Chapter 7

Noether's Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential U(r). The potential is a function only of the magnitude of the vector r. The Lagrangian is then

$$L = T - U = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\phi}^2\right) - U(r) , \qquad (7.1)$$

where we have chosen generalized coordinates (r,ϕ) . The momentum conjugate to ϕ is $p_{\phi}=m\,r^2\,\dot{\phi}$. The generalized force F_{ϕ} clearly vanishes, since L does not depend on the coordinate ϕ . (One says that L is 'cyclic' in ϕ .) Thus, although r=r(t) and $\phi=\phi(t)$ will in general be time-dependent, the combination $p_{\phi}=m\,r^2\,\dot{\phi}$ is constant. This is the conserved angular momentum about the \hat{z} axis.

If instead the particle moved in a potential U(y), independent of x, then writing

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - U(y) , \qquad (7.2)$$

we have that the momentum $p_x = \partial L/\partial \dot{x} = m\dot{x}$ is conserved, because the generalized force $F_x = \partial L/\partial x = 0$ vanishes. This situation pertains in a uniform gravitational field, with U(x,y) = mgy, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a *continuous symmetry*, there is an associated *conserved charge*. (The terminology 'charge' is from field theory.) Indeed, this is a rigorous result, known as *Noether's Theorem*. Consider a one-parameter family of transformations,

$$q_{\sigma} \longrightarrow \tilde{q}_{\sigma}(q,\zeta) ,$$
 (7.3)

where ζ is the continuous parameter. Suppose further (without loss of generality) that at $\zeta = 0$ this transformation is the identity, *i.e.* $\tilde{q}_{\sigma}(q,0) = q_{\sigma}$. The transformation may be nonlinear in the generalized coordinates. Suppose further that the Lagrangian L is invariant

under the replacement $q \to \tilde{q}$. Then we must have

$$0 = \frac{d}{d\zeta} \left| L(\tilde{q}, \dot{\tilde{q}}, t) \right| = \frac{\partial L}{\partial q_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \left|_{\zeta=0} + \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \dot{\tilde{q}}_{\sigma}}{\partial \zeta} \right|_{\zeta=0}$$

$$= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \right) \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \left|_{\zeta=0} + \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{d}{dt} \left(\frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \right)_{\zeta=0}$$

$$= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \right)_{\zeta=0}. \tag{7.4}$$

Thus, there is an associated conserved charge

$$\Lambda = \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \bigg|_{\zeta=0} . \tag{7.5}$$

7.1.1 Examples of one-parameter families of transformations

Consider the Lagrangian

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - U(\sqrt{x^2 + y^2}). \tag{7.6}$$

In two-dimensional polar coordinates, we have

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - U(r) , \qquad (7.7)$$

and we may now define

$$\tilde{r}(\zeta) = r \tag{7.8}$$

$$\tilde{\phi}(\zeta) = \phi + \zeta \ . \tag{7.9}$$

Note that $\tilde{r}(0) = r$ and $\tilde{\phi}(0) = \phi$, *i.e.* the transformation is the identity when $\zeta = 0$. We now have

$$\Lambda = \sum_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \bigg|_{\zeta=0} = \left. \frac{\partial L}{\partial \dot{r}} \frac{\partial \tilde{r}}{\partial \zeta} \right|_{\zeta=0} + \left. \frac{\partial L}{\partial \dot{\phi}} \frac{\partial \tilde{\phi}}{\partial \zeta} \right|_{\zeta=0} = mr^2 \dot{\phi} . \tag{7.10}$$

Another way to derive the same result which is somewhat instructive is to work out the transformation in Cartesian coordinates. We then have

$$\tilde{x}(\zeta) = x \cos \zeta - y \sin \zeta \tag{7.11}$$

$$\tilde{y}(\zeta) = x \sin \zeta + y \cos \zeta . \tag{7.12}$$

Thus,

$$\frac{\partial \tilde{x}}{\partial \zeta} = -\tilde{y} \quad , \quad \frac{\partial \tilde{y}}{\partial \zeta} = \tilde{x} \tag{7.13}$$

and

$$\Lambda = \frac{\partial L}{\partial \dot{x}} \frac{\partial \tilde{x}}{\partial \zeta} \bigg|_{\zeta=0} + \frac{\partial L}{\partial \dot{y}} \frac{\partial \tilde{y}}{\partial \zeta} \bigg|_{\zeta=0} = m(x\dot{y} - y\dot{x}) . \tag{7.14}$$

But

$$m(x\dot{y} - y\dot{x}) = m\hat{z} \cdot \mathbf{r} \times \dot{\mathbf{r}} = mr^2\dot{\phi} . \tag{7.15}$$

As another example, consider the potential

$$U(\rho, \phi, z) = V(\rho, a\phi + z) , \qquad (7.16)$$

where (ρ, ϕ, z) are cylindrical coordinates for a particle of mass m, and where a is a constant with dimensions of length. The Lagrangian is

$$\frac{1}{2}m(\dot{\rho}^2 + \rho^2\dot{\phi}^2 + \dot{z}^2) - V(\rho, a\phi + z) . \tag{7.17}$$

This model possesses a helical symmetry, with a one-parameter family

$$\tilde{\rho}(\zeta) = \rho \tag{7.18}$$

$$\tilde{\phi}(\zeta) = \phi + \zeta \tag{7.19}$$

$$\tilde{z}(\zeta) = z - \zeta a \ . \tag{7.20}$$

Note that

$$a\tilde{\phi} + \tilde{z} = a\phi + z \,\,\,\,(7.21)$$

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter family of transformations. The conserved charge for this symmetry is

$$\Lambda = \frac{\partial L}{\partial \dot{\rho}} \frac{\partial \tilde{\rho}}{\partial \zeta} \bigg|_{\zeta=0} + \frac{\partial L}{\partial \dot{\phi}} \frac{\partial \tilde{\phi}}{\partial \zeta} \bigg|_{\zeta=0} + \frac{\partial L}{\partial \dot{z}} \frac{\partial \tilde{z}}{\partial \zeta} \bigg|_{\zeta=0} = m\rho^2 \dot{\phi} - ma\dot{z} . \tag{7.22}$$

We can check explicitly that Λ is conserved, using the equations of motion

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\phi}}\right) = \frac{d}{dt}\left(m\rho^2\dot{\phi}\right) = \frac{\partial L}{\partial \phi} = -a\frac{\partial V}{\partial z}$$
(7.23)

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{z}}\right) = \frac{d}{dt}(m\dot{z}) = \frac{\partial L}{\partial z} = -\frac{\partial V}{\partial z} . \tag{7.24}$$

Thus,

$$\dot{\Lambda} = \frac{d}{dt} (m\rho^2 \dot{\phi}) - a \frac{d}{dt} (m\dot{z}) = 0 . \tag{7.25}$$

7.2 Conservation of Linear and Angular Momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation of all particles in the \hat{n} direction. Then our one-parameter family of transformations is given by

$$\tilde{\boldsymbol{x}}_a = \boldsymbol{x}_a + \zeta \,\hat{\boldsymbol{n}} \,\,, \tag{7.26}$$

and the associated conserved Noether charge is

$$\Lambda = \sum_{a} \frac{\partial L}{\partial \dot{x}_{a}} \cdot \hat{\boldsymbol{n}} = \hat{\boldsymbol{n}} \cdot \boldsymbol{P} , \qquad (7.27)$$

where $P = \sum_a p_a$ is the total momentum of the system.

