
Chapter 4

Linear Oscillations

Harmonic motion is ubiquitous in Physics. The reason is that any potential energy function,
when expanded in a Taylor series in the vicinity of a local minimum, is a harmonic function:

U(~q ) = U(~q ∗) +

N∑

j=1

∇U(~q∗)=0
︷ ︸︸ ︷

∂U

∂qj

∣
∣
∣
∣
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(qj − q∗j ) + 1
2

N∑
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∂2U

∂qj ∂qk

∣
∣
∣
∣
~q=~q ∗

(qj − q∗j ) (qk − q∗k) + . . . , (4.1)

where the {qj} are generalized coordinates – more on this when we discuss Lagrangians. In
one dimension, we have simply

U(x) = U(x∗) + 1
2 U ′′(x∗) (x − x∗)2 + . . . . (4.2)

Provided the deviation η = x − x∗ is small enough in magnitude, the remaining terms in
the Taylor expansion may be ignored. Newton’s Second Law then gives

m η̈ = −U ′′(x∗) η + O(η2) . (4.3)

This, to lowest order, is the equation of motion for a harmonic oscillator. If U ′′(x∗) > 0,
the equilibrium point x = x∗ is stable, since for small deviations from equilibrium the
restoring force pushes the system back toward the equilibrium point. When U ′′(x∗) < 0,
the equilibrium is unstable, and the forces push one further away from equilibrium.

4.1 Damped Harmonic Oscillator

In the real world, there are frictional forces, which we here will approximate by F = −γv.
We begin with the homogeneous equation for a damped harmonic oscillator,

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = 0 , (4.4)
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where γ = 2βm. To solve, write x(t) =
∑

i Ci e
−iωit. This renders the differential equation

4.4 an algebraic equation for the two eigenfrequencies ωi, each of which must satisfy

ω2 + 2iβω − ω2
0 = 0 , (4.5)

hence
ω± = −iβ ± (ω2

0 − β2)1/2 . (4.6)

The most general solution to eqn. 4.4 is then

x(t) = C+ e−iω+t + C− e−iω
−

t (4.7)

where C± are arbitrary constants. Notice that the eigenfrequencies are in general complex,
with a negative imaginary part (so long as the damping coefficient β is positive). Thus

e−iω
±

t decays to zero as t → ∞.

4.1.1 Classes of damped harmonic motion

We identify three classes of motion:

(i) Underdamped (ω2
0 > β2)

(ii) Overdamped (ω2
0 < β2)

(iii) Critically Damped (ω2
0 = β2) .

Underdamped motion

The solution for underdamped motion is

x(t) = A cos(νt + φ) e−βt

ẋ(t) = −ω0A cos
(
νt + φ + sin−1(β/ω0)

)
e−βt ,

(4.8)

where ν =
√

ω2
0 − β2, and where A and φ are constants determined by initial conditions.

From x0 = A cos φ and ẋ0 = −βA cos φ − νA sin φ, we have ẋ0 + βx0 = −νA sin φ, and

A =

√

x2
0 +

(
ẋ0 + β x0

ν

)2

, φ = − tan−1

(
ẋ0 + β x0

ν x0

)

. (4.9)

Overdamped motion

The solution in the case of overdamped motion is

x(t) = C e−(β−λ)t + D e−(β+λ)t

ẋ(t) = −(β − λ)C e−(β−λ)t − (β + λ)D e−(β+λ)t ,
(4.10)
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where λ =
√

β2 − ω2
0 and where C and D are constants determined by the initial conditions:

(
1 1

−(β − λ) −(β + λ)

)(
C
D

)

=

(
x0

ẋ0

)

. (4.11)

Inverting the above matrix, we have the solution

C =
(β + λ)x0

2λ
+

ẋ0

2λ
, D = −(β − λ)x0

2λ
− ẋ0

2λ
. (4.12)

Critically damped motion

The solution in the case of critically damped motion is

x(t) = E e−βt + Ft e−βt

ẋ(t) = −
(

βE + (βt − 1)F
)

e−βt .
(4.13)

