
PHYSICS 110A : CLASSICAL MECHANICS
HW 7 SOLUTIONS

(1) Taylor 8.13
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Figure 1: Plot of Ueff vs. r for U = 1
2kr

2 where kµ
l2

= 50.

The effective potential will be:

Ueff =
l2

2µr2
+

1
2
kr2.

This is plotted in figure (1). In order to find the circular orbit we set r̈ = 0 which gives us
dUeff

dr = 0. For this we find:

U ′eff = − l2

µr3
+ kr = 0. (1)

Or:
l2

µr3
= kr.
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Which leads to:

r0 = 4

√
l2

µk
.

To find the Taylor expansion we want to find:

Ueff (r) = Ueff (r0) + U ′eff (r0)(r − r0) +
1
2
U ′′eff (r0)(r − r0)2 + ...

So we have:

Ueff (r0) =
l2

2µr20
+

1
2
kr20.

If we plug in:

r20 =
l√
µk
.

We have:

Ueff (r0) =

√
k

µ
l.

By definition (equation 1) U ′eff (r0) = 0, so we need to find the second derivative:

U ′′eff (r0) =
3l2

µr40
+ k.

If we plug in:

r40 =
l2

µk
.

We have:
U ′′eff (r0) = 4k.

So our Taylor expansion is:

Ueff (r) ≈

√
k

µ
l +

1
2

4k(r − r0)2 + ...

Equation 8.29 in the text gives the equation of motion:

µr̈ = −
dUeff (r)

dr
.

With this our equation of motion will be:

r̈ = −4k
µ

(r − r0).

Which if we take r = r0 + ε(t) gives us:

ε̈ = −4k
µ
ε.
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So this leads to a oscillator frequency of:

ω =

√
4k
µ
.

(2) Taylor 8.14
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Figure 2: Plot of Ueff vs. r for U = k
r where kµ

l2
= −10.

The effective potential will be:

Ueff =
l2

2µr2
+ krn.

This is plotted in figures (1), (2), and (3) for values n = 2,−1, and −3, respectively. (Note:
since kn > 0 if n < 0 k < 0 as well). In order to find the circular orbit we set r̈ = 0 which
gives us dUeff

dr = 0. For this we find:

U ′eff = − l2

µr3
+ nkrn−1 = 0. (2)
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Figure 3: Plot of Ueff vs. r for U = k
r3

where kµ
l2

= −0.1.

Or:
l2

µr3
= nkrn−1.

Which leads to:

r0 = n+2

√
l2

nµk
.

To determine which are stable orbits we need a second derivative test. We will have a stable
equilibrium when U ′′eff (r0) > 0.

So:

U ′′eff (r0) =
3l2

µr40
+ n(n− 1)krn−2

0 . (3)

Now from above we have:

r0 = n+2

√
l2

nµk
.

Or:

rn+2
0 =

l2

nµk
.
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Or:

rn−2
0 =

l2

nµkr40
.

Where I divided both sides by r40.

Inserting this into equation (3) we have:

U ′′eff (r0) =
3l2

µr40
+ n(n− 1)k

l2

nµkr40
.

Or:

U ′′eff (r0) =
3l2

µr40
+ (n− 1)

l2

µr40
.

Or finally:

U ′′eff (r0) =
(n+ 2)l2

µr40
. (4)

Where we see U ′′eff (r0) > 0 for all n > −2. This is in agreement with our plots. The plots
of n = 2 and n = −1 have a stable minimum point where the plot of n = −3 does not.

We can find the period by finding the angular frequency from the Taylor expansion:

Ueff (r) = Ueff (r0) + U ′eff (r0)(r − r0) +
1
2
U ′′eff (r0)(r − r0)2 + ...

with equations (2) and (4) we have:

Ueff (r) ≈ Ueff (r0) +
1
2

(n+ 2)l2

µr40
(r − r0)2.

Equation 8.29 in the text gives the equation of motion:

µr̈ = −
dUeff (r)

dr
.

With this our equation of motion will be:

r̈ = −(n+ 2)l2

µ2r40
(r − r0).

Which if we take r = r0 + ε(t) gives us:

ε̈ = −(n+ 2)l2

µ2r40
ε.

So this leads to a oscillator frequency of:

ω =
√
n+ 2l
µr20

.
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So we see:

τosc =
2πµr20√
n+ 2l

=
τorb√
n+ 2

.