If the Lagrangian of a mechanical system is invariant under rotations about an axis \hat{n} , then

$$\tilde{\boldsymbol{x}}_a = R(\zeta, \hat{\boldsymbol{n}}) \, \boldsymbol{x}_a
= \boldsymbol{x}_a + \zeta \, \hat{\boldsymbol{n}} \times \boldsymbol{x}_a + \mathcal{O}(\zeta^2) ,$$
(7.28)

where we have expanded the rotation matrix $R(\zeta, \hat{n})$ in powers of ζ . The conserved Noether charge associated with this symmetry is

$$\Lambda = \sum_{a} \frac{\partial L}{\partial \dot{x}_{a}} \cdot \hat{\boldsymbol{n}} \times \boldsymbol{x}_{a} = \hat{\boldsymbol{n}} \cdot \sum_{a} \boldsymbol{x}_{a} \times \boldsymbol{p}_{a} = \hat{\boldsymbol{n}} \cdot \boldsymbol{L} , \qquad (7.29)$$

where L is the total angular momentum of the system.

7.3 Advanced Discussion : Invariance of L vs. Invariance of S

Observant readers might object that demanding invariance of L is too strict. We should instead be demanding invariance of the action S^1 . Suppose S is invariant under

$$t \to \tilde{t}(q, t, \zeta)$$
 (7.30)

$$q_{\sigma}(t) \to \tilde{q}_{\sigma}(q, t, \zeta)$$
 (7.31)

Then invariance of S means

$$S = \int_{t_a}^{t_b} dt L(q, \dot{q}, t) = \int_{\tilde{t}_a}^{\tilde{t}_b} dt L(\tilde{q}, \dot{\tilde{q}}, t) . \tag{7.32}$$

Note that t is a dummy variable of integration, so it doesn't matter whether we call it t or \tilde{t} . The endpoints of the integral, however, do change under the transformation. Now consider an infinitesimal transformation, for which $\delta t = \tilde{t} - t$ and $\delta q = \tilde{q}(\tilde{t}) - q(t)$ are both small. Thus,

$$S = \int_{t_a}^{t_b} dt \, L(q, \dot{q}, t) = \int_{t_a + \delta t_a}^{t_b + \delta t_b} dt \left\{ L(q, \dot{q}, t) + \frac{\partial L}{\partial q_\sigma} \, \bar{\delta} q_\sigma + \frac{\partial L}{\partial \dot{q}_\sigma} \, \bar{\delta} \dot{q}_\sigma + \dots \right\} , \qquad (7.33)$$

 $^{^{1}}$ Indeed, we should be demanding that S only change by a function of the endpoint values.

where

$$\begin{split} \bar{\delta}q_{\sigma}(t) &\equiv \tilde{q}_{\sigma}(t) - q_{\sigma}(t) \\ &= \tilde{q}_{\sigma}(\tilde{t}) - \tilde{q}_{\sigma}(\tilde{t}) + \tilde{q}_{\sigma}(t) - q_{\sigma}(t) \\ &= \delta q_{\sigma} - \dot{q}_{\sigma} \, \delta t + \mathcal{O}(\delta q \, \delta t) \end{split} \tag{7.34}$$

Subtracting eqn. 7.33 from eqn. 7.32, we obtain

$$0 = L_b \, \delta t_b - L_a \, \delta t_a + \frac{\partial L}{\partial \dot{q}_\sigma} \left| \bar{\delta} q_{\sigma,b} - \frac{\partial L}{\partial \dot{q}_\sigma} \right| \bar{\delta} q_{\sigma,a} + \int_{t_a + \delta t_a}^{t_b + \delta t_b} dt \left\{ \frac{\partial L}{\partial q_\sigma} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_\sigma} \right) \right\} \bar{\delta} q_\sigma(t)$$

$$= \int_t^{t_b} dt \, \frac{d}{dt} \left\{ \left(L - \frac{\partial L}{\partial \dot{q}_\sigma} \dot{q}_\sigma \right) \delta t + \frac{\partial L}{\partial \dot{q}_\sigma} \delta q_\sigma \right\} , \qquad (7.35)$$

where $L_{a,b}$ is $L(q,\dot{q},t)$ evaluated at $t=t_{a,b}$. Thus, if $\zeta\equiv\delta\zeta$ is infinitesimal, and

$$\delta t = A(q, t) \, \delta \zeta \tag{7.36}$$

$$\delta q_{\sigma} = B_{\sigma}(q, t) \,\delta \zeta \,\,, \tag{7.37}$$

then the conserved charge is

$$\Lambda = \left(L - \frac{\partial L}{\partial \dot{q}_{\sigma}} \dot{q}_{\sigma}\right) A(q, t) + \frac{\partial L}{\partial \dot{q}_{\sigma}} B_{\sigma}(q, t)$$

$$= -H(q, p, t) A(q, t) + p_{\sigma} B_{\sigma}(q, t) .$$
(7.38)

Thus, when A=0, we recover our earlier results, obtained by assuming invariance of L. Note that conservation of H follows from time translation invariance: $t \to t + \zeta$, for which A=1 and $B_{\sigma}=0$. Here we have written

$$H = p_{\sigma} \dot{q}_{\sigma} - L \,\,\,(7.39)$$

and expressed it in terms of the momenta p_{σ} , the coordinates q_{σ} , and time t. H is called the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical momentum conjugate to the generalized coordinate q_{σ} is

$$p_{\sigma} = \frac{\partial L}{\partial \dot{q}_{\sigma}} \ . \tag{7.40}$$

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the Legendre transform of L:

$$H(q, p, t) = \sum_{\sigma} p_{\sigma} \dot{q}_{\sigma} - L . \qquad (7.41)$$

Let's examine the differential of H:

$$dH = \sum_{\sigma} \left(\dot{q}_{\sigma} dp_{\sigma} + p_{\sigma} d\dot{q}_{\sigma} - \frac{\partial L}{\partial q_{\sigma}} dq_{\sigma} - \frac{\partial L}{\partial \dot{q}_{\sigma}} d\dot{q}_{\sigma} \right) - \frac{\partial L}{\partial t} dt$$

$$= \sum_{\sigma} \left(\dot{q}_{\sigma} dp_{\sigma} - \frac{\partial L}{\partial q_{\sigma}} dq_{\sigma} \right) - \frac{\partial L}{\partial t} dt , \qquad (7.42)$$

where we have invoked the definition of p_{σ} to cancel the coefficients of $d\dot{q}_{\sigma}$. Since $\dot{p}_{\sigma} = \partial L/\partial q_{\sigma}$, we have Hamilton's equations of motion,

$$\dot{q}_{\sigma} = \frac{\partial H}{\partial p_{\sigma}} \quad , \quad \dot{p}_{\sigma} = -\frac{\partial H}{\partial q_{\sigma}}$$
 (7.43)