Thus, x0 = E and ẋ0 = F − βE, so

E = x0 , F = ẋ0 + βx0 . (4.14)

The screen door analogy

The three types of behavior are depicted in fig. 4.1. To concretize these cases in one’s mind,
it is helpful to think of the case of a screen door or a shock absorber. If the hinges on the
door are underdamped, the door will swing back and forth (assuming it doesn’t have a rim
which smacks into the door frame) several times before coming to a stop. If the hinges are
overdamped, the door may take a very long time to close. To see this, note that for β ≫ ω0

we have

√

β2 − ω2
0 = β

(

1 − ω2
0

β2

)−1/2

= β

(

1 − ω2
0

2β2
− ω4

0

8β4
+ . . .

)

, (4.15)

which leads to

β −
√

β2 − ω2
0 =

ω2
0

2β
+

ω4
0

8β3
+ . . .

β +
√

β2 − ω2
0 = 2β − ω2

0

2β
− + . . . . (4.16)

Thus, we can write

x(t) = C e−t/τ1 + D e−t/τ2 , (4.17)
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Figure 4.1: Three classifications of damped harmonic motion. The initial conditions are
x(0) = 1, ẋ(0) = 0.

with

τ1 =
1

β −
√

β2 − ω2
0

≈ 2β

ω2
0

(4.18)

τ2 =
1

β +
√

β2 − ω2
0

≈ 1

2β
. (4.19)

Thus x(t) is a sum of exponentials, with decay times τ1,2. For β ≫ ω0, we have that τ1 is

much larger than τ2 – the ratio is τ1/τ2 ≈ 4β2/ω2
0 ≫ 1. Thus, on time scales on the order of

τ1, the second term has completely damped away. The decay time τ1, though, is very long,
since β is so large. So a highly overdamped oscillator will take a very long time to come to
equilbrium.

4.1.2 Remarks on the case of critical damping

Define the first order differential operator

Dt =
d

dt
+ β . (4.20)
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The solution to Dt x(t) = 0 is x̃(t) = Ae−βt, where A is a constant. Note that the commu-

tator of Dt and t is unity:
[
Dt , t

]
= 1 , (4.21)

where [A,B] ≡ AB − BA. The simplest way to verify eqn. 4.21 is to compute its action
upon an arbitrary function f(t):

[
Dt , t

]
f(t) =

(
d

dt
+ β

)

t f(t) − t

(
d

dt
+ β

)

f(t)

=
d

dt

(
t f(t)

)
− t

d

dt
f(t) = f(t) . (4.22)

We know that x(t) = x̃(t) = Ae−βt satisfies Dt x(t) = 0. Therefore

0 = Dt

[
Dt , t

]
x̃(t)

= D2
t

(

t x̃(t)
)

−Dt t

0
︷ ︸︸ ︷

Dt x̃(t)

= D2
t

(

t x̃(t)
)

. (4.23)

We already know that D2
t x̃(t) = Dt Dt x̃(t) = 0. The above equation establishes that the

second independent solution to the second order ODE D2
t x(t) = 0 is x(t) = t x̃(t). Indeed,

we can keep going, and show that

Dn
t

(

tn−1 x̃(t)
)

= 0 . (4.24)

Thus, the n independent solutions to the nth order ODE
(

d

dt
+ β

)n

x(t) = 0 (4.25)

are
xk(t) = Atk e−βt , k = 0, 1, . . . , n − 1 . (4.26)

4.1.3 Phase portraits for the damped harmonic oscillator

Expressed as a dynamical system, the equation of motion ẍ + 2βẋ + ω2
0x = 0 is written as

two coupled first order ODEs, viz.

ẋ = v

v̇ = −ω2
0 x − 2βv .

