Chapter 7

Noether’s Theorem

7.1 Continuous Symmetry Implies Conserved Charges

Consider a particle moving in two dimensions under the influence of an external potential
U(r). The potential is a function only of the magnitude of the vector r. The Lagrangian is
then

L=T-U=3im(#+r*¢*) -U(r), (7.1)

where we have chosen generalized coordinates (r,¢). The momentum conjugate to ¢ is
p, = mr2¢. The generalized force F o clearly vanishes, since L does not depend on the
coordinate ¢. (One says that L is ‘cyclic’ in ¢.) Thus, although r = r(t) and ¢ = ¢(t)
will in general be time-dependent, the combination p 6 = mr2(ﬁ is constant. This is the
conserved angular momentum about the 2 axis.

If instead the particle moved in a potential U(y), independent of x, then writing
L=gm(i*+3%) = Uly) , (7.2)

we have that the momentum p, = OL/J& = mi is conserved, because the generalized force
F, = OL/0x = 0 vanishes. This situation pertains in a uniform gravitational field, with
U(z,y) = mgy, independent of x. The horizontal component of momentum is conserved.

In general, whenever the system exhibits a continuous symmetry, there is an associated
conserved charge. (The terminology ‘charge’ is from field theory.) Indeed, this is a rigorous
result, known as Noether’s Theorem. Consider a one-parameter family of transformations,

9 — 4,(¢:¢) , (7.3)

where ( is the continuous parameter. Suppose further (without loss of generality) that at
¢ = 0 this transformation is the identity, i.e. §,(¢,0) = gq,. The transformation may be
nonlinear in the generalized coordinates. Suppose further that the Lagrangian L is invariant
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under the replacement ¢ — ¢. Then we must have

d . IL 9q, IL 9q
0=— L(Q7Q7t):—— +—-—0
dg o 995 OC o d4s OC o
SR
dt \ 0¢, ) OC o 9o dt \ 9C ) .
d (0L 0d,
_ 4 (Y9 %o ) 7.4
dt <8QU aC >§:0 ( )
Thus, there is an associated conserved charge
0L 04,
N=—"" 27 ) (7.5)
94, OC =0
7.1.1 Examples of one-parameter families of transformations
Consider the Lagrangian
L=1im@*+9*) - U(Va2+y?) . (7.6)
In two-dimensional polar coordinates, we have
L=3m@+r%%) -U(r), (7.7)
and we may now define
T¢()=r (7.8)

¢(¢)

¢+C.

Note that 7#(0) = and ¢(0) = ¢, i.e. the transformation is the identity when ¢ = 0. We
now have

OL 8¢

IL 94 oL 9¢
¢ OC

oL oL or
' Dy €

A= i ¢

= mrlp . (7.10)
¢=0

(=0 (=0

Another way to derive the same result which is somewhat instructive is to work out the
transformation in Cartesian coordinates. We then have

Z(¢) =x cos( —y sin (7.11)
g(¢) =z sin( +y cos( . (7.12)
Thus,
0z _ o

G- =7 (7.13)
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and
0L 0z JOL 0y . .
A= 0L0E JOLORL Ly (7.14)
0% ¢ o dy OC o
But .
m(zy — yi) = mz-r x 1 =mr’p . (7.15)

As another example, consider the potential

Ulp,,2) = V(p,a¢ + 2) , (7.16)

where (p, ¢, z) are cylindrical coordinates for a particle of mass m, and where a is a constant
with dimensions of length. The Lagrangian is

Im(p? + p*¢? + %) — V(p,ad + 2) . (7.17)

This model possesses a helical symmetry, with a one-parameter family

A =p (7.18)
() =0+¢ (7.19)
2(Q)=2z—Ca . (7.20)
Note that
ap+i=ap+z, (7.21)

so the potential energy, and the Lagrangian as well, is invariant under this one-parameter
family of transformations. The conserved charge for this symmetry is