Thus, we can write

$$dH = \sum_{\sigma} \left(\dot{q}_{\sigma} dp_{\sigma} - \dot{p}_{\sigma} dq_{\sigma} \right) - \frac{\partial L}{\partial t} dt . \qquad (7.44)$$

Dividing by dt, we obtain

$$\frac{dH}{dt} = -\frac{\partial L}{\partial t} \,\,, \tag{7.45}$$

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever there is no explicit time dependence to L.

Example #1: For a simple d=1 system with $L=\frac{1}{2}m\dot{x}^2-U(x)$, we have $p=m\dot{x}$ and

$$H = p\dot{x} - L = \frac{1}{2}m\dot{x}^2 + U(x) = \frac{p^2}{2m} + U(x) . \tag{7.46}$$

Example #2: Consider now the mass point – wedge system analyzed above, with

$$L = \frac{1}{2}(M+m)\dot{X}^2 + m\dot{X}\dot{x} + \frac{1}{2}m(1+\tan^2\alpha)\dot{x}^2 - mg\,x\,\tan\alpha\,\,,\tag{7.47}$$

The canonical momenta are

$$P = \frac{\partial L}{\partial \dot{X}} = (M+m)\dot{X} + m\dot{x}$$
 (7.48)

$$p = \frac{\partial L}{\partial \dot{x}} = m\dot{X} + m\left(1 + \tan^2\alpha\right)\dot{x} . \tag{7.49}$$

The Hamiltonian is given by

$$H = P \dot{X} + p \dot{x} - L$$

= $\frac{1}{2} (M + m) \dot{X}^2 + m \dot{X} \dot{x} + \frac{1}{2} m (1 + \tan^2 \alpha) \dot{x}^2 + m g x \tan \alpha$. (7.50)

However, this is not quite H, since H = H(X, x, P, p, t) must be expressed in terms of the coordinates and the *momenta* and not the coordinates and velocities. So we must eliminate \dot{X} and \dot{x} in favor of P and p. We do this by inverting the relations

$$\begin{pmatrix} P \\ p \end{pmatrix} = \begin{pmatrix} M+m & m \\ m & m\left(1+\tan^2\alpha\right) \end{pmatrix} \begin{pmatrix} \dot{X} \\ \dot{x} \end{pmatrix} \tag{7.51}$$

to obtain

$$\begin{pmatrix} \dot{X} \\ \dot{x} \end{pmatrix} = \frac{1}{m\left(M + (M+m)\tan^2\alpha\right)} \begin{pmatrix} m\left(1 + \tan^2\alpha\right) & -m \\ -m & M+m \end{pmatrix} \begin{pmatrix} P \\ p \end{pmatrix} . \tag{7.52}$$

Substituting into 7.50, we obtain

$$H = \frac{M+m}{2m} \frac{P^2 \cos^2 \alpha}{M+m \sin^2 \alpha} - \frac{Pp \cos^2 \alpha}{M+m \sin^2 \alpha} + \frac{p^2}{2(M+m \sin^2 \alpha)} + mg x \tan \alpha .$$
 (7.53)

Notice that $\dot{P} = 0$ since $\frac{\partial L}{\partial X} = 0$. P is the total horizontal momentum of the system (wedge plus particle) and it is conserved.

7.3.2 Is H = T + U?

The most general form of the kinetic energy is

$$T = T_2 + T_1 + T_0$$

= $\frac{1}{2} T_{\sigma\sigma'}^{(2)}(q, t) \dot{q}_{\sigma} \dot{q}_{\sigma'} + T_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma} + T^{(0)}(q, t) ,$ (7.54)

where $T^{(n)}(q,\dot{q},t)$ is homogeneous of degree n in the velocities². We assume a potential energy of the form

$$U = U_1 + U_0$$

= $U_{\sigma}^{(1)}(q, t) \dot{q}_{\sigma} + U^{(0)}(q, t)$, (7.55)

which allows for velocity-dependent forces, as we have with charged particles moving in an electromagnetic field. The Lagrangian is then

$$L = T - U = \frac{1}{2} T_{\sigma\sigma'}^{(2)}(q,t) \, \dot{q}_{\sigma} \, \dot{q}_{\sigma'} + T_{\sigma}^{(1)}(q,t) \, \dot{q}_{\sigma} + T^{(0)}(q,t) - U_{\sigma}^{(1)}(q,t) \, \dot{q}_{\sigma} - U^{(0)}(q,t) . \quad (7.56)$$

The canonical momentum conjugate to q_{σ} is

$$p_{\sigma} = \frac{\partial L}{\partial \dot{q}_{\sigma}} = T_{\sigma\sigma'}^{(2)} \dot{q}_{\sigma'} + T_{\sigma}^{(1)}(q, t) - U_{\sigma}^{(1)}(q, t)$$
 (7.57)

which is inverted to give

$$\dot{q}_{\sigma} = T_{\sigma\sigma'}^{(2)^{-1}} \left(p_{\sigma'} - T_{\sigma'}^{(1)} + U_{\sigma'}^{(1)} \right). \tag{7.58}$$

²A homogeneous function of degree k satisfies $f(\lambda x_1, \ldots, \lambda x_n) = \lambda^k f(x_1, \ldots, x_n)$. It is then easy to prove Euler's theorem, $\sum_{i=1}^n x_i \frac{\partial f}{\partial x_i} = kf$.

The Hamiltonian is then

$$H = p_{\sigma} \dot{q}_{\sigma} - L$$

$$= \frac{1}{2} T_{\sigma\sigma'}^{(2)^{-1}} \left(p_{\sigma} - T_{\sigma}^{(1)} + U_{\sigma}^{(1)} \right) \left(p_{\sigma'} - T_{\sigma'}^{(1)} + U_{\sigma'}^{(1)} \right) - T_0 + U_0$$

$$= T_2 - T_0 + U_0 .$$
(7.59)

If T_0 , T_1 , and U_1 vanish, *i.e.* if $T(q, \dot{q}, t)$ is a homogeneous function of degree two in the generalized velocities, and U(q, t) is velocity-independent, then H = T + U. But if T_0 or T_1 is nonzero, or the potential is velocity-dependent, then $H \neq T + U$.