(4.27)

In the theory of dynamical systems, a nullcline is a curve along which one component of
the phase space velocity ϕ̇ vanishes. In our case, there are two nullclines: ẋ = 0 and v̇ = 0.
The equation of the first nullcline, ẋ = 0, is simply v = 0, i.e. the first nullcline is the
x-axis. The equation of the second nullcline, v̇ = 0, is v = −(ω2

0/2β)x. This is a line which
runs through the origin and has negative slope. Everywhere along the first nullcline ẋ = 0,
we have that ϕ̇ lies parallel to the v-axis. Similarly, everywhere along the second nullcline
v̇ = 0, we have that ϕ̇ lies parallel to the x-axis. The situation is depicted in fig. 4.2.
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Figure 4.2: Phase curves for the damped harmonic oscillator. Left panel: underdamped
motion. Right panel: overdamped motion. Note the nullclines along x = 0 and v =
−(ω2

0/2β)x, which are shown as dashed lines.

4.2 Damped Harmonic Oscillator with Forcing

When forced, the equation for the damped oscillator becomes

d2x

dt2
+ 2β

dx

dt
+ ω2

0 x = f(t) , (4.28)

where f(t) = F (t)/m. Since this equation is linear in x(t), we can, without loss of generality,
restrict out attention to harmonic forcing terms of the form

f(t) = f0 cos(Ωt + ϕ0) = Re
[

f0 e−iϕ0 e−iΩt
]

(4.29)

where Re stands for “real part”. Here, Ω is the forcing frequency.

Consider first the complex equation

d2z

dt2
+ 2β

dz

dt
+ ω2

0 z = f0 e−iϕ0 e−iΩt . (4.30)

We try a solution z(t) = z0 e−iΩt. Plugging in, we obtain the algebraic equation

z0 =
f0 e−iϕ0

ω2
0 − 2iβΩ − Ω2

≡ A(Ω) eiδ(Ω) f0e
−iϕ0 . (4.31)

The amplitude A(Ω) and phase shift δ(Ω) are given by the equation

A(Ω) eiδ(Ω) =
1

ω2
0 − 2iβΩ − Ω2

. (4.32)
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A basic fact of complex numbers:

1

a − ib
=

a + ib

a2 + b2
=

ei tan−1(b/a)

√
a2 + b2

. (4.33)

Thus,

A(Ω) =
(

(ω2
0 − Ω2)2 + 4β2Ω2

)−1/2
(4.34)

δ(Ω) = tan−1

(
2βΩ

ω2
0 − Ω2

)

. (4.35)

Now since the coefficients β and ω2
0 are real, we can take the complex conjugate of eqn.

4.30, and write

z̈ + 2β ż + ω2
0 z = f0 e−iϕ0 e−iΩt (4.36)

¨̄z + 2β ˙̄z + ω2
0 z̄ = f0 e+iϕ0 e+iΩt , (4.37)

where z̄ is the complex conjugate of z. We now add these two equations and divide by two
to arrive at

ẍ + 2β ẋ + ω2
0 x = f0 cos(Ωt + ϕ0) . (4.38)

Therefore, the real, physical solution we seek is

xinh(t) = Re
[

A(Ω) eiδ(Ω) · f0 e−iϕ0 e−iΩt
]

= A(Ω) f0 cos
(
Ωt + ϕ0 − δ(Ω)

)
. (4.39)

The quantity A(Ω) is the amplitude of the response (in units of f0), while δ(Ω) is the
(dimensionless) phase lag (typically expressed in radians).

The maximum of the amplitude A(Ω) occurs when A′(Ω) = 0. From

dA

dΩ
= − 2Ω

[
A(Ω)

]3

(
Ω2 − ω2

0 + 2β2
)

, (4.40)

we conclude that A′(Ω) = 0 for Ω = 0 and for Ω = ΩR, where

ΩR =
√

ω2
0 − 2β2 . (4.41)

The solution at Ω = ΩR pertains only if ω2
0 > 2β2, of course, in which case Ω = 0 is a local

minimum and Ω = ΩR a local maximum. If ω2
0 < 2β2 there is only a local maximum, at

Ω = 0. See Fig. 4.3.