OL p OL ¢ OL 0% g .
= — — +— — =mp°p —maz . (7.22)
dp OC o dp OC o 0z OC o
We can check explicitly that A is conserved, using the equations of motion
d (OL\ d 9y OL OV
a(a_qs) = a(mre) =55 =% (729
d (0L d, . oL °)%
Thus,
A= 4 (mp2<;.5) —a i(mz) = (7.25)
dt dt ' '

7.2 Conservation of Linear and Angular Momentum

Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation
of all particles in the n direction. Then our one-parameter family of transformations is given
by

T, =x,+(n, (7.26)
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and the associated conserved Noether charge is

A=n-P, (7.27)

where P = )" p, is the total momentum of the system.
If the Lagrangian of a mechanical system is invariant under rotations about an axis n, then
T, = R((,n)z,
=z, +(nxz, +0(?), (7.28)

where we have expanded the rotation matrix R(¢,n) in powers of (. The conserved Noether
charge associated with this symmetry is

L
A:Z;ba~fzxwa:ﬁ-2wa><pa:fz-L, (7.29)

where L is the total angular momentum of the system.

7.3 Advanced Discussion : Invariance of L vs. Invariance of

S

Observant readers might object that demanding invariance of L is too strict. We should
instead be demanding invariance of the action S'. Suppose S is invariant under

t — i(q,t,0) (7.30)
45 (t) = G5(q:1,C) - (7.31)

Then invariance of S means

b,

tb
S = /dtL(q,q,t) = /dtL(g,g,t) . (7.32)
tq

la

Note that ¢ is a dummy variable of integration, so it doesn’t matter whether we call it ¢
or t. The endpoints of the integral, however, do change under the transformation. Now
consider an infinitesimal transformation, for which 6t = ¢ —t and dq = ¢(t) — g(t) are both
small. Thus,

t t,+5t,
. oL . oL
S—/dtL(q,q,t)— /dt{L(q,q,t)—1—8—%5(]0—1—8—%5(]0—1—...}, (7.33)

ta tat+0t,

'Indeed, we should be demanding that S only change by a function of the endpoint values.
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where

5, (t)

G5 (t) — q,(t)
Qs (t) = 45 (8) + 4, (t) — g, ()
0q, — 4, 0t + O(dq dt) (7.34)

Subtracting eqn. 7.33 from eqn. 7.32, we obtain

tb+6tb
aL B 8L _ aL d 8[/ =
=L, 0t, — L, 0ty + =—|0q,, — 7—|0 U\ oq ~at\ag ) (0%l
O e i L (A Al L
ta+6ta
tb
d oL oL
Jutf(o 2o ).
tq

where L, is L(q,q,t) evaluated at t = typ- Thus, if ¢ = 6( is infinitesimal, and

ot = A(q,t)6¢C (7.36)
6q, = B,(q,1) 0¢ , (7.37)
then the conserved charge is
oL oL
A=|L—-—4q, | Alq,t) + =— B,(q,t
( 20, qa> (¢:t) + a0 +(¢,t)
= = H(q,p, t) A(q7 t) + Do Bo (q7 t) . (738)

Thus, when A = 0, we recover our earlier results, obtained by assuming invariance of L.
Note that conservation of H follows from time translation invariance: ¢t — t + (, for which
A =1 and B, = 0. Here we have written

H = Do QO' - L 9 (739)

and expressed it in terms of the momenta p,, the coordinates ¢,, and time ¢. H is called
the Hamiltonian.

7.3.1 The Hamiltonian

The Lagrangian is a function of generalized coordinates, velocities, and time. The canonical
momentum conjugate to the generalized coordinate ¢, is

oL

Pe = . (7.40)
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The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the
Legendre transform of L:

H(q.p,t) =Y pyd,— L. (7.41)
Let’s examine the differential of H:
oL OL oL
dH = i d dq. — —dq. — —dq. | — —dt
b <q" Do TP M ™ Gy, Y7 94, ) ot
OL OL

= i dp, — —d — —dt 7.42
ZU: (qo s~ 5o qg> T (7.42)

where we have invoked the definition of p, to cancel the coefficients of dg,. Since p, =
0L/0q,, we have Hamilton’s equations of motion,

_0H .  0H

el Yy = ——— . 7.43
o=, + P 9, (7.43)
Thus, we can write
. . oL
dH = Z <q0 dp, — Dy dqa) o dt . (7.44)
Dividing by dt, we obtain
dH oL
i 4
dt ot ’ (7.45)

which says that the Hamiltonian is conserved (i.e. it does not change with time) whenever
there is no explicit time dependence to L.