7.3.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is further constrained to rotate with angular velocity $\dot{\phi} = \omega$ about the \hat{z} -axis, as shown in Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (r, θ, ϕ) , in which case

$$T = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2)$$

= $\frac{1}{2}ma^2(\dot{\theta}^2 + \omega^2\sin^2\theta)$. (7.61)

Thus, $T_2 = \frac{1}{2} m a^2 \dot{\theta}^2$ and $T_0 = \frac{1}{2} m a^2 \omega^2 \sin^2 \theta$. The potential energy is $U(\theta) = mga(1 - \cos \theta)$. The momentum conjugate to θ is $p_\theta = ma^2 \dot{\theta}$, and thus

$$H(\theta, p) = T_2 - T_0 + U$$

$$= \frac{1}{2} m a^2 \dot{\theta}^2 - \frac{1}{2} m a^2 \omega^2 \sin^2 \theta + mga(1 - \cos \theta)$$

$$= \frac{p_{\theta}^2}{2ma^2} - \frac{1}{2} m a^2 \omega^2 \sin^2 \theta + mga(1 - \cos \theta) . \tag{7.62}$$

For this problem, we can define the effective potential

$$U_{\text{eff}}(\theta) \equiv U - T_0 = mga(1 - \cos\theta) - \frac{1}{2}ma^2\omega^2\sin^2\theta$$
$$= mga\left(1 - \cos\theta - \frac{\omega^2}{2\omega_0^2}\sin^2\theta\right), \tag{7.63}$$

where $\omega_0^2 \equiv g/a$. The Lagrangian may then be written

$$L = \frac{1}{2}ma^2\dot{\theta}^2 - U_{\text{eff}}(\theta) , \qquad (7.64)$$

and thus the equations of motion are

$$ma^2\ddot{\theta} = -\frac{\partial U_{\text{eff}}}{\partial \theta} \ . \tag{7.65}$$

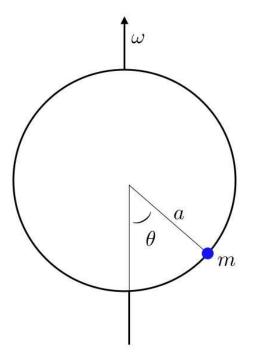


Figure 7.1: A bead of mass m on a rotating hoop of radius a.

Equilibrium is achieved when $U'_{\text{eff}}(\theta) = 0$, which gives

$$\frac{\partial U_{\text{eff}}}{\partial \theta} = mga \sin \theta \left\{ 1 - \frac{\omega^2}{\omega_0^2} \cos \theta \right\} = 0 , \qquad (7.66)$$

i.e. $\theta^* = 0$, $\theta^* = \pi$, or $\theta^* = \pm \cos^{-1}(\omega_0^2/\omega^2)$, where the last pair of equilibria are present only for $\omega^2 > \omega_0^2$. The stability of these equilibria is assessed by examining the sign of $U_{\text{eff}}''(\theta^*)$. We have

$$U_{\text{eff}}''(\theta) = mga \left\{ \cos \theta - \frac{\omega^2}{\omega_0^2} (2\cos^2 \theta - 1) \right\}. \tag{7.67}$$

Thus,

$$U_{\text{eff}}''(\theta^*) = \begin{cases} mga\left(1 - \frac{\omega^2}{\omega_0^2}\right) & \text{at } \theta^* = 0 \\ -mga\left(1 + \frac{\omega^2}{\omega_0^2}\right) & \text{at } \theta^* = \pi \end{cases}$$

$$mga\left(\frac{\omega^2}{\omega_0^2} - \frac{\omega_0^2}{\omega^2}\right) & \text{at } \theta^* = \pm \cos^{-1}\left(\frac{\omega_0^2}{\omega^2}\right).$$

$$(7.68)$$

Thus, $\theta^*=0$ is stable for $\omega^2<\omega_0^2$ but becomes unstable when the rotation frequency ω is sufficiently large, *i.e.* when $\omega^2>\omega_0^2$. In this regime, there are two new equilibria, at $\theta^*=\pm\cos^{-1}(\omega_0^2/\omega^2)$, which are both stable. The equilibrium at $\theta^*=\pi$ is always unstable, independent of the value of ω . The situation is depicted in Fig. 7.2.

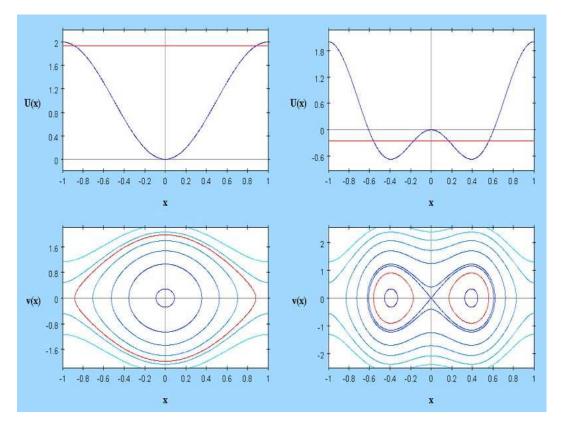


Figure 7.2: The effective potential $U_{\rm eff}(\theta) = mga \left[1 - \cos\theta - \frac{\omega^2}{2\omega_0^2} \sin^2\theta\right]$. (The dimensionless potential $\tilde{U}_{\rm eff}(x) = U_{\rm eff}/mga$ is shown, where $x = \theta/\pi$.) Left panels: $\omega = \frac{1}{2}\sqrt{3}\,\omega_0$. Right panels: $\omega = \sqrt{3}\,\omega_0$.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic field. The particle's potential energy is

$$U(\mathbf{r}, \dot{\mathbf{r}}) = q \,\phi(\mathbf{r}, t) - \frac{q}{c} \,\mathbf{A}(\mathbf{r}, t) \cdot \dot{\mathbf{r}} , \qquad (7.69)$$

which is velocity-dependent. The kinetic energy is $T = \frac{1}{2}m\dot{r}^2$, as usual. Here $\phi(r)$ is the scalar potential and A(r) the vector potential. The electric and magnetic fields are given by

$$E = -\nabla \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \quad , \quad \mathbf{B} = \nabla \times \mathbf{A} .$$
 (7.70)

The canonical momentum is

$$\boldsymbol{p} = \frac{\partial L}{\partial \dot{\boldsymbol{r}}} = m \, \dot{\boldsymbol{r}} + \frac{q}{c} \, \boldsymbol{A} \,\,, \tag{7.71}$$

and hence the Hamiltonian is

$$H(\mathbf{r}, \mathbf{p}, t) = \mathbf{p} \cdot \dot{\mathbf{r}} - L$$

$$= m\dot{\mathbf{r}}^2 + \frac{q}{c} \mathbf{A} \cdot \dot{\mathbf{r}} - \frac{1}{2}m \dot{\mathbf{r}}^2 - \frac{q}{c} \mathbf{A} \cdot \dot{\mathbf{r}} + q \phi$$

$$= \frac{1}{2}m \dot{\mathbf{r}}^2 + q \phi$$

$$= \frac{1}{2m} \left(\mathbf{p} - \frac{q}{c} \mathbf{A}(\mathbf{r}, t) \right)^2 + q \phi(\mathbf{r}, t) . \tag{7.72}$$

If A and ϕ are time-independent, then H(r, p) is conserved.

