation treatment. However, as
is apparent from the plots, the gross features of the phase diagram are reproduced by
perturbation theory. What is missing is the existence of ‘chaotic islands’ which initially
emerge in the vicinity of the trapping regions.

16.10 Adiabatic Invariants

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical
system. A classic example: a pendulum with a slowly varying length [(¢). Suppose A(t)
is the adiabatic parameter. We write H = H (q,p; )\(t)). All explicit time-dependence to
H comes through A(t). Typically, a dimensionless parameter ¢ may be associated with the

perturbation:
1

€ =

= — 16.341
- (16.341)

dln A\
dt |’

where w;, is the natural frequency of the system when A is constant. We require € < 1 for
adiabaticity. In adiabatic processes, the action variables are conserved to a high degree of
accuracy. These are the adiabatic invariants. For example, for the harmonix oscillator, the
action is J = F/v. While E and v may vary considerably during the adiabatic process,
their ratio is very nearly fixed. As a consequence, assuming small oscillations,

2J

_ _ 1 2 ~
E=vJ= Emgl 90 = 90(1) ~ W 5

(16.342)

80 0 (£) oc 173/4,

Suppose that for fixed A the Hamiltonian is transformed to action-angle variables via the
generator S(q,J;A). The transformed Hamiltonian is

H(g,J,t) = H(e, J; \) + g—i Cfl—? : (16.343)
where
H(p, J;\) = H(q(o, J; N),p(¢, J; A); A) (16.344)
We assume n = 1 here. Hamilton’s equations are now
¢ = +aa—§[ = v(J;\) + % ‘CZZ—? (16.345)
jo i 0% d (16.346)

Cd¢ 0N dt
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Figure 16.6: A mechanical mirror.

The second of these may be Fourier decomposed as
. 5 IS (i A) é
_ Y pim 16.34
J i Em m———e"", (16.347)

hence

AA i

16.348
g ( )

[ 0S(TiA)
AJ = J(t =+o0) — J(t = —0) :_sz:m/dt o

Since A is small, we have ¢(t) = vt + (3, to lowest order. We must therefore evaluate
integrals such as
[ee]
IS (J; A) dX\
T, = [dt T T et 16.349
" / on  dt© (16.349)
—o0
The term in curly brackets is a smooth, slowly varying function of t. Call it f(t). We
presume f(t) can be analytically continued off the real ¢ axis, and that its closest singularity

in the complex ¢ plane lies at ¢ = +i7, in which case Z behaves as exp(—|m|v7). Consider,
for example, the Lorentzian,

o0
= / dt f(t) et = wre”ImvT (16.350)
— o

which is exponentially small in the time scale 7. Because of this, only m = +1 need be
considered. What this tells us is that the change AJ may be made arbitrarily small by a
sufficiently slowly varying A(t).

16.10.1 Example: mechanical mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 16.6. A particle
bounces between two curves, y = £D(x), where |D'(z)| << 1. The bounce time is 7, | =
2D /vy. We assume 7 < L/v,, where v, are the components of the particle’s velocity, and
L is the total length of the system. There are, therefore, many bounces, which means the
particle gets to sample the curvature in D(x).
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The adiabatic invariant is the action,

D -D
1 1 2
J = o /dymvy + %/dym(—vy) = mu, D(x) . (16.351)
-D D
Thus,
1 2 2 1,,2 w2 J?
E = sm(vi+v,) = 5mu + SmD2() (16.352)
or )
2F wJ
2
=— — | — . 16.
vy = <2mD(x)> (16.353)
The particle is reflected in the throat of the device at horizontal coordinate x*, where
wJ
D(z*) = . 16.354
@)= o= (16.354)

16.10.2 Example: magnetic mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field B = BZ2.
Recall the basic physics: velocity in the parallel direction v, is conserved, while in the plane
perpendicular to B the particle executes circular ‘cyclotron orbits’, satisfying
2
mv] e mev |
=-v,B = = ) 16.355
P c L P ) ( )
where p is the radial coordinate in the plane perpendicular to B. The period of the orbits
is T'= 2mp.v, = 2wmc/eB, hence their frequency is the cyclotron frequency we. = eB/mec.

Now assume that the magnetic field is spatially dependent. Note that a spatially varying
B-field cannot be unidirectional:

0B,
0z
The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if
the field B felt by the particle varies slowly on the time scale T' = 27 /wc, then the system
possesses an adiabatic invariant:

V.-B=V,-B +22=0. (16.356)

1 1
J:%%p.de:%jq{(mv+§14)-de (16.357)
C C
L S VT jéB-ﬁdE. (16.358)
2 27e
C int(C)
The last two terms are of opposite sign, and one has
B
J= PP ot B, (16.359)
2 mc 27c
eB,p? e mzvic
- _ - P _(C) = — 16.360
2c 2me 5(C) 2eB, ’ ( )
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A
___//—\
v

Figure 16.7: B field lines in a magnetic bottle.

where ® ;(C) is the magnetic flux enclosed by C.