Example #1 : For a simple d = 1 system with L = %miﬁ2 — U(x), we have p = ma and

2
H=pi—L=1mi?+U(x)= ;’—m +U(2) . (7.46)

Example #2 : Consider now the mass point — wedge system analyzed above, with

L= %(M+m)X2 +mXi + tm (1 + tan?a) @2 — mgx tana | (7.47)

The canonical momenta are

P=—"—"=(M+m)X +mi (7.48)
0X
p= g—i =mX 4+ m (1 +tan?a) i . (7.49)

The Hamiltonian is given by

H=PX +pi—1L
=M +m) X%+ mXi + tm (1 +tan’a) i + mgz tana . (7.50)
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However, this is not quite H, since H = H(X,z, P,p,t) must be expressed in terms of the
coordinates and the momenta and not the coordinates and velocities. So we must eliminate
X and # in favor of P and p. We do this by inverting the relations

<];> - <Mr—r:m m (1 —I—TianZoz)) <f13(> (7.51)
to obtain
<X> _ 1 <m (1+ tan?a) —m ) <P> . (752)
x m (M + (M + m) tan%a) —m M+m) \p
Substituting into 7.50, we obtain
M +m  P? cos’a Pp cos’a p?

H = +mgx tana . (7.53)

2m M +msin®a M +m sin?a | 2 (M +m sin?a)

Notice that P = 0 since g—)L< = 0. P is the total horizontal momentum of the system (wedge
plus particle) and it is conserved.

732 IsH=T+U?

The most general form of the kinetic energy is
2 .o .
= 37200, ) 4o 4o + TSV (0, 1) 4y + TO (g, 1) (7.54)

2

where T (q, ¢,t) is homogeneous of degree n in the velocities?. We assume a potential

energy of the form

U = Ul + UO
= UM (g, t) 4, + U (g, 1), (7.55)
which allows for velocity-dependent forces, as we have with charged particles moving in an
electromagnetic field. The Lagrangian is then

2)

L=T-U= %Téa,(q, )4, 4o + TV (q,t) G, + TO(q,t) — UM (g, 1) 4, — UV (q,t) . (7.56)

The canonical momentum conjugate to g, is

oL 2) .
Po= 5o = 73 4, + TV (q,t) — UV (g, ) (7.57)
a
which is inverted to give
. _ @)t M 4 7O
i =T2 (py — T +UD) (7.58)
2A homogeneous function of degree k satisfies f(Azy, ..., Ax,) = A*f(z1,...,x,). It is then easy to prove

FEuler’s theorem, Y, fi% =kf.
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The Hamiltonian is then

H=p,q,—L
—1
=112 (= T +UD) (py = 19+ ULD) =1, + U (7.59)

If T,,, T}, and U, vanish, i.e. if T(q,q,t) is a homogeneous function of degree two in the
generalized velocities, and U(q, t) is velocity-independent, then H =T+ U. But if T}, or T}
is nonzero, or the potential is velocity-dependent, then H # T + U.

7.3.3 Example: A bead on a rotating hoop

Consider a bead of mass m constrained to move along a hoop of radius a. The hoop is
further constrained to rotate with angular velocity ¢ = w about the 2z-axis, as shown in
Fig. 7.1.