Let's work out the equations of motion. We have

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{r}}\right) = \frac{\partial L}{\partial r} \tag{7.73}$$

which gives

$$m \ddot{\mathbf{r}} + \frac{q}{c} \frac{d\mathbf{A}}{dt} = -q \nabla \phi + \frac{q}{c} \nabla (\mathbf{A} \cdot \dot{\mathbf{r}}) , \qquad (7.74)$$

or, in component notation,

$$m \ddot{x}_i + \frac{q}{c} \frac{\partial A_i}{\partial x_j} \dot{x}_j + \frac{q}{c} \frac{\partial A_i}{\partial t} = -q \frac{\partial \phi}{\partial x_i} + \frac{q}{c} \frac{\partial A_j}{\partial x_i} \dot{x}_j , \qquad (7.75)$$

which is to say

$$m \ddot{x}_i = -q \frac{\partial \phi}{\partial x_i} - \frac{q}{c} \frac{\partial A_i}{\partial t} + \frac{q}{c} \left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j} \right) \dot{x}_j . \tag{7.76}$$

It is convenient to express the cross product in terms of the completely antisymmetric tensor of rank three, ϵ_{ijk} :

$$B_i = \epsilon_{ijk} \frac{\partial A_k}{\partial x_j} \,, \tag{7.77}$$

and using the result

$$\epsilon_{ijk}\,\epsilon_{imn} = \delta_{jm}\,\delta_{kn} - \delta_{jn}\,\delta_{km} \,\,, \tag{7.78}$$

we have $\epsilon_{ijk} B_i = \partial_j A_k - \partial_k A_j$, and

$$m \ddot{x}_{i} = -q \frac{\partial \phi}{\partial x_{i}} - \frac{q}{c} \frac{\partial A_{i}}{\partial t} + \frac{q}{c} \epsilon_{ijk} \dot{x}_{j} B_{k} , \qquad (7.79)$$

or, in vector notation,

$$m \, \ddot{\boldsymbol{r}} = -q \, \boldsymbol{\nabla} \phi - \frac{q}{c} \, \frac{\partial \boldsymbol{A}}{\partial t} + \frac{q}{c} \, \dot{\boldsymbol{r}} \times (\boldsymbol{\nabla} \times \boldsymbol{A})$$
$$= q \, \boldsymbol{E} + \frac{q}{c} \, \dot{\boldsymbol{r}} \times \boldsymbol{B} \,, \tag{7.80}$$

which is, of course, the Lorentz force law.

7.5 Fast Perturbations: Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

$$m\ddot{q} = F\sin\omega t \ . \tag{7.81}$$

The motion of the system is then

$$q(t) = q_{\rm h}(t) - \frac{F \sin \omega t}{m\omega^2} , \qquad (7.82)$$

where $q_{\rm h}(t)=A+Bt$ is the solution to the homogeneous (unforced) equation of motion. Note that the amplitude of the response $q-q_{\rm h}$ goes as ω^{-2} and is therefore small when ω is large.

Now consider a general n=1 system, with

$$H(q,p,t) = H_0(q,p) + V(q) \sin(\omega t + \delta) . \tag{7.83}$$

We assume that ω is much greater than any natural oscillation frequency associated with H_0 . We separate the motion q(t) and p(t) into slow and fast components:

$$q(t) = \bar{q}(t) + \zeta(t) \tag{7.84}$$

$$p(t) = \bar{p}(t) + \pi(t)$$
, (7.85)

where $\zeta(t)$ and $\pi(t)$ oscillate with the driving frequency ω . Since ζ and π will be small, we expand Hamilton's equations in these quantities:

$$\dot{\bar{q}} + \dot{\zeta} = \frac{\partial H_0}{\partial \bar{p}} + \frac{\partial^2 H_0}{\partial \bar{p}^2} \pi + \frac{\partial^2 H_0}{\partial \bar{q} \partial \bar{p}} \zeta + \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{q}^2 \partial \bar{p}} \zeta^2 + \frac{\partial^3 H_0}{\partial \bar{q} \partial \bar{p}^2} \zeta \pi + \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{p}^3} \pi^2 + \dots \tag{7.86}$$

$$\dot{\bar{p}} + \dot{\pi} = -\frac{\partial H_0}{\partial \bar{q}} - \frac{\partial^2 H_0}{\partial \bar{q}^2} \zeta - \frac{\partial^2 H_0}{\partial \bar{q} \partial \bar{p}} \pi - \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{q}^3} \zeta^2 - \frac{\partial^3 H_0}{\partial \bar{q}^2 \partial \bar{p}} \zeta \pi - \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{q} \partial \bar{p}^2} \pi^2$$

$$- \frac{\partial V}{\partial \bar{q}} \sin(\omega t + \delta) - \frac{\partial^2 V}{\partial \bar{q}^2} \zeta \sin(\omega t + \delta) - \dots \tag{7.87}$$

We now average over the fast degrees of freedom to obtain an equation of motion for the slow variables \bar{q} and \bar{p} , which we here carry to lowest nontrivial order in averages of fluctuating quantities:

$$\dot{\bar{q}} = \frac{\partial H_0}{\partial \bar{p}} + \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{q}^2 \partial \bar{p}} \left\langle \zeta^2 \right\rangle + \frac{\partial^3 H_0}{\partial \bar{q} \partial \bar{p}^2} \left\langle \zeta \pi \right\rangle + \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{p}^3} \left\langle \pi^2 \right\rangle \tag{7.88}$$

$$\dot{\bar{p}} = -\frac{\partial H_0}{\partial \bar{q}} - \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{q}^3} \left\langle \zeta^2 \right\rangle - \frac{\partial^3 H_0}{\partial \bar{q}^2 \partial \bar{p}} \left\langle \zeta \pi \right\rangle - \frac{1}{2} \frac{\partial^3 H_0}{\partial \bar{q} \partial \bar{p}^2} \left\langle \pi^2 \right\rangle - \frac{\partial^2 V}{\partial \bar{q}^2} \left\langle \zeta \sin(\omega t + \delta) \right\rangle. \quad (7.89)$$