(Note: check the first sentence of the Professor’s notes in section 9.4.4 for the definition of
τorb. An easy way to see this is to note that the time to go around a circle is

τorb = 2πr0
v = 2πr0

r0φ̇
= 2πr0

r0(`/µr20)
= 2πµr20

`

where we have used the circumference of the circle divided by the constant tangential speed
about the circle (v = rω) to determine the period, or time to circumscribe the circle).

Now if
√
n+ 2 is rational we have:

τosc
τorb

=
A

B
.

Where A and B are integers. This implies that the orbit will indeed repeat itself, if we
repeat the precessing orbit at least B times, therefore being a closed orbit.

(3) Taylor 8.17

If G = r · p then:
Ġ = ṙ · p + r · ṗ.

We can write this a little different:

Ġ = v · p + r · F.

Integrating both sides over t we have:∫ t

0
dt′Ġ =

∫ t

0
dt′ [v · p + r · F] .

Which can be rewritten as:

G(t)−G(0) = 2
∫ t

0
dt′

1
2
mv2 +

∫ t

0
dt′F · r.

Dividing both sides by t we have:

G(t)−G(0)
t

=
1
t

[
2
∫ t

0
dt′T +

∫ t

0
dt′F · r

]
.

Or:
G(t)−G(0)

t
= 2 < T > + < F · r > .

Then we have:
0 = 2 < T > + < −nkrn−1r̂ · r > .
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This is true since G(t) = r ·p is always finite, since in a given orbit r has a maximum finite
value and p also has a maximum finite value, so r · p is always finite, though oscillating.
We can then rewrite this as

0 = 2 < T > −n < krn > .

And:
0 = 2 < T > −n < U > .

So we have:
< T >= n < U > /2.

(4) Taylor 8.19

Here we have equations for rmin and rmax for an ellipse:

r
min

r
max

c

Figure 4: Figure for 8.19.

rmax =
c

1− ε
,

and:
rmin =

c

1 + ε
,

Now remember rmin = 6400 km + 300 km = 6700 km, and rmax = 6400 km + 3000 km
= 9400 km. Where 6400 km is the radius of the Earth.

So solving the above two equations for ε we get ε = 0.17.

At this point it’s easy to plug back in for c = 7802 km. Subtracting the radius of the
Earth we get d = 1400 km which is the satellites distance to the surface of the Earth when
it crosses the y-axis.

(5) Taylor 8.29

By the virial theorem we see that for a circular orbit under the influence of a power law
potential U = krn:

< T >= −n < U > /2.

7



Which since the gravitational potential has n = 1 our kinetic energy is:

T = −U/2.

Where I dropped the average sign.

So our total energy would be:
E = −U0/2 + U0.

Now if the sun lost half of it’s mass the potential energy would drop by a half, but the
kinetic would not change. So we would have:

E = −U0/2 + U0/2 = 0.

We know that for E = 0 we have ε = 1 and a parabolic orbit, so the earth would eventually
leave the sun.

(6) Taylor 8.35

This is similar to example 8.6 in the text except run backwards. Initially we have

R
i

R
f

Figure 5: Figure for 8.35.

rmax = rmax for the initial circular orbit Ri and the elliptical path which will transfer
the craft between circular orbits.

Our equation will be:
c1

1− ε1
=

c2
1− ε2

.

However ε1 = 0 because it’s a circular orbit so we have:

c1 =
c2

1− ε2
. (5)

Now the relation between c constants is:

c1 = λ2c2. (6)
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Again this is derived from:
v1 = λv2,

and the fact that v ∝ l and l2 ∝ c.

Solving for ε2 we get:
ε2 = 1− λ2.

Now we also want the rmin of this ellipse to match with our final radius Rf . For this to
happen we need:

c3 =
c2

1 + ε2
.

Or:

Rf =
λ2Ri
1 + ε2

.

If we plug in our value for ε2 we get:

λ =

√
2Rf

Ri +Rf
=

√
2
5
.

For the second thrust we want to switch from the elliptical orbit into a circular one. So we
want to have the same rmin and we will have a relationship between c constants of:

c3 = λ′2c2. (7)

So in order to have the same rmin we have:

c3 =
c2

1 + ε2
. (8)

Solving these for the thrust factor we get:

λ =
1

2− λ2
=

√
5
8
.

Similar to the example we use angular momentum to solve for the overall gain in speed:

v3 = λ′
v2(per)
v2(apo)

λv1 =
v1
2
.
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