The most convenient set of generalized coordinates is spherical polar (r, 8, ¢), in which case

T = Im(#? + 1267 + r?sin 0 §°)

= ima? (92 +w?sin?9) . (7.61)
Thus, T, = %ma292 and T, = %ma2w2 sin? §. The potential energy is U (#) = mga(1—-cos 6).
The momentum conjugate to ¢ is p, = ma?6, and thus

H(Q,p):T2—T0+U

= %ma292 — tmaw?sin? 6 + mga(1 — cos 0)
2
= 2p9 5 — tma*w?sin? 0 + mga(1 — cos0) . (7.62)
ma

For this problem, we can define the effective potential

Ug(0) =U — T,y = mga(l — cos0) — %ma2w2 sin? @
2
_ _ W2
= mga(l cos 0 27 sin 0) , (7.63)

where wi = g/a. The Lagrangian may then be written
L=1ma®0? — Uyg(0) , (7.64)

and thus the equations of motion are

(7.65)
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Figure 7.1: A bead of mass m on a rotating hoop of radius a.

Equilibrium is achieved when Ul (6) = 0, which gives

et . w? _
50 —mgasmﬁ{l—w—gcosQ}—O, (7.66)

ie. 0* =0, 0* = m, or §* = +cos ! (w?/w?), where the last pair of equilibria are present
only for w? > w. The stability of these equilibria is assessed by examining the sign of
2%(0). We have
2

w
"%(0) = mga { cosf — w—(z] (2cos? 6 — 1)} . (7.67)

Thus,

5(0%) = ¢ —mga <1 + ﬁ—;) at 0* =7 (7.68)
0

2 2
mga (“’—z — %) at * = +cos™! (%) .

Thus, 8* = 0 is stable for w? < w% but becomes unstable when the rotation frequency w
is sufficiently large, i.e. when w? > wg. In this regime, there are two new equilibria, at
0* = 4 cos!(w?/w?), which are both stable. The equilibrium at §* = 7 is always unstable,

independent of the value of w. The situation is depicted in Fig. 7.2.
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Figure 7.2: The effective potential Ueg(6) = mga[1—cos 6 — 2‘:}—22 sin?#]. (The dimensionless
0

potential U () = Ueg/mga is shown, where z = 0/7.) Left panels: w = 2V3wo. Right
panels: w = v/3wy.

7.4 Charged Particle in a Magnetic Field

Consider next the case of a charged particle moving in the presence of an electromagnetic
field. The particle’s potential energy is

Ur.#) = qo(r.t) = 2 A(r.t) -7, (7.69)

which is velocity-dependent. The kinetic energy is T = %m 72, as usual. Here ¢(r) is the

scalar potential and A(r) the vector potential. The electric and magnetic fields are given
by
1 0A

E=— - — B = A . .
v Tl V x (7.70)
The canonical momentum is
oL q
= — = r — A 71
p 57 mr + oA (7.71)
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and hence the Hamiltonian is
H(’l",p,t) :pr - L
=i+ LA Imi2 LA g
c c
= 3mi’ +q¢

1

:Z%@y—%AWJD2+anﬂ'

If A and ¢ are time-independent, then H(r,p) is conserved.

Let’s work out the equations of motion. We have
d (oL _or
dat \ or |  or

which gives

dA
mr+—$ =—qVop+-V(A-7r),
or, in component notation,
: ¢ Ox; I e ot q@xi c Ox; "7

which is to say

¢ q@aji c Ot ¢ Ly

o 8332 B 8:Ej

11

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

It is convenient to express the cross product in terms of the completely antisymmetric tensor

of rank three, €k
0A;
Bi = € oz;
and using the result
€ijk Cimn — 6jm 6kn - 5jn 6km )

¢ q 0A; q . B
Eeijkxj ko>

mz, = —
! q(‘)a;,- c Ot

or, in vector notation,

oA
mﬁz—qV@—%5?+%ﬁx(VxA)

—¢E+%7xB,
C

which is, of course, the Lorentz force law.