The energy is

E=1imvi + imo? | (16.361)
hence we have
2
v, — (E—MB) . (16.362)
where
= —% J= %:w? Dp(C) (16.363)

is the magnetic moment. Note that v, vanishes when B = Byax = F/M. When this limit
is reached, the particle turns around. This is a magnetic mirror. A pair of magnetic mirrors
may be used to confine charged particles in a magnetic bottle, depicted in fig. 16.7.

Let Yy 00 V1o and B‘ o be the longitudinal particle velocity, transverse particle velocity,
and longltudmal component of the magnetic field, respectively, at the point of injection.
Our two conservation laws (J and E) guarantee

vi(2) + vl (2) = vf g + 01 (16.364)
2
M(Z)Z Ul o
_ Lo (16.365)
By(z) By

This leads to reflection at a longitudinal coordinate z*, where

(16.366)

The physics is quite similar to that of the mechanical mirror.
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16.10.3 Resonances

When n > 1, we have

T - @ 857”(']7 /\) m-¢
Jo = —i) Emjm e (16.367)
_ . § : « T 8Sm(‘]ﬂ )‘) dA im-vt _im-3

Therefore, when m - v(J) = 0 we have a resonance, and the integral grows linearly with
time — a violation of the adiabatic invariance of J<.

16.11 Appendix : Canonical Perturbation Theory

Consider the Hamiltonian

p2 1 2 2 1 2q3
H=—+:smw FEMWH —
2m+2 09"+ 3 0°q

where € is a small dimensionless parameter.

(a) Show that the oscillation frequency satisfies v(.J) = wy + O(e?). That is, show that the
first order (in €) frequency shift vanishes.

Solution: It is good to recall the basic formulae

q= 511]5 sin ¢, , P =/ 2mwyJy cos ¢, (16.369)
0
as well as the results
L0 08, 508
JO_@(bO_J+68¢0+€ 8¢O—|—... (16.370)
B oS B 651 2 852
¢_$_¢0+eaj+e aJ+..., (16.371)
and
Ey(J) = Hy(J) (16.372)
- oM, 08
Ey(J) = Hy (69, ]) + - 875(1) (16.373)
_OH, 98, 1 &H, (98 OH, 95
E,(J)= 97 8¢0+§ 872 \ 9o 97 a0 (16.374)



16.11. APPENDIX : CANONICAL PERTURBATION THEORY

Expressed in action-angle variables,

Hy(bg, J) = wy J

~ 2 2w
Hy(6,J) = 5\[ g J¥2 sin, .

Averaging the equation for E,(J) yields

_oHy _
Thus, vy = 57 = wy -

E\(J) = (H,(¢y,])) = g\/ T2nwo T3 (sin®gy) = 0.

(b) Compute the frequency shift v(J) to second order in e.

Solution : From the equation for F, we also obtain

o (GRS

Inserting this into the equation for F,(J) and averaging then yields

By(J) =+ <8£ (¢a) - ﬁ1)> V10<ﬁla£

N 4VOJ 6
 3ma? < ¢0>

49

(16.375)

(16.376)

(16.377)

(16.378)

(16.379)

(16.380)

In computing the average of sin6¢0, it is good to recall the binomial theorem, or the Fi-
bonacci tree. The sixth order coefficents are easily found to be {1, 6, 15,20, 15,6, 1}, whence

1 .
sin®g, = (2i)6 g (/%0 — i)’
= & (— 2sin 66, + 12sin 4¢, — 30sin 2¢, + 20) .
Thus,
whence
5 2 J?
E(J) =wyJ — 15¢€ a2
and
OF 52 J
v(J) =55 =W~ g€ -

(c) Find ¢(t) to order e. Your result should be finite for all times.

Solution : From the equation for E,(J), we have

2 2J3
851 __Zz L Sin3¢0 .

Do 3\ mwya?

(16.381)

(16.382)

(16.383)

(16.384)

(16.385)

(16.386)
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Integrating, we obtain

2 2.J3
Sl(qbo, J) = g W (COS ¢0 - % COqubO)
J3/2
:W 7(008%—%0053%) .
Thus, with
S(bg, ) = ¢gJ +€S8(dg, J) + ...,
we have
oS 3 eJV?
0= 57 =T G g (50 9008 3%0)
dS eJ32 .
Jy = 5 =J— N (sin g, — %sm?xﬁo) .

Inverting, we may write ¢, and .J;, in terms of ¢ and J:

3 eJl/? 1

¢0:¢+§W(gcos3¢—cos¢)
€J3/2 1 . .
JOZJ—FW(gSIH?)QS—SIHQS) .
Thus,
2Jy .
t) =
alt) = /22 sing,
:”niio sin¢-<1—|—g—j—|—...><sin¢—|—5¢cosgb—|—...
= 2J sin ¢ — </ (1—1—%0082@)—1—0(62),
mwo mwoa
with

(16.387)

(16.388)

(16.389)

(16.390)

(16.391)

(16.392)

(16.393)

(16.394)

(16.395)

(16.396)

(16.397)



