Chapter 3

One-Dimensional Conservative
Systems

3.1 Description as a Dynamical System

For one-dimensional mechanical systems, Newton’s second law reads

mi = F(x) . (3.1)

A system is conservative if the force is derivable from a potential: F' = —dU/dx. The total
energy,

E=T+U=imi*+U(z), (3.2)

is then conserved. This may be verified explicitly:
dE  d )

_ [mgj n U’(g:)] i=0. (3.3)

Conservation of energy allows us to reduce the equation of motion from second order to

first order:
dx 2

Note that the constant E is a constant of integration. The + sign above depends on the
direction of motion. Points x(E) which satisfy

E=U(x) = z(E)=UYE), (3.5)

where U~ is the inverse function, are called turning points. When the total energy is E,
the motion of the system is bounded by the turning points, and confined to the region(s)
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U(x) < E. We can integrate eqn. 3.4 to obtain

t(x) — t(z,) (3.6)

[/W

This is to be inverted to obtain the function z(¢). Note that there are now two constants
of integration, F and x,. Since

E=Ey=imvi + Ul(z,) , (3.7)

we could also consider z, and v, as our constants of integration, writing £ in terms of x
and v,. Thus, there are two independent constants of integration.

For motion confined between two turning points =, (F), the period of the motion is given
by

vy (E)
T(E) :\/%/ %U(x/). (3.8)
z_(F)

3.1.1 Example : harmonic oscillator

In the case of the harmonic oscillator, we have U(z) = %k‘xz, hence

dt m
e +4/ STk (3.9)

The turning points are = £+ (E) = £4/2E/k, for E > 0. To solve for the motion, let us

substitute
x = \/@ sinf . (3.10)
k
dt = ,/% do (3.11)

0(t) = 0, +wt , (3.12)

We then find

with solution

where w = \/k/m is the harmonic oscillator frequency. Thus, the complete motion of the

system is given by
2F
z(t) =1/ - sin(wt + 6,,) . (3.13)

Note the two constants of integration, £ and 6.
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3.2 One-Dimensional Mechanics as a Dynamical System

Rather than writing the equation of motion as a single second order ODE, we can instead
write it as two coupled first order ODEs, wviz.

dx
dv 1

This may be written in matrix-vector form, as

% (i) B <% ;(:g)> ' (3.16)

This is an example of a dynamical system, described by the general form

de

— =V 3.17

7 (), (3.17)
where ¢ = (¢y,...,¢,) is an N-dimensional vector in phase space. For the model of eqn.

3.16, we evidently have N = 2. The object V(¢) is called a vector field. It is itself a vector,
existing at every point in phase space, RY. Each of the components of V() is a function
(in general) of all the components of ¢:

V,=Vi(pnoipy)  (G=1...,N). (3.18)

Solutions to the equation ¢ = V(¢) are called integral curves. Each such integral curve
(t) is uniquely determined by N constants of integration, which may be taken to be the
initial value ¢(0). The collection of all integral curves is known as the phase portrait of the
dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve for its motion,
starting from arbitrary initial conditions. In general this is a difficult problem, which can
only be treated numerically. But for conservative mechanical systems in d = 1, it is a trivial
matter! The reason is that energy conservation completely determines the phase portraits.

The velocity becomes a unique double-valued function of position, v(z) = £/ 2 (E — U(z)).

The phase curves are thus curves of constant energy.

3.2.1 Sketching phase curves
To plot the phase curves,

(i) Sketch the potential U(x).

(i) Below this plot, sketch v(z; E) = +,/2(E — U(z)).
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Figure 3.1: A potential U(z) and the corresponding phase portraits. Separatrices are shown
in red.
(iii)) When E lies at a local extremum of U(z), the system is at a fized point.

(a) For E slightly above E,;,, the phase curves are ellipses.
(b) For FE slightly below FE.,,.,, the phase curves are (locally) hyperbolae.

(¢) For E = FE,,,, the phase curve is called a separatriz.
(iv) When E > U(oo) or E > U(—00), the motion is unbounded.