(7.77)

(7.78)

(7.79)

(7.80)
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7.5 Fast Perturbations : Rapidly Oscillating Fields

Consider a free particle moving under the influence of an oscillating force,

m§ = Fsinwt . (7.81)
The motion of the system is then
F sinwt
at) = 4,(0) — —— (752)

where ¢, (t) = A + Bt is the solution to the homogeneous (unforced) equation of motion.

Note that the amplitude of the response ¢ — ¢, goes as w™2 and is therefore small when w
is large.

Now consider a general n = 1 system, with
H(q,p,t) = Hy(q,p) + V(q) sin(wt +9) . (7.83)

We assume that w is much greater than any natural oscillation frequency associated with
H,. We separate the motion ¢(¢) and p(t) into slow and fast components:

q(t) = q(t) + ¢(t) (7.84)

p(t) = p(t) +7(t) , (7.85)

where ((t) and 7(¢) oscillate with the driving frequency w. Since ¢ and 7 will be small, we
expand Hamilton’s equations in these quantities:

qg+¢= 9 + 72 T+ 8@8ﬁ<+ 5 02 0p ,C 95072 (774—5 07 ™ +... (7.86)
s OHy  OHy . OHy 1Oy, OHo 1 9H
PTR=""8 ~0¢ ° 9gop " 2 o 2205 " 2 03002
ov oV
~ o sin(wt 4 60) — 7l ¢ sin(wt +6) — . (7.87)

We now average over the fast degrees of freedom to obtain an equation of motion for the slow
variables ¢ and p, which we here carry to lowest nontrivial order in averages of fluctuating
quantities:

. 0Hy 1 &°Hy , 4 . O°Hy 1 0°Hy , 5
1= T2 0p () 0 Op2 5 () + 2 op? (™) (7.88)
. QHy 1 H0 o OHo 1 &Hy , 5 OV,

The fast degrees of freedom obey

O%H, O%H,
0 T2
0q 0p op

O°Hy . 0°Hy OV
o2 " 970p T — e sin(wt + 0) . (7.91)

(= (7.90)

=
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Let us analyze the coupled equations®
(=A(+Br (7.92)
7=-C(—Am+ Fe ™, (7.93)
The solution is of the form
C _ (@ —twt
<7T =3 2 . (7.94)
Plugging in, we find
BF BF 4
a:—BC_A2_w2:—F+(’)(w ) (795)
(A+iw)F i _3
- 7 L0 ) 7.96
& BC - A%2 —w?2 W +0W™) (7.96)

Taking the real part, and restoring the phase shift J, we have

C(t) = % sin(wt + 6) = % %—‘; 882]]:[20 sin(wt + 0) (7.97)
() = —g cos(wi + §) = % %—‘; cos(wt +3) . (7.98)
The desired averages, to lowest order, are thus
(x2) = ﬁ (%‘;)2 (7.100)
(¢ sin(wt 4 0)) = % %—‘; %2—? , (7.101)

along with <C7r> = 0.

Finally, we substitute the averages into the equations of motion for the slow variables ¢ and
P, resulting in the time-independent effective Hamiltonian

1 0%Hy (OVY
K(g,p) = Hy(q,p) + —5 —5 | =— 7.102
(q7p) 0((]7p)+ 4w2 8]32 <8q> 9 ( )
and the equations of motion
. 0K . 0K
§=—F— p=———. 7.103
i=%5 + P o ( )

3With real coefficients A, B, and C, one can always take the real part to recover the fast variable equations
of motion.



14 CHAPTER 7. NOETHER’S THEOREM

7.5.1 Example : pendulum with oscillating support

Consider a pendulum with a vertically oscillating point of support. The coordinates of the
pendulum bob are
x={sinf , y=a(t)—~Lcosh. (7.104)

The Lagrangian is easily obtained:

L= im0 + mlafsin 0 + mgl cos 0 + ima* — mga (7.105)
these may be dropped
. d
= iml? 0% + m(g + &)l cos O+ 2ma® — mga — 7 (mla sinf) . (7.106)