The fast degrees of freedom obey

$$\dot{\zeta} = \frac{\partial^2 H_0}{\partial \bar{q} \, \partial \bar{p}} \, \zeta + \frac{\partial^2 H_0}{\partial \bar{p}^2} \, \pi \tag{7.90}$$

$$\dot{\pi} = -\frac{\partial^2 H_0}{\partial \bar{q}^2} \zeta - \frac{\partial^2 H_0}{\partial \bar{q} \partial \bar{p}} \pi - \frac{\partial V}{\partial q} \sin(\omega t + \delta) . \tag{7.91}$$

Let us analyze the coupled equations³

$$\dot{\zeta} = A \zeta + B \pi \tag{7.92}$$

$$\dot{\pi} = -C \zeta - A \pi + F e^{-i\omega t} . \tag{7.93}$$

The solution is of the form

$$\begin{pmatrix} \zeta \\ \pi \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} e^{-i\omega t} . \tag{7.94}$$

Plugging in, we find

$$\alpha = \frac{BF}{BC - A^2 - \omega^2} = -\frac{BF}{\omega^2} + \mathcal{O}(\omega^{-4}) \tag{7.95}$$

$$\beta = -\frac{(A+i\omega)F}{BC - A^2 - \omega^2} = \frac{iF}{\omega} + \mathcal{O}(\omega^{-3}) . \tag{7.96}$$

Taking the real part, and restoring the phase shift δ , we have

$$\zeta(t) = \frac{-BF}{\omega^2} \sin(\omega t + \delta) = \frac{1}{\omega^2} \frac{\partial V}{\partial \bar{q}} \frac{\partial^2 H_0}{\partial \bar{p}^2} \sin(\omega t + \delta)$$
 (7.97)

$$\pi(t) = -\frac{F}{\omega}\cos(\omega t + \delta) = \frac{1}{\omega}\frac{\partial V}{\partial \bar{q}}\cos(\omega t + \delta). \tag{7.98}$$

The desired averages, to lowest order, are thus

$$\langle \zeta^2 \rangle = \frac{1}{2\omega^4} \left(\frac{\partial V}{\partial \bar{q}} \right)^2 \left(\frac{\partial^2 H_0}{\partial \bar{p}^2} \right)^2 \tag{7.99}$$

$$\langle \pi^2 \rangle = \frac{1}{2\omega^2} \left(\frac{\partial V}{\partial \bar{q}} \right)^2 \tag{7.100}$$

$$\langle \zeta \sin(\omega t + \delta) \rangle = \frac{1}{2\omega^2} \frac{\partial V}{\partial \bar{q}} \frac{\partial^2 H_0}{\partial \bar{p}^2} ,$$
 (7.101)

along with $\langle \zeta \pi \rangle = 0$.

Finally, we substitute the averages into the equations of motion for the slow variables \bar{q} and \bar{p} , resulting in the time-independent effective Hamiltonian

$$K(\bar{q}, \bar{p}) = H_0(\bar{q}, \bar{p}) + \frac{1}{4\omega^2} \frac{\partial^2 H_0}{\partial \bar{p}^2} \left(\frac{\partial V}{\partial \bar{q}}\right)^2, \tag{7.102}$$

and the equations of motion

$$\dot{\bar{q}} = \frac{\partial K}{\partial \bar{p}} \quad , \quad \dot{\bar{p}} = -\frac{\partial K}{\partial \bar{q}} \quad .$$
(7.103)

 $^{^{3}}$ With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations of motion.

7.5.1 Example: pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the pendulum bob are

$$x = \ell \sin \theta$$
 , $y = a(t) - \ell \cos \theta$. (7.104)

The Lagrangian is easily obtained:

$$L = \frac{1}{2}m\ell^2 \dot{\theta}^2 + m\ell \dot{a}\dot{\theta}\sin\theta + mg\ell\cos\theta + \frac{1}{2}m\dot{a}^2 - mga$$
 (7.105)

 $= \frac{1}{2}m\ell^2\dot{\theta}^2 + m(g+\ddot{a})\ell\cos\theta + \frac{1}{2}m\dot{a}^2 - mga - \frac{d}{dt}(m\ell\dot{a}\sin\theta) . \tag{7.106}$

Thus we may take the Lagrangian to be

$$\bar{L} = \frac{1}{2}m\ell^2 \dot{\theta}^2 + m(g + \ddot{a})\ell\cos\theta , \qquad (7.107)$$

from which we derive the Hamiltonian

$$H(\theta, p_{\theta}, t) = \frac{p_{\theta}^2}{2m\ell^2} - mg\ell\cos\theta - m\ell\ddot{a}\cos\theta \tag{7.108}$$

$$= H_0(\theta, p_\theta, t) + V_1(\theta) \sin \omega t . \tag{7.109}$$

We have assumed $a(t) = a_0 \sin \omega t$, so

$$V_1(\theta) = m\ell a_0 \,\omega^2 \cos\theta \ . \tag{7.110}$$

The effective Hamiltonian, per eqn. 7.102, is

$$K(\bar{\theta}, \bar{p}_{\theta}) = \frac{\bar{p}_{\theta}}{2m\ell^2} - mg\ell\cos\bar{\theta} + \frac{1}{4}m\,a_0^2\,\omega^2\sin^2\bar{\theta} \ . \tag{7.111}$$

Let's define the dimensionless parameter

$$\epsilon \equiv \frac{2g\ell}{\omega^2 a_0^2} \ . \tag{7.112}$$

The slow variable $\bar{\theta}$ executes motion in the effective potential $V_{\text{eff}}(\bar{\theta}) = mg\ell v(\bar{\theta})$, with

$$v(\bar{\theta}) = -\cos\bar{\theta} + \frac{1}{2\epsilon}\sin^2\bar{\theta} \ . \tag{7.113}$$

Differentiating, and dropping the bar on θ , we find that $V_{\text{eff}}(\theta)$ is stationary when

$$v'(\theta) = 0 \quad \Rightarrow \quad \sin\theta\cos\theta = -\epsilon\sin\theta \ . \tag{7.114}$$

Thus, $\theta = 0$ and $\theta = \pi$, where $\sin \theta = 0$, are equilibria. When $\epsilon < 1$ (note $\epsilon > 0$ always), there are two new solutions, given by the roots of $\cos \theta = -\epsilon$.

