Physics 110A: Problem Set #1

Reading: Review MT chapter 1; read chapter 2, 3.4, 4.3 and class notes pp. $\,$ 1-30 and 61-86

- [1] Consider the equation $\dot{x} = e^x \cos x$.
- (a) Sketch the vector field \dot{x} on the real line.
- (b) Graphically identify all the fixed points and classify them as stable or unstable.
- (c) Sketch the function x(t) for several initial conditions.
- [2] Sketch V(x) and the phase curves for one-dimensional motion in the following potentials:

(a)
$$V(x) = V_0 (a^2 - x^2)^2$$

(b)
$$V(x) = V_0 \left[\left(\frac{a}{x} \right)^4 - \left(\frac{a}{x} \right)^2 \right]$$
.

[3] In class, we integrated the logistic equation

$$\dot{N} = rN \left(1 - rac{N}{K}
ight) \; .$$

Consider here the modified logistic equation,

$$\dot{N}=rN\left(1-rac{N^2}{K^2}
ight) \; ,$$

subject to the initial condition $N(0)=N_0$. Sketch the one-dimensional phase flows along the entire real line (including negative N) for both positive and negative r. Integrate the equation and show explicitly how N flows to a stable fixed point. Show that for r<0 and $|N_0|>K$ that N(t) flows to $\pm\infty$ in a finite time. Find the time $t(N_0,K)$ it takes for N to become infinite.

You may use any method you know of to integrate the ODE. The following identity, which you should derive, proves useful:

$$rac{1}{(N-A)(N-B)(N-C)} = rac{lpha}{N-A} + rac{eta}{N-B} + rac{\gamma}{N-C} \; .$$

where

$$lpha = rac{1}{(A-B)(A-C)} \ eta = rac{1}{(B-A)(B-C)} \ \gamma = rac{1}{(C-A)(C-B)} \ .$$

[4] Sketch the phase curves for the second order equation

$$\ddot{\theta} + b \dot{\theta} + \sin \theta = 0.$$

What is a mechanical analog for this equation? Identify all fixed points and classify their stability.

[5] The Lorentz force exerted on a charged particle moving in an electric field \vec{E} and a magnetic field \vec{B} is given by

$$ec{F} = qec{E} + rac{q}{c}\,ec{v} imesec{B}$$

where q is the particle's charge, \vec{v} its velocity, and c the speed of light. Let $\vec{B} = B\hat{z}$ and $\vec{E} = E_y\hat{y} + E_z\hat{z}$.

- (a) Show that the motion in the $\hat{\mathbf{z}}$ direction is ballistic with uniform acceleration $a=qE_z/m$. Integrate to find z(t).
- (b) Find the equations for motion of the coordinates x and y. Show that the velocity $v_y = \dot{y}$ obeys the oscillator equation $\ddot{v}_y + \omega_c^2 v_y = 0$, where $\omega_c = qB/mc$ is the cyclotron frequency. Compute the cyclotron frequency for an electron moving in a B = 6 T field. Show that $v_x = \dot{x}$ obeys the equation of a displaced oscillator.
- (c) Integrate the equations from part (b) to obtain the complete solution of the problem. How many constants of integration are there?