Thus we may take the Lagrangian to be
L=1ime 0% + m(g + @)l cos® (7.107)

from which we derive the Hamiltonian

2

H =_20__ — mli 1
(0,py,1) 52 mgl cos 0 — mli cos 6 (7.108)
= Hy(0,py,t) +V,(0) sinwt . (7.109)
We have assumed a(t) = a,sinwt, so
V,(0) = mlagw? cos 0 . (7.110)
The effective Hamiltonian, per eqn. 7.102, is
] _ Do o1 2 2. 247
K(0,py) = 5l mgl cos 0 + 3mayw”sin” 6 . (7.111)
Let’s define the dimensionless parameter
29/
iy (7.112)
w?a?

The slow variable § executes motion in the effective potential V.4 (0) = mglv(6), with

v(0) = —cos + 2i sin? 6 . (7.113)

€
Differentiating, and dropping the bar on 6, we find that V_;(#) is stationary when
V(@) =0 = sinfcosh = —esinf . (7.114)

Thus, # = 0 and 6 = 7, where sinf = 0, are equilibria. When € < 1 (note € > 0 always),
there are two new solutions, given by the roots of cos = —e.
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Figure 7.3: Dimensionless potential v(#) for € = 1.5 (black curve) and € = 0.5 (blue curve).

To assess stability of these equilibria, we compute the second derivative:

1
v"(0) = cosf + — cos 20 . (7.115)
€
From this, we see that # = 0 is stable (i.e. v”(f = 0) > 0) always, but § = 7 is stable for
€ < 1 and unstable for ¢ > 1. When € < 1, two new solutions appear, at cosf = —e¢, for
which .
v"(cosTH(—€)) =e— —, (7.116)

€

which is always negative since € < 1 in order for these equilibria to exist. The situation is
sketched in fig. 7.3, showing v(#) for two representative values of the parameter e. For e > 1,
the equilibrium at # = 7 is unstable, but as e decreases, a subcritical pitchfork bifurcation is
encountered at € = 1, and § = m becomes stable, while the outlying § = cos~!(—¢) solutions
are unstable.

7.6 Field Theory: Systems with Several Independent Vari-
ables

Suppose ¢q(x) depends on several independent variables: {x!,x?

suppose

,...,x2"}. Furthermore,

S[{da(@)] = /dmﬁ(% Do) | (7.117)
2
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i.e. the Lagrangian density L is a function of the fields ¢, and their partial derivatives
¢a/0x*. Here (2 is a region in R®. Then the first variation of S is

or oL 966,
0SS = [d — 9
S /w{a%tﬁ—k i) 8:13“}
oL
jq{dznu B0 0t /d {a% o (a(au%))}é%, (7.118)

where 02 is the (n — 1)-dimensional boundary of {2, d¥ is the differential surface area, and
n* is the unit normal. If we demand 0L£/0(0,¢a)|,, = 0 of 6¢q|,, = 0, the surface term
vanishes, and we conclude

‘6(2 |6(2

(7.119)

R ( oL >
00a(@) ~ Dby 0\ (Duda)

As an example, consider the case of a stretched string of linear mass density @ and tension
7. The action is a functional of the height y(z,t), where the coordinate along the string, x,
and time, ¢, are the two independent variables. The Lagrangian density is

dy oy 2
-1 _ 1 (7
L= 'u<8t> 2T<8x> , (7.120)
whence the Euler-Lagrange equations are
oo 05 _ ooy _o(oc
- oy(x,t) Oz \ oy ot \ 0y

B0
T2 P

(7.121)

where 1/ = % and g = %. Thus, pyj = 7y”, which is the Helmholtz equation. We've

assumed boundary conditions where §y(xq,t) = 0y(x,,t) = dy(x,ta) = d0y(z,t,) = 0.
The Lagrangian density for an electromagnetic field with sources is
£ —

—15z F, F* =14, A", (7.122)

The equations of motion are then

aL 9 ( oc
9Ar — 9zv \ 9(0rAY)

4
>=0 5 g = (7.123)

which are Maxwell’s equations.