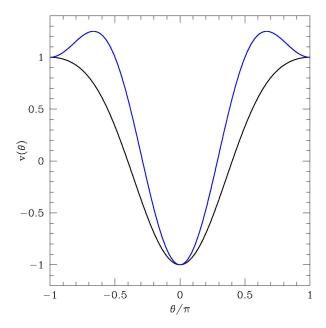


Figure 7.3: Dimensionless potential $v(\theta)$ for $\epsilon = 1.5$ (black curve) and $\epsilon = 0.5$ (blue curve).

To assess stability of these equilibria, we compute the second derivative:

$$v''(\theta) = \cos \theta + \frac{1}{\epsilon} \cos 2\theta \ . \tag{7.115}$$

From this, we see that $\theta = 0$ is stable (i.e. $v''(\theta = 0) > 0$) always, but $\theta = \pi$ is stable for $\epsilon < 1$ and unstable for $\epsilon > 1$. When $\epsilon < 1$, two new solutions appear, at $\cos \theta = -\epsilon$, for which

$$v''(\cos^{-1}(-\epsilon)) = \epsilon - \frac{1}{\epsilon} , \qquad (7.116)$$

which is always negative since $\epsilon < 1$ in order for these equilibria to exist. The situation is sketched in fig. 7.3, showing $v(\theta)$ for two representative values of the parameter ϵ . For $\epsilon > 1$, the equilibrium at $\theta = \pi$ is unstable, but as ϵ decreases, a subcritical pitchfork bifurcation is encountered at $\epsilon = 1$, and $\theta = \pi$ becomes stable, while the outlying $\theta = \cos^{-1}(-\epsilon)$ solutions are unstable.

Field Theory: Systems with Several Independent Vari-7.6 ables

Suppose $\phi_a(\mathbf{x})$ depends on several independent variables: $\{x^1, x^2, \dots, x^n\}$. Furthermore, suppose

$$S[\{\phi_a(\mathbf{x})] = \int_{\Omega} d\mathbf{x} \, \mathcal{L}(\phi_a \, \partial_\mu \phi_a, \mathbf{x}) , \qquad (7.117)$$

i.e. the Lagrangian density \mathcal{L} is a function of the fields ϕ_a and their partial derivatives $\partial \phi_a/\partial x^{\mu}$. Here Ω is a region in \mathbb{R}^K . Then the first variation of S is

$$\delta S = \int_{\Omega} d\mathbf{x} \left\{ \frac{\partial \mathcal{L}}{\partial \phi_a} \, \delta \phi_a + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \, \frac{\partial \, \delta \phi_a}{\partial x^\mu} \right\}$$

$$= \oint_{\partial \Omega} d\Sigma \, n^\mu \, \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \, \delta \phi_a + \int_{\Omega} d\mathbf{x} \left\{ \frac{\partial \mathcal{L}}{\partial \phi_a} - \frac{\partial}{\partial x^\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \right) \right\} \delta \phi_a \,, \tag{7.118}$$

where $\partial\Omega$ is the (n-1)-dimensional boundary of Ω , $d\Sigma$ is the differential surface area, and n^{μ} is the unit normal. If we demand $\partial\mathcal{L}/\partial(\partial_{\mu}\phi_{a})\big|_{\partial\Omega}=0$ of $\delta\phi_{a}\big|_{\partial\Omega}=0$, the surface term vanishes, and we conclude

$$\frac{\delta S}{\delta \phi_a(\mathbf{x})} = \frac{\partial \mathcal{L}}{\partial \phi_a} - \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_a)} \right) . \tag{7.119}$$

As an example, consider the case of a stretched string of linear mass density μ and tension τ . The action is a functional of the height y(x,t), where the coordinate along the string, x, and time, t, are the two independent variables. The Lagrangian density is

$$\mathcal{L} = \frac{1}{2}\mu \left(\frac{\partial y}{\partial t}\right)^2 - \frac{1}{2}\tau \left(\frac{\partial y}{\partial x}\right)^2, \qquad (7.120)$$

whence the Euler-Lagrange equations are

$$0 = \frac{\delta S}{\delta y(x,t)} = -\frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial y'} \right) - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{y}} \right)$$
$$= \tau \frac{\partial^2 y}{\partial x^2} - \mu \frac{\partial^2 y}{\partial t^2} , \qquad (7.121)$$

where $y' = \frac{\partial y}{\partial x}$ and $\dot{y} = \frac{\partial y}{\partial t}$. Thus, $\mu \ddot{y} = \tau y''$, which is the Helmholtz equation. We've assumed boundary conditions where $\delta y(x_a,t) = \delta y(x_b,t) = \delta y(x,t_a) = \delta y(x,t_b) = 0$.

The Lagrangian density for an electromagnetic field with sources is

$$\mathcal{L} = -\frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} - \frac{1}{c} j_{\mu} A^{\mu} . \qquad (7.122)$$

The equations of motion are then

$$\frac{\partial \mathcal{L}}{\partial A^{\mu}} - \frac{\partial}{\partial x^{\nu}} \left(\frac{\partial \mathcal{L}}{\partial (\partial^{\mu} A^{\nu})} \right) = 0 \quad \Rightarrow \quad \partial_{\mu} F^{\mu\nu} = \frac{4\pi}{c} j^{\nu} , \qquad (7.123)$$

which are Maxwell's equations.

Recall the result of Noether's theorem for mechanical systems:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta} \right)_{\zeta=0} = 0 , \qquad (7.124)$$

where $\tilde{q}_{\sigma} = \tilde{q}_{\sigma}(q,\zeta)$ is a one-parameter (ζ) family of transformations of the generalized coordinates which leaves L invariant. We generalize to field theory by replacing

$$q_{\sigma}(t) \longrightarrow \phi_a(\boldsymbol{x}, t) ,$$
 (7.125)

where $\{\phi_a(\boldsymbol{x},t)\}\$ are a set of fields, which are functions of the independent variables $\{x,y,z,t\}$. We will adopt covariant relativistic notation and write for four-vector $x^{\mu} = (ct, x, y, z)$. The generalization of $d\Lambda/dt=0$ is

$$\frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \frac{\partial \tilde{\phi}_{a}}{\partial \zeta} \right)_{\zeta=0} = 0 , \qquad (7.126)$$

where there is an implied sum on both μ and a. We can write this as $\partial_{\mu} J^{\mu} = 0$, where

$$J^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\phi_{a}\right)} \left. \frac{\partial \tilde{\phi}_{a}}{\partial \zeta} \right|_{\zeta=0} . \tag{7.127}$$

We call $\Lambda = J^0/c$ the total charge. If we assume J = 0 at the spatial boundaries of our system, then integrating the conservation law $\partial_{\mu} J^{\mu}$ over the spatial region Ω gives

$$\frac{d\Lambda}{dt} = \int_{\Omega} d^3x \,\partial_0 J^0 = -\int_{\Omega} d^3x \,\nabla \cdot \boldsymbol{J} = -\oint_{\partial\Omega} d\Sigma \,\hat{\boldsymbol{n}} \cdot \boldsymbol{J} = 0 , \qquad (7.128)$$

assuming J=0 at the boundary $\partial\Omega$.