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T'(F) has a simple geometric interpretation. The area A in phase
space enclosed by a bounded phase curve is

z1(E)
A(E) = fm /2 /dxm (3.19)
E z_(E)

Thus, the period is proportional to the rate of change of A(F) with E:

0A
T=mzz. (3.20)
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3.3 Fixed Points and their Vicinity

A fixed point (z*,v*) of the dynamics satisfies U'(z*) = 0 and v* = 0. Taylor’s theorem
then allows us to expand U(x) in the vicinity of z*:

Uz) =U(*) + U'(2*) (x — 2*) + 3U"(2*) (z — 2*)> + LU (2*) (x —2*)* +... . (3.21)

Since U’(z*) = 0 the linear term in dx = x — 2* vanishes. If dx is sufficiently small, we can
ignore the cubic, quartic, and higher order terms, leaving us with

U(0z) = Uy + $k(0z)* (3.22)

where Uy = U(z*) and k = U”(z*) > 0. The solutions to the motion in this potential are:

U'(z*) >0 : 6x(t) = dz, cos(wt) + i)ﬂ sin(wt) (3.23)

U'(2*) <0 : éx(t) = oz, cosh(yt) + 5% sinh(vt) , (3.24)

where w = y/k/m for k > 0 and v = \/—k/m for k < 0. The energy is

E =Uy+ $m (0vy)* + 3k (6z4)* . (3.25)

For a separatrix, we have E = U, and U”(z*) < 0. From the equation for the energy, we
obtain dv, = £y dx,. Let’s take dv, = —vdx, so that the initial velocity is directed toward
the unstable fixed point (UFP). Le. the initial velocity is negative if we are to the right of
the UFP (dx, > 0) and positive if we are to the left of the UFP (dz, < 0). The motion of
the system is then

dx(t) = 0z exp(—t) . (3.26)
The particle gets closer and closer to the unstable fixed point at dz = 0, but it takes an
infinite amount of time to actually get there. Put another way, the time it takes to get from
0z to a closer point dx < dz is

t=~"1ln <iﬁ> : (3.27)
x

This diverges logarithmically as dx — 0. Generically, then, the period of motion along a
separatrix is infinite.

3.3.1 Linearized dynamics in the vicinity of a fixed point

Linearizing in the vicinity of such a fixed point, we write dx = = — z* and dv = v — v*,

obtaining
d (bx 0 1\ [(éx
i () = (Lo o) (50) 7 329
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Figure 3.2: Phase curves in the vicinity of centers and saddles.

This is a linear equation, which we can solve completely.

Consider the general linear equation ¢ = A ¢, where A is a fixed real matrix. Now whenever
we have a problem involving matrices, we should start thinking about eigenvalues and
eigenvectors. Invariably, the eigenvalues and eigenvectors will prove to be useful, if not
essential, in solving the problem. The eigenvalue equation is

Aty =\t (3.29)

Here 1), is the o' right eigenvector' of A. The eigenvalues are roots of the characteristic
equation P(\) = 0, where P(\) = det(\ -1 — A). Let’s expand ¢(t) in terms of the right
eigenvectors of A:

e(t) = Colt), - (3.30)

Assuming, for the purposes of this discussion, that A is nondegenerate, and its eigenvectors
span RY, the dynamical system can be written as a set of decoupled first order ODEs for
the coefficients Cy(t):

C,=\

oCa s (3.31)

with solutions
C,(t) = C,(0) exp(A,t) . (3.32)

If Re(Aa) > 0, Cu(t) flows off to infinity, while if Re(\y) > 0, Cu(t) flows to zero. If
[Aa| = 1, then Cy () oscillates with frequency Im (A\y).

If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right and left
eigenvectors differ, although the set of corresponding eigenvalues is the same.



3.4. EXAMPLES OF CONSERVATIVE ONE-DIMENSIONAL SYSTEMS 7

For a two-dimensional matrix, it is easy to show — an exercise for the reader — that
PA) =X -TX+D, (3.33)
where T'= Tr(A) and D = det(A). The eigenvalues are then
Ay =T+ 1/T? —4D . (3.34)

We'll study the general case in Physics 110B. For now, we focus on our conservative me-
chanical system of eqn. 3.28. The trace and determinant of the above matrix are 7' = 0 and
D = L U"(z*). Thus, there are only two (generic) possibilities: centers, when U”(z*) > 0,
and saddles, when U”(x2*) < 0. Examples of each are shown in Fig. 3.1.