Recall the result of Noether’s theorem for mechanical systems:

oL 0¢r \
<aqa 8() —0, (7.124)
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where ¢» = G»(q,() is a one-parameter ({) family of transformations of the generalized
coordinates which leaves L invariant. We generalize to field theory by replacing

45 (t) — dq(z,t) , (7.125)
where {¢q(x, 1)} are a set of fields, which are functions of the independent variables {x, y, z,t}.

We will adopt covariant relativistic notation and write for four-vector z# = (ct, x,y, z). The
generalization of dA/dt =0 is

0 oL  Odq
Azt \ 0 (dupa) OC

where there is an implied sum on both y and a. We can write this as 9, J#* = 0, where

—0, (7.126)
=0

oL  Oda

GG a—C (7.127)

¢=0

We call A = J°/c the total charge. If we assume J = 0 at the spatial boundaries of our
system, then integrating the conservation law d, J* over the spatial region 2 gives

Q Q o0

assuming J = 0 at the boundary 0f2.

As an example, consider the case of a complex scalar field, with Lagrangian density®

L, 0", 0,1, 0,0") = $K (9,97 )(0") — U (") (7.129)
This is invariant under the transformation ) — e’ ¢, ¢* — e~ 4p*. Thus,
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and, summing over both 1 and ¢* fields, we have
oL oL
Jh — s oL
0.0 " a@en
= %(zp*aﬂw —pOMY*) . (7.131)

The potential, which depends on [¢/|?, is independent of (. Hence, this form of conserved
4-current is valid for an entire class of potentials.

4We raise and lower indices using the Minkowski metric Gy = diag (+,—, —, —).
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7.6.1 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

oY h? 2
= jhy* ———V1/1 -V — g (| —no) . (7.132)

This describes a Bose fluid with repulsive short-ranged interactions. Here v (a,t) is again
a complex scalar field, and ¥* is its complex conjugate. Using the Leibniz rule, we have

SS[Y*, ] = S[P + 6y, ¢ + 09
/dt/dd {mp ‘W’+ ih &y —w—h—2vw Vaw—ﬁvaw -V

29 (]2 — ny) (160 +w6¢*>}

/dt/dd {[—mW* 5 VAU =29 (|f* = ng) ¥ ]51/;

[ h%—f + h—v2 2g ([]* — ng) ¥ } w*} , (7.133)

where we have integrated by parts where necessary and discarded the boundary terms.
Extremizing S[*, ] therefore results in the nonlinear Schrodinger equation (NLSE),

oy h?
ih— B = %v2¢+29(|¢|2 —ng) Y (7.134)
as well as its complex conjugate,
o™ h2
—ih g]’f = v% +2g (J9]* — ng) ¥* . (7.135)

Note that these equations are indeed the Euler-Lagrange equations:

0S 0L 0 oL
= _=_ _ 1
oY Oy Oz (ac‘m}) (7.136)
oS oL 0 oL
with o# = (¢, z)° Plugging in
oc 9 N oc ., oc h? .
a0 —2g (J9|° = ng) v* 90,0 thy* ove - om Vi (7.138)
and
oL . 9 oL o h?
90 =il —2g ([¢]° —ng) v 900" =0 , aver ~ am Vi, (7.139)

°In the nonrelativistic case, there is no utility in defining 2° = ¢t, so we simply define 2° = t.
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we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

Y(x,t) — Plx,t) = eC(x,t) , P (x,t) — o (x,t) = e Cp*(x,t) . (7.140)
Thus, the conserved Noether current is then
P 8_¢' oc_ o
00,0 0¢ o 00,9* OC o
J = —hy)? (7.141)
h2
=—— (¢* — . 142
J = —5— (V" V¥ - V) (7.142)
Dividing out by A, taking J° = —hp and J = —hj, we obtain the continuity equation,
dp .
hlid Li= 14
BT +V.3=0, (7.143)
where
p= [ . G = o (V- YV (7.144)
’ 2im

are the particle density and the particle current, respectively.