8 CHAPTER 4. LINEAR OSCILLATIONS

Figure 4.3: Amplitude and phase shift versus oscillator frequency (units of ω0) for β/ω0

values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

Since equation 4.28 is linear, we can add a solution to the homogeneous equation to xinh(t)
and we will still have a solution. Thus, the most general solution to eqn. 4.28 is

x(t) = xinh(t) + xhom(t)

= Re
[

A(Ω) eiδ(Ω) · f0 e−iϕ0 e−iΩt
]

+ C+ e−iω+t + C
−

e−iω
−

t

=

xinh(t)
︷ ︸︸ ︷

A(Ω) f0 cos
(
Ωt + ϕ0 − δ(Ω)

)
+

xhom(t)
︷ ︸︸ ︷

C e−βt cos(νt) + D e−βt sin(νt) , (4.42)

where ν =
√

ω2
0 − β2 as before.

The last two terms in eqn. 4.42 are the solution to the homogeneous equation, i.e. with
f(t) = 0. They are necessary to include because they carry with them the two constants
of integration which always arise in the solution of a second order ODE. That is, C and D
are adjusted so as to satisfy x(0) = x0 and ẋ0 = v0. However, due to their e−βt prefactor,
these terms decay to zero once t reaches a relatively low multiple of β−1. They are called
transients, and may be set to zero if we are only interested in the long time behavior of the
system. This means, incidentally, that the initial conditions are effectively forgotten over a
time scale on the order of β−1.

For ΩR > 0, one defines the quality factor , Q, of the oscillator by Q = ΩR/2β. Q is a rough
measure of how many periods the unforced oscillator executes before its initial amplitude is
damped down to a small value. For a forced oscillator driven near resonance, and for weak
damping, Q is also related to the ratio of average energy in the oscillator to the energy lost
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per cycle by the external source. To see this, let us compute the energy lost per cycle,

∆E = m

2π/Ω∫

0

dt ẋ f(t)

= −m

2π/Ω∫

0

dt Ω Af2
0 sin(Ωt + ϕ0 − δ) cos(Ωt + ϕ0)

= πAf2
0 m sin δ

= 2πβ m Ω A2(Ω) f2
0 , (4.43)

since sin δ(Ω) = 2βΩ A(Ω). The oscillator energy, averaged over the cycle, is

〈
E
〉

=
Ω

2π

2π/Ω∫

0

dt 1
2m
(
ẋ2 + ω2

0 x2
)

= 1
4m (Ω2 + ω2

0)A2(Ω) f2
0 . (4.44)

Thus, we have

2π〈E〉
∆E

=
Ω2 + ω2

0

4βΩ
. (4.45)

Thus, for Ω ≈ ΩR and β2 ≪ ω2
0, we have

Q ≈ 2π〈E〉
∆E

≈ ω0

2β
. (4.46)

4.2.1 Resonant forcing

When the damping β vanishes, the response diverges at resonance. The solution to the
resonantly forced oscillator

ẍ + ω2
0 x = f0 cos(ω0 t + ϕ0) (4.47)

is given by

x(t) =
f0

2ω0
t sin(ω0 t + ϕ0)+

xhom(t)
︷ ︸︸ ︷

A cos(ω0 t) + B sin(ω0 t) . (4.48)

The amplitude of this solution grows linearly due to the energy pumped into the oscillator by
the resonant external forcing. In the real world, nonlinearities can mitigate this unphysical,
unbounded response.
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Figure 4.4: An R-L-C circuit which behaves as a damped harmonic oscillator.

4.2.2 R-L-C circuits

Consider the R-L-C circuit of Fig. 4.4. When the switch is to the left, the capacitor is
charged, eventually to a steady state value Q = CV . At t = 0 the switch is thrown to the
right, completing the R-L-C circuit. Recall that the sum of the voltage drops across the
three elements must be zero:

L
dI

dt
+ IR +

Q

C
= 0 . (4.49)

We also have Q̇ = I, hence

d2Q

dt2
+

R

L

dQ

dt
+

1

LC
Q = 0 , (4.50)

which is the equation for a damped harmonic oscillator, with ω0 = (LC)−1/2 and β = R/2L.