As an example, consider the case of a complex scalar field, with Lagrangian density⁴

$$\mathcal{L}(\psi, \psi^*, \partial_{\mu}\psi, \partial_{\mu}\psi^*) = \frac{1}{2}K\left(\partial_{\mu}\psi^*\right)\left(\partial^{\mu}\psi\right) - U\left(\psi^*\psi\right). \tag{7.129}$$

This is invariant under the transformation $\psi \to e^{i\zeta} \psi$, $\psi^* \to e^{-i\zeta} \psi^*$. Thus,

$$\frac{\partial \tilde{\psi}}{\partial \zeta} = i e^{i\zeta} \psi \qquad , \qquad \frac{\partial \tilde{\psi}^*}{\partial \zeta} = -i e^{-i\zeta} \psi^* , \qquad (7.130)$$

and, summing over both ψ and ψ^* fields, we have

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \cdot (i\psi) + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{*})} \cdot (-i\psi^{*})$$
$$= \frac{K}{2i} (\psi^{*} \partial^{\mu} \psi - \psi \partial^{\mu} \psi^{*}) . \tag{7.131}$$

The potential, which depends on $|\psi|^2$, is independent of ζ . Hence, this form of conserved 4-current is valid for an entire class of potentials.

⁴We raise and lower indices using the Minkowski metric $g_{\mu\nu} = \text{diag}(+,-,-,-)$.

7.6.1 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

$$\mathcal{L} = i\hbar \,\psi^* \,\frac{\partial \psi}{\partial t} - \frac{\hbar^2}{2m} \,\nabla \psi^* \cdot \nabla \psi - g \left(|\psi|^2 - n_0 \right)^2 \,. \tag{7.132}$$

This describes a Bose fluid with repulsive short-ranged interactions. Here $\psi(\mathbf{x}, t)$ is again a complex scalar field, and ψ^* is its complex conjugate. Using the Leibniz rule, we have

$$\delta S[\psi^*, \psi] = S[\psi^* + \delta \psi^*, \psi + \delta \psi]$$

$$= \int dt \int d^d x \left\{ i\hbar \psi^* \frac{\partial \delta \psi}{\partial t} + i\hbar \delta \psi^* \frac{\partial \psi}{\partial t} - \frac{\hbar^2}{2m} \nabla \psi^* \cdot \nabla \delta \psi - \frac{\hbar^2}{2m} \nabla \delta \psi^* \cdot \nabla \psi - 2g \left(|\psi|^2 - n_0 \right) \left(\psi^* \delta \psi + \psi \delta \psi^* \right) \right\}$$

$$= \int dt \int d^d x \left\{ \left[-i\hbar \frac{\partial \psi^*}{\partial t} + \frac{\hbar^2}{2m} \nabla^2 \psi^* - 2g \left(|\psi|^2 - n_0 \right) \psi^* \right] \delta \psi + \left[i\hbar \frac{\partial \psi}{\partial t} + \frac{\hbar^2}{2m} \nabla^2 \psi - 2g \left(|\psi|^2 - n_0 \right) \psi \right] \delta \psi^* \right\}, \tag{7.133}$$

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing $S[\psi^*, \psi]$ therefore results in the nonlinear Schrödinger equation (NLSE),

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + 2g \left(|\psi|^2 - n_0 \right) \psi \tag{7.134}$$

as well as its complex conjugate.

$$-i\hbar \frac{\partial \psi^*}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi^* + 2g \left(|\psi|^2 - n_0 \right) \psi^* . \tag{7.135}$$

Note that these equations are indeed the Euler-Lagrange equations:

$$\frac{\delta S}{\delta \psi} = \frac{\partial \mathcal{L}}{\partial \psi} - \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} \right) \tag{7.136}$$

$$\frac{\delta S}{\delta \psi^*} = \frac{\partial \mathcal{L}}{\partial \psi^*} - \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^*} \right) , \qquad (7.137)$$

with $x^{\mu} = (t, \boldsymbol{x})^5$ Plugging in

$$\frac{\partial \mathcal{L}}{\partial \psi} = -2g \left(|\psi|^2 - n_0 \right) \psi^* \quad , \quad \frac{\partial \mathcal{L}}{\partial \partial_t \psi} = i\hbar \, \psi^* \quad , \quad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \psi} = -\frac{\hbar^2}{2m} \boldsymbol{\nabla} \psi^*$$
 (7.138)

and

$$\frac{\partial \mathcal{L}}{\partial \psi^*} = i\hbar \, \psi - 2g \left(|\psi|^2 - n_0 \right) \psi \quad , \quad \frac{\partial \mathcal{L}}{\partial \, \partial_t \psi^*} = 0 \quad , \quad \frac{\partial \mathcal{L}}{\partial \, \nabla \psi^*} = -\frac{\hbar^2}{2m} \, \nabla \psi \quad , \tag{7.139}$$

In the nonrelativistic case, there is no utility in defining $x^0 = ct$, so we simply define $x^0 = t$.

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

$$\psi(\boldsymbol{x},t) \to \tilde{\psi}(\boldsymbol{x},t) = e^{i\zeta} \psi(\boldsymbol{x},t) \quad , \quad \psi^*(\boldsymbol{x},t) \to \tilde{\psi}^*(\boldsymbol{x},t) = e^{-i\zeta} \psi^*(\boldsymbol{x},t) .$$
 (7.140)

Thus, the conserved Noether current is then

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} \left. \frac{\partial \tilde{\psi}}{\partial \zeta} \right|_{\zeta=0} + \left. \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi^{*}} \left. \frac{\partial \tilde{\psi}^{*}}{\partial \zeta} \right|_{\zeta=0} \right.$$

$$J^0 = -\hbar |\psi|^2 \tag{7.141}$$

$$\boldsymbol{J} = -\frac{\hbar^2}{2im} \left(\psi^* \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \psi^* \right) . \tag{7.142}$$

Dividing out by \hbar , taking $J^0 \equiv -\hbar \rho$ and $\boldsymbol{J} \equiv -\hbar \boldsymbol{j}$, we obtain the continuity equation,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0 , \qquad (7.143)$$

where

$$\rho = |\psi|^2 \quad , \quad \boldsymbol{j} = \frac{\hbar}{2im} \left(\psi^* \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \psi^* \right) . \tag{7.144}$$

are the particle density and the particle current, respectively.