3.4 Examples of Conservative One-Dimensional Systems

3.4.1 Harmonic oscillator
Recall again the harmonic oscillator, discussed in lecture 3. The potential energy is U(z) =
%kx? The equation of motion is

&2 d
mte_ U (3.35)

where m is the mass and k the force constant (of a spring). With v = &, this may be written

as the V = 2 system,
d (z 0 1\ [z v
i (0) = (e o) ()= (L) (320

where w = (/k/m has the dimensions of frequency (inverse time). The solution is well
known:

x(t) =z cos(wt) + Z—O sin(wt) (3.37)
v(t) = vy cos(wt) —wxy sin(wt) . (3.38)

The phase curves are ellipses:
wo 22 (t) +wy L2 (t) = C, (3.39)

where C' is a constant, independent of time. A sketch of the phase curves and of the phase
flow is shown in Fig. 3.3. Note that the x and v axes have different dimensions.

Energy is conserved:
E = %mv2 + %kxz . (3.40)

Therefore we may find the length of the semimajor and semiminor axes by setting v = 0 or

x = 0, which gives
|2FE [2F
=4/ — =4/ —. 3.41
xmax ]’{7 ? Umax m ( )
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Figure 3.3: Phase curves for the harmonic oscillator.
The area of the elliptical phase curves is thus
AE)=mx_, v, = \2/% . (3.42)
The period of motion is therefore
T(E) =m g—g = o % : (3.43)

which is independent of E.

3.4.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid
rod of length ¢. The potential is U(6) = —mg¥l cos #, hence

me? 0 = —% = —mglsinf . (3.44)

% (Z) - <_wgwsin9> ) (3.45)

where w = 6 is the angular velocity, and where w, = y/g/¢ is the natural frequency of small
oscillations.

This is equivalent to

The conserved energy is .
E=im?0*+U(9) . (3.46)

Assuming the pendulum is released from rest at 6 = 0,,,

2F

7 — 62— 2w(2] cosf = —2w§ cos 0 . (3.47)
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Figure 3.4: Phase curves for the simple pendulum. The separatriz divides phase space into
regions of rotation and libration.

The period for motion of amplitude 6, is then

Nl a9 4
8

9.) = ¥Y° ~ — " K(sin?le , 3.48
( 0) wo /\/COSH—COSQO wo (sm 2 0) ( )
0

where K(z) is the complete elliptic integral of the first kind. Expanding K (z), we have

T

2
T(6,) = 1{1 + 1 sin?® (36,) + & sin® (36,) + ... } : (3.49)
wo
For 6, — 0, the period approaches the usual result 27 /w, valid for the linearized equation
= —w% 0. As 6, — 5, the period diverges logarithmically.

The phase curves for the pendulum are shown in Fig. 3.4. The small oscillations of the
pendulum are essentially the same as those of a harmonic oscillator. Indeed, within the
small angle approximation, sinf ~ 6, and the pendulum equations of motion are exactly
those of the harmonic oscillator. These oscillations are called librations. They involve
a back-and-forth motion in real space, and the phase space motion is contractable to a
point, in the topological sense. However, if the initial angular velocity is large enough, a
qualitatively different kind of motion is observed, whose phase curves are rotations. In this
case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see
in a later lecture, the total energy is sufficiently large. The phase curve which separates
these two topologically distinct motions is called a separatriz.
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3.4.3 Other potentials

Using the phase plotter application written by Ben Schmidel, available on the Physics 110A
course web page, it is possible to explore the phase curves for a wide variety of potentials.
Three examples are shown in the following pages. The first is the effective potential for the

Kepler problem,
k 0

Ug(r)=—4+—, 3.50
=2+ (350)
about which we shall have much more to say when we study central forces. Here r is the
separation between two gravitating bodies of masses m, 5, = mymy/(m; + my) is the
‘reduced mass’, and k = Gm;m,, where G is the Cavendish constant. We can then write

Ua(r) = UO{ L } : (3.51)

x  2x2

where 7, = ¢?/uk has the dimensions of length, and = = r/r,, and where U, = k/r, =
pk? /02, Thus, if distances are measured in units of ro and the potential in units of U, the
potential may be written in dimensionless form as U(z) = —% + ﬁ

The second is the hyperbolic secant potential,
U(z) = —Uysech?(z/a) , (3.52)

which, in dimensionless form, is U(z) = —sech?(x), after measuring distances in units of a
and potential in units of Uj,.

The final example is
T T
Uz) = U, { cos (5) + %} . (3.53)

Again measuring z in units of @ and U in units of U, we arrive at U (z) = cos(z) + 3.
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-1/x+1/ (2%x*x)

Figure 3.5: Phase curves for the Kepler effective potential U(z) = —2~! + %m_Q.
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Figure 3.6: Phase curves for the potential U(z) = —sech?(z).
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Figure 3.7: Phase curves for the potential U(x) = cos(z) +

N[
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