The boundary conditions at t = 0 are Q(0) = CV and Q̇(0) = 0. Under these conditions,
the full solution at all times is

Q(t) = CV e−βt
(

cos νt +
β

ν
sin νt

)

(4.51)

I(t) = −CV
ω2

0

ν
e−βt sin νt , (4.52)

again with ν =
√

ω2
0 − β2.

If we put a time-dependent voltage source in series with the resistor, capacitor, and inductor,
we would have

L
dI

dt
+ IR +

Q

C
= V (t) , (4.53)

which is the equation of a forced damped harmonic oscillator.
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4.2.3 Examples

Third order linear ODE with forcing

The problem is to solve the equation

Lt x ≡ ...
x + (a + b + c) ẍ + (ab + ac + bc) ẋ + abc x = f0 cos(Ωt) . (4.54)

The key to solving this is to note that the differential operator Lt factorizes:

Lt =
d3

dt3
+ (a + b + c)

d2

dt2
+ (ab + ac + bc)

d

dt
+ abc

=
( d

dt
+ a
)( d

dt
+ b
)( d

dt
+ c
)

, (4.55)

which says that the third order differential operator appearing in the ODE is in fact a
product of first order differential operators. Since

dx

dt
+ αx = 0 =⇒ x(t) = Ae−αx , (4.56)

we see that the homogeneous solution takes the form

xh(t) = Ae−at + B e−bt + C e−ct , (4.57)

where A, B, and C are constants.

To find the inhomogeneous solution, we solve Lt x = f0 e−iΩt and take the real part. Writing

x(t) = x0 e−iΩt, we have

Lt x0 e−iΩt = (a − iΩ) (b − iΩ) (c − iΩ)x0 e−iΩt (4.58)

and thus

x0 =
f0 e−iΩt

(a − iΩ)(b − iΩ)(c − iΩ)
≡ A(Ω) eiδ(Ω) f0 e−iΩt ,

where

A(Ω) =
[

(a2 + Ω2) (b2 + Ω2) (c2 + Ω2)
]−1/2

(4.59)

δ(Ω) = tan−1
(Ω

a

)

+ tan−1
(Ω

b

)

+ tan−1
(Ω

c

)

. (4.60)

Thus, the most general solution to Lt x(t) = f0 cos(Ωt) is

x(t) = A(Ω) f0 cos
(
Ωt − δ(Ω)

)
+ Ae−at + B e−bt + C e−ct . (4.61)

Note that the phase shift increases monotonically from δ(0) = 0 to δ(∞) = 3
2π.
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Figure 4.5: A driven L-C-R circuit, with V (t) = V0 cos(ωt).

Mechanical analog of RLC circuit

Consider the electrical circuit in fig. 4.5. Our task is to construct its mechanical analog.
To do so, we invoke Kirchoff’s laws around the left and right loops:

L1 İ1 +
Q1

C1
+ R1 (I1 − I2) = 0 (4.62)

L2 İ2 + R2 I2 + R1 (I2 − I1) = V (t) . (4.63)

Let Q1(t) be the charge on the left plate of capacitor C1, and define

Q2(t) =

t∫

0

dt′ I2(t
′) . (4.64)

Then Kirchoff’s laws may be written

Q̈1 +
R1

L1
(Q̇1 − Q̇2) +

1

L1C1
Q1 = 0 (4.65)

Q̈2 +
R2

L2
Q̇2 +

R1

L2
(Q̇2 − Q̇1) =

V (t)

L2
. (4.66)

Now consider the mechanical system in Fig. 4.6. The blocks have masses M1 and M2.
The friction coefficient between blocks 1 and 2 is b1, and the friction coefficient between
block 2 and the floor is b2. Here we assume a velocity-dependent frictional force Ff = −bẋ,

rather than the more conventional constant Ff = −µ W , where W is the weight of an
object. Velocity-dependent friction is applicable when the relative velocity of an object and
a surface is sufficiently large. There is a spring of spring constant k1 which connects block 1
to the wall. Finally, block 2 is driven by a periodic acceleration f0 cos(ωt). We now identify

X1 ↔ Q1 , X2 ↔ Q2 , b1 ↔ R1

L1
, b2 ↔ R2

L2
, k1 ↔ 1

L1C1
, (4.67)
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Figure 4.6: The equivalent mechanical circuit for fig. 4.5.

as well as f(t) ↔ V (t)/L2.

The solution again proceeds by Fourier transform. We write

V (t) =

∞∫

−∞

dω

2π
V̂ (ω) e−iωt (4.68)

and
{

Q1(t)

Î2(t)

}

=

∞∫

−∞

dω

2π

{
Q̂1(ω)

Î2(ω)

}

e−iωt (4.69)

The frequency space version of Kirchoff’s laws for this problem is

Ĝ(ω)
︷ ︸︸ ︷




−ω2 − iω R1/L1 + 1/L1 C1 R1/L1

iω R1/L2 −iω + (R1 + R2)/L2









Q̂1(ω)

Î2(ω)



 =





0

V̂ (ω)/L2



 (4.70)

The homogeneous equation has eigenfrequencies given by the solution to det Ĝ(ω) = 0,
which is a cubic equation. Correspondingly, there are three initial conditions to account
for: Q1(0), I1(0), and I2(0). As in the case of the single damped harmonic oscillator, these
transients are damped, and for large times may be ignored. The solution then is





Q̂1(ω)

Î2(ω)



 =





−ω2 − iω R1/L1 + 1/L1 C1 R1/L1

iω R1/L2 −iω + (R1 + R2)/L2





−1



0

V̂ (ω)/L2



 .

(4.71)

To obtain the time-dependent Q1(t) and I2(t), we must compute the Fourier transform back
to the time domain.
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4.3 General solution by Green’s function method

For a general forcing function f(t), we solve by Fourier transform. Recall that a function
F (t) in the time domain has a Fourier transform F̂ (ω) in the frequency domain. The relation
between the two is:1

F (t) =

∞∫

−∞

dω

2π
e−iωt F̂ (ω) ⇐⇒ F̂ (ω) =

∞∫

−∞

dt e+iωt F (t) . (4.72)

We can convert the differential equation 4.3 to an algebraic equation in the frequency
domain, x̂(ω) = Ĝ(ω) f̂(ω), where

Ĝ(ω) =
1

ω2
0 − 2iβω − ω2

(4.73)

is the Green’s function in the frequency domain. The general solution is written

x(t) =

∞∫

−∞

dω

2π
e−iωt Ĝ(ω) f̂(ω) + xh(t) , (4.74)

where xh(t) =
∑

i Ci e
−iωit is a solution to the homogeneous equation. We may also write

the above integral over the time domain:

x(t) =

∞∫

−∞

dt′ G(t − t′) f(t′) + xh(t) (4.75)

G(s) =

∞∫

−∞

dω

2π
e−iωs Ĝ(ω)

= ν−1 exp(−βs) sin(νs)Θ(s) (4.76)

where Θ(s) is the step function,

Θ(s) =

{
1 if s ≥ 0
0 if s < 0

(4.77)

where once again ν ≡
√

ω2
0 − β2.

Example: force pulse

Consider a pulse force

f(t) = f0 Θ(t)Θ(T − t) =

{

f0 if 0 ≤ t ≤ T
0 otherwise.

(4.78)

1Different texts often use different conventions for Fourier and inverse Fourier transforms. Sometimes the
factor of (2π)−1 is associated with the time integral, and sometimes a factor of (2π)−1/2 is assigned to both
frequency and time integrals. The convention I use is obviously the best.
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Figure 4.7: Response of an underdamped oscillator to a pulse force.

In the underdamped regime, for example, we find the solution

x(t) =
f0

ω2
0

{

1 − e−βt cos νt − β

ν
e−βt sin νt

}

(4.79)

if 0 ≤ t ≤ T and

x(t) =
f0

ω2
0

{
(

e−β(t−T ) cos ν(t − T ) − e−βt cos νt
)

+
β

ν

(

e−β(t−T ) sin ν(t − T ) − e−βt sin νt
)
}

(4.80)

if t > T .

4.4 General Linear Autonomous Inhomogeneous ODEs

This method immediately generalizes to the case of general autonomous linear inhomoge-
neous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . . + a1

dx

dt
+ a0 x = f(t) . (4.81)

We can write this as

Lt x(t) = f(t) , (4.82)
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where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . . + a1

d

dt
+ a0 . (4.83)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t, t′) f(t′) , (4.84)

where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 4.82
and 4.84 to be true, we must have

Lt x(t) =

this vanishes
︷ ︸︸ ︷

Lt xh(t) +

∞∫

−∞

dt′ Lt G(t, t′) f(t′) = f(t) , (4.85)

which means that

Lt G(t, t′) = δ(t − t′) , (4.86)

where δ(t − t′) is the Dirac δ-function. Some properties of δ(x):

b∫

a

dx f(x) δ(x − y) =







f(y) if a < y < b

0 if y < a or y > b .

(4.87)

δ
(
g(x)

)
=

∑

x
i
with

g(x
i
)=0

δ(x − xi)
∣
∣g′(xi)

∣
∣

, (4.88)

valid for any functions f(x) and g(x). The sum in the second equation is over the zeros xi

of g(x).

Incidentally, the Dirac δ-function enters into the relation between a function and its Fourier
transform, in the following sense. We have

f(t) =

∞∫

−∞

dω

2π
e−iωt f̂(ω) (4.89)

f̂(ω) =

∞∫

−∞

dt e+iωt f(t) . (4.90)
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Substituting the second equation into the first, we have

f(t) =

∞∫

−∞

dω

2π
e−iωt

∞∫

−∞

dt′ eiωt′ f(t′)

=

∞∫

−∞

dt′

{ ∞∫

−∞

dω

2π
eiω(t′−t)

}

f(t′) , (4.91)

which is indeed correct because the term in brackets is a representation of δ(t − t′):

∞∫

−∞

dω

2π
eiωs = δ(s) . (4.92)

If the differential equation Lt x(t) = f(t) is defined over some finite t interval with prescribed
boundary conditions on x(t) at the endpoints, then G(t, t′) will depend on t and t′ separately.
For the case we are considering, the interval is the entire real line t ∈ (−∞,∞), and
G(t, t′) = G(t − t′) is a function of the single variable t − t′.

Note that Lt = L
(

d
dt

)
may be considered a function of the differential operator d

dt . If we

now Fourier transform the equation Lt x(t) = f(t), we obtain

∞∫

−∞

dt eiωt f(t) =

∞∫

−∞

dt eiωt

{
dn

dtn
+ an−1

dn−1

dtn−1
+ . . . + a1

d

dt
+ a0

}

x(t) (4.93)

=

∞∫

−∞

dt eiωt

{

(−iω)n + an−1 (−iω)n−1 + . . . + a1 (−iω) + a0

}

x(t) ,

where we integrate by parts on t, assuming the boundary terms at t = ±∞ vanish, i.e.

x(±∞) = 0, so that, inside the t integral,

eiωt

(
d

dt

)k

x(t) →
[(

− d

dt

)k

eiωt

]

x(t) = (−iω)k eiωt x(t) . (4.94)

Thus, if we define

L̂(ω) =

n∑

k=0

ak (−iω)k , (4.95)

then we have
L̂(ω) x̂(ω) = f̂(ω) , (4.96)

where an ≡ 1. According to the Fundamental Theorem of Algebra, the nth degree poly-
nomial L̂(ω) may be uniquely factored over the complex ω plane into a product over n
roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (4.97)
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If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus,

the roots appear in pairs which are symmetric about the imaginary axis. I.e. if Ω = a + ib
is a root, then so is −Ω∗ = −a + ib.

The general solution to the homogeneous equation is

xh(t) =
n∑

i=1

Ai e−iωit , (4.98)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in
Fourier space, Ĝ(ω) is then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (4.99)

and the general solution to the inhomogeneous equation is again given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t − t′) f(t′) , (4.100)

where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(s) =

∞∫

−∞

dω

2π
e−iωs Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iωs

(ω − ω1)(ω − ω2) · · · (ω − ωn)

=

n∑

j=1

e−iωjs

iL′(ωj)
Θ(s) , (4.101)

where we assume that Imωj < 0 for all j. The integral above was done using Cauchy’s the-
orem and the calculus of residues – a beautiful result from the theory of complex functions.

As an example, consider the familiar case

L̂(ω) = ω2
0 − 2iβω − ω2

= −(ω − ω+) (ω − ω
−
) , (4.102)

with ω± = −iβ ± ν, and ν = (ω2
0 − β2)1/2. This yields

L′(ω±) = ∓(ω+ − ω−) = ∓2ν . (4.103)
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Then according to equation 4.101,

G(s) =

{

e−iω+s

iL′(ω+)
+

e−iω
−

s

iL′(ω−)

}

Θ(s)

=

{
e−βs e−iνs

−2iν
+

e−βs eiνs

2iν

}

Θ(s)

= ν−1 e−βs sin(νs)Θ(s) , (4.104)

exactly as before.

4.5 Kramers-Krönig Relations (advanced material)

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP2. Then for all ν, we must have

∞∫

−∞

dν

2π

χ̂(ν)

ν − ω + iǫ
= 0 , (4.105)

where ǫ is a positive infinitesimal. The reason is simple: just close the contour in the UHP,
assuming χ̂(ω) vanishes sufficiently rapidly that Jordan’s lemma can be applied. Clearly
this is an extremely weak restriction on χ̂(ω), given the fact that the denominator already
causes the integrand to vanish as |ω|−1.

Let us examine the function

1

ν − ω + iǫ
=

ν − ω

(ν − ω)2 + ǫ2
− iǫ

(ν − ω)2 + ǫ2
. (4.106)

which we have separated into real and imaginary parts. Under an integral sign, the first
term, in the limit ǫ → 0, is equivalent to taking a principal part of the integral. That is, for
any function F (ν) which is regular at ν = ω,

lim
ǫ→0

∞∫

−∞

dν

2π

ν − ω

(ν − ω)2 + ǫ2
F (ν) ≡ P

∞∫

−∞

dν

2π

F (ν)

ν − ω
. (4.107)

The principal part symbol P means that the singularity at ν = ω is elided, either by
smoothing out the function 1/(ν−ǫ) as above, or by simply cutting out a region of integration
of width ǫ on either side of ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ǫ

u2 + ǫ2
. (4.108)

2In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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For |u| ≫ ǫ, h(u) ≃ ǫ/u2, which vanishes as ǫ → 0. For u = 0, h(0) = 1/ǫ which diverges as
ǫ → 0. Thus, h(u) has a huge peak at u = 0 and rapidly decays to 0 as one moves off the
peak in either direction a distance greater that ǫ. Finally, note that

∞∫

−∞

duh(u) = π , (4.109)

a result which itself is easy to show using contour integration. Putting it all together, this
tells us that

lim
ǫ→0

ǫ

u2 + ǫ2
= πδ(u) . (4.110)

Thus, for positive infinitesimal ǫ,

1

u ± iǫ
= P 1

u
∓ iπδ(u) , (4.111)

a most useful result.

We now return to our initial result 4.105, and we separate χ̂(ω) into real and imaginary
parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (4.112)

(In this equation, the primes do not indicate differentiation with respect to argument.) We
therefore have, for every real value of ω,

0 =

∞∫

−∞

dν

2π

[

χ′(ν) + iχ′′(ν)
] [

P 1

ν − ω
− iπδ(ν − ω)

]

. (4.113)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig rela-

tions:

χ′(ω) = +P
∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω
(4.114)

χ′′(ω) = −P
∞∫

−∞

dν

π

χ̂′(ν)

ν − ω
. (4